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Abstract: The finite-element (FE) method for three-dimensional (3D) airborne electromagnetic (AEM)
modeling can flexibly simulate complex geological structures at high accuracy. However, it has low
efficiency and high computational requirements. To solve these problems, one needs to generate
meshes more reasonably. In view of this, we develop an adaptive octree meshing scheme for
frequency-domain AEM modeling. The octree meshes have the characteristics of regularity and
flexibility, while the adaptive algorithm can effectively refine the mesh locally. In our adaptive mesh
generation, the posterior errors and weighted coefficients are used to construct the final weighted
posterior errors. We verify the accuracy of our method by comparing its results with semi-analytical
solutions for a half-space model. Furthermore, we use the spectral-element (SE) method and our
method to calculate EM responses for an abnormal block model and compare their computational
costs. The results show that our adaptive scheme has obviously technical advantages over SE method
for AEM modeling with multiple frequencies and multiple survey stations. Finally, we calculate
a model with complex geological structures to verify the feasibility of our algorithm in complex
geological circumstances.

Keywords: airborne EM; frequency domain; 3D forward modeling; finite-element method; adaptive
octree mesh

1. Introduction

AEM is an efficient exploration tool that has been widely used in geological mapping,
mineral exploration, environmental and engineering investigations, and groundwater ex-
ploration [1–3]. To model the topography and complex underground structures, various 3D
numerical methods have been developed, such as the integral equations (IE) method [4,5],
the finite-difference (FD) method [6–9], the finite-volume (FV) method [10–12], the finite-
element (FE) method [13–15], and the spectral-element (SE) method [16]. Among these
numerical methods, the IE method can only simulate simple models, while the FD method
has low accuracy. The FV method can simulate complex models, but its accuracy is not
high. The SE method can achieve high modeling accuracy, but its computational cost is
high. In comparison to these methods, the FE method can work on flexible meshes, so it
can model the terrain and complex underground structures. However, its accuracy and
efficiency strongly depend on the quality of the meshes.

In this paper, the vector FE method is implemented in combination with the adaptive
octree mesh for AEM forward modeling, and a goal-oriented adaptive meshing scheme is
developed to locally refine the octree mesh so that the modeling efficiency can be improved
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while the accuracy is maintained. The octree mesh has been used in FE method since the
1990s [17]. It has regularity and flexibilty and can be refined locally. However, a process to
effectively generate appropriate octree meshes is the key to EM modeling. The traditional
mesh generation is based largely on the experience of operators, but it cannot ensure that
the generated mesh is optimal, nor can it ensure that the forward modeling can deliver high-
precision results. Especially when the distribution of underground structures is complex,
an over-sparse mesh cannot deliver high-precision results, while a dense mesh can ensure
accuracy, but an over-dense mesh largely reduces the efficiency and wastes computational
resources. Only a reasonable mesh can deliver accurate results at high efficiency. Starting
with the traditional octree mesh, we try in this paper to develop an adaptive scheme to
refine only those elements that create large calculation errors and make large contributions
to EM signals, so that the number of elements to be refined can be reduced and the modeling
efficiency can be improved while the modeling accuracy is assured.

The posterior error estimation in the adaptive mesh refinement scheme is generally
based on the continuity of the EM field or the current density across adjacent elements [18]
and the super-convergence characteristics of the potential field [19–21]. In this paper, the
posterior errors are estimated based on the continuity condition of the current density. The
process of using only posterior errors to guide mesh refinement is called the global adaptive
algorithm. This algorithm can improve the forward-modeling accuracy at all locations in
the calculation area. However, from the classical theory-of-error analysis in FE method [22],
once the density of the global mesh reaches a certain level, the accuracy of FE solutions are
strongly affected by the local mesh density. Considering that in the AEM method, we are
only interested in EM signals around the survey points [2], the global adaptive algorithm is
not very suitable because it would reduce the modeling efficiency, while the accuracy may
not be improved at the locations of the survey points. Therefore, in this paper we introduce
a goal-oriented adaptive scheme for mesh refinement. In addition to a posterior error
estimation for each element, we also calculate a weighting coefficient from the influence
function for each element based on the model parameters and the location of the receiving
points. Then, the weighted posterior errors are used to determine which element needs
to be refined. In this way, the modeling efficiency can be improved while the calculation
accuracy is ensured.

In the sequence, we will first briefly introduce the FE forward modeling for AEM
using octree meshes, and then focus our attention on the goal-oriented adaptive meshing
scheme. After that, we will introduce how to implement the adaptive scheme to the octree
mesh for our 3D modeling based on FE method. To test the effectiveness of the algorithm,
we compare our results with 1D semi-analytical solutions for a homogeneous half-space
model. To demonstrate the advantages of our goal-oriented adaptive method over the
globally adaptive one, the number of unknowns is compared for these two methods under
the condition that the same accuracy is obtained. Furthermore, to verify the effectiveness of
our algorithm for forward-modeling a multi-frequency and multi-receiver AEM system, we
use, respectively, the single frequency and the combined frequencies to generate adaptive
meshes for the calculation of AEM responses and demonstrate the advantages of the
adaptive mesh generated by the combined frequencies in AEM modeling. Considering
that the terrain has serious impacts on AEM responses [23–25], we use a 2D rough surface
to create a terrain model with complex underground structures and use the goal-oriented
adaptive octree mesh to discretize it, and then we calculate AEM responses based on the
goal-oriented adaptive octree mesh. The calculation results verify the effectiveness of our
algorithm for simulating terrain and complex underground structures.

2. Methods
2.1. AEM forward Modeling Based on Octree Mesh

Assuming a time dependence of eiωt, Maxwell’s equation in the frequency domain
can be written as

∇× E = −iωµ0H, (1)
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∇×H = σE + Jp, (2)

where E and H are, respectively, the electric and magnetic field; ω is the angular frequency;
µ0 is the free-space permeability; σ is the conductivity; and Jp is the source current density,
i =
√
−1. In order to eliminate the singularity of the source field, the total field is divided

into primary and secondary parts, i.e., E = Ep + Es, H = Hp + Hs. Then, we have

∇×∇× Es + κ2Es = κ2
s Ep, (3)

where κ2= iωµ0σ, κ2
s = −iωµ0(σ− σ0), and σ0 is the background conductivity. The vertical

magnetic dipole in a free space is taken for calculating the primary field [26]. To ensure the
uniqueness of the solution, the Dirichlet boundary condition is introduced [7], i.e.,

Es|∂Ω = 0. (4)

Defining the Hilbert vector space as H(curl, Ω) =
{

Φ ∈ L2(Ω),∇×Φ ∈ L2(Ω)
}

,
where L2 represents the square integrable function in the Hilbert space, then the inner
products in the Hilbert space can be written as

‖Φ‖L2,Ω =
y

Ω
|Φ|

2
dv, Ω ⊂ R3, (5)

‖Φ‖L2,Γ =
x

Γ
|Φ|

2
ds, Γ ⊂ ∂Ω ⊂ R2. (6)

Taking the dot product of Equation (3) with vector interpolation function [27] and
applying the first Green’s theorem, the following equation for the secondary field [28] can
be obtained, i.e.,

y

Ω
∇×N · ∇ × Es + κ2N·Esdv =

y

Ω
κ2

s N·Epdv. (7)

To solve Equation (7), an octree mesh is used to discretize the model. Referring to
Figure 1a, we take a 2D mesh as an example to explain the hierarchical relationship between
the octree elements and the division rules. The elements that are not divided are called the
root cell. The elements that are divided once (blue ones) have a level 1, the elements that are
divided twice (green ones) have a level 2, and so on. The octree mesh is divided according
to a 2:1 rule, which means that the level difference of adjacent elements cannot exceed one.
Thus, the orange elements in Figure 1a are illegal. Therefore, for an octree element, the
number of adjacent cells in one element face can only be four or one (Figure 1b). When an
octree mesh is refined, it has different mesh levels on both sides and generates hanging
faces (namely, the number of elements on each side of the face is inconsistent). The edges
on the hanging faces are called hanging edges. Different element levels on both sides of
the hanging face will cause field discontinuity, which will destroy the convergence of the
Galerkin method. Thus, measures need to be taken to limit it. As shown in Figure 1c, a
total of 12 hanging edges exist, which can be further classified into hanging edges at the
edges (solid lines) and hanging edges on the face (dotted lines). The simplest way to deal
with hanging edges is to impose continuity conditions via algebraic constraints [29]. Thus,
for hanging edges at the edge, we assume

E1 = E2 = E1,2, E3 = E4 = E3,4, E5 = E6 = E5,6, E7 = E8 = E7,8. (8)
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Meanwhile, for hanging edges on the face, we assume

E9 = 1
2 (E1 + E6) =

1
2 (E1,2 + E5,6),

E10 = 1
2 (E2 + E5) =

1
2 (E1,2 + E5,6),

E11 = 1
2 (E3 + E8) =

1
2 (E3,4 + E7,8),

E12 = 1
2 (E4 + E7) =

1
2 (E3,4 + E7,8).

(9)

where E1,2, E3,4, E5,6, and E7,8 are the field values corresponding to the long edges formed
by the relevant short edges.
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For the regular hexahedral meshes, the field value at any point in an element can be
obtained by interpolation, i.e.,

Ee =
12

∑
i=1

Ne
i Ee

i , (10)

where Ne
i denotes the vector interpolation functions for the corresponding edge in the

element, while Ee
i denotes the tangential electric field at the corresponding edge.

For the octree mesh, we can substitute Equations (8) and (9) into Equation (10) and
integrate Equation (7). Then, we can assemble the matrix for each element together into a
large linear equation system and obtain(

K1 + κ2K2

)
es = κ2

s K2ep, (11)

where K1 denotes the stiffness matrix, K2 denotes the mass matrix, es is the secondary-field
vector to be solved at the edges, and ep is the primary-field vector. The direct solver
PARDISO [30] is used to solve Equation (11). After obtaining the electric field at each edge,
the electric field at any point can be calculated by interpolation, while the magnetic field at
the receiving point can be calculated by Faraday’s law.

2.2. Adaptive Scheme for Octree Mesh
2.2.1. Posterior Errors Estimation for Octree Meshes

As we know, when the current flows across an interface of different media, its normal
component is continuous, so the posterior error of each element can be evaluated based on
the continuity of the normal component of the current flow. Since the FE method divides the
model domain into many small elements for the numerical calculation of AEM responses,
numerical errors can occur in the calculation results, so the continuity conditions of normal
current density at an interface cannot be strictly guaranteed. In this paper, the discontinuity
of normal current densities of adjacent elements caused by numerical errors is used as a
criterion for posterior error estimation. Defining Г as the common face between the octree
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elements Oi and Oj and E+ and E− as the electric fields at the common face calculated
using the vector FE algorithm based on the octree mesh, then if the calculation results are
accurate, we have

nΓ · (J− − J+) = 0, (12)

where nГ denotes the normal vector of surface Г, J− = σ−E−, J+ = σ+E+, and σ+ and σ− are
the conductivities corresponding to elements Oi and Oj, respectively. It is seen from the
above discussion that Equation (12) is difficult to satisfy in EM forward modeling due to
the existence of numerical errors. However, the posterior errors can be estimated from (12)
by calculating the difference in current density from the calculation results.

For 3D forward modeling in frequency-domain AEM, we solve the secondary electric
field. The normal current density of the secondary field does not meet the continuity
condition, so we need to modify Equation (12). For this purpose, the total electric field is
rewritten as

E = Ep + Es. (13)

Considering that the background field Ep is selected as that of a magnetic dipole in a
free space, the real part of the background field is 0 [26], so the real part of the secondary
field is equal to the real part of the total field. Therefore, the continuity condition of the real
part of the normal secondary current density can be used as an estimation of the posterior
errors. Based on this, the posterior error η2

e of the secondary field can be defined as

η2
e =

6

∑
i=1
‖nΓi · (σ−Esr− − σ+Esr+)‖L2,Γi

, (14)

where Гi is the ith face of the octree mesh, Esr− and Esr+ are the real parts of the electric
field at the common face Гi, while σ− and σ+ are the conductivities on both sides of Гi.

For octree meshes, the posterior errors are estimated, respectively, for the following
three cases:

1. For element O1 in Figure 2a, the relationship between elements O1 and O2 is one face
to one face. Thus, when calculating the posterior error, only the differences of normal
current densities between Г1 and Г2 need to be calculated.

2. For element O3 in Figure 2b, the relationships with elements O4, O5, O6, and O7 are
one face to four faces. Thus, when calculating the posterior error, the differences of
normal current densities between Г3 and Г4, Г5, Г6, and Г7 need to be calculated.

3. For elements O4, O5, O6, or O7 in Figure 2b, the relationship between them and O3
is one face to one face. Thus, when calculating the posterior errors, the differences
of normal current densities between the faces Г4, Г5, Г6, Г7, and their corresponding
areas on Г3 need to be calculated.
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In actual calculations, for the first case, the electric fields EΓ1
sr1, EΓ1

sr2, EΓ1
sr3, and EΓ1

sr4 at
four points of Г1 and EΓ2

sr1, EΓ2
sr2, EΓ2

sr3, and EΓ2
sr4 at four points of Г2 can be calculated from

Equation (10). Then, we can divide the area into four small equal rectangles f1, f2, f3, and f4,
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with each containing one point, and calculate the posterior error at the common surfaces of
Г1 and Г2 by

η2
O1,Γ1

=
∥∥∥nΓ1

·
(

σO1
EΓ1

sr1 − σO2
EΓ2

sr1

)∥∥∥
L2,f1

+
∥∥∥nΓ1

·
(

σO1
EΓ1

sr2 − σO2
EΓ2

sr2

)∥∥∥
L2,f2

+
∥∥∥nΓ1

·
(

σO1
EΓ1

sr3 − σO2
EΓ2

sr3

)∥∥∥
L2,f3

+
∥∥∥nΓ1

·
(

σO1
EΓ1

sr4 − σO2
EΓ2

sr4

)∥∥∥
L2,f4

. (15)

For the second case, we take 4 points at Г3 in the area corresponding to Г4, Г5, Г6, Г7

and obtain the electric fields EΓ3
sr1, EΓ3

sr2, EΓ3
sr3, and EΓ3

sr4 according to Equation (10). Similarly,
we can obtain the corresponding electric fields EΓ4

sr , EΓ5
sr , EΓ6

sr , and EΓ7
sr at Г4, Г5, Г6, and Г7

and calculate the posterior error of Г3 by

η2
O3,Γ3

=
∥∥∥nΓ3

·
(

σO3
EΓ3

sr1 − σO4
EΓ4

sr

)∥∥∥
L2,Γ4

+
∥∥∥nΓ3

·
(

σO3
EΓ3

sr2 − σO5
EΓ5

sr

)∥∥∥
L2,Γ5

+
∥∥∥nΓ3

·
(

σO3
EΓ3

sr3 − σO6
EΓ6

sr

)∥∥∥
L2,Γ6

+
∥∥∥nΓ3

·
(

σO3
EΓ3

sr4 − σO7
EΓ7

sr

)∥∥∥
L2,Γ7

. (16)

For the third case, we take element O6 as an example. It is seen from Figure 2b that
the face corresponding to Г6 is γ3. The electric fields EΓ6

sr1, EΓ6
sr2, EΓ6

sr3, and EΓ6
sr4 of four points

at Г6 can be obtained from Equation (10), where the area is divided into four small equal
rectangles, f5, f6, f7, and f8, with each containing one point. Similarly, we can obtain the
electric fields Eγ3

sr1, Eγ3
sr2, Eγ3

sr3, and Eγ3
sr4 for four points corresponding to surface γ3 and

calculate the posterior error of Г6 by

η2
O6,Γ6

=
∥∥∥nΓ6

·
(

σO6
EΓ6

sr1 − σO3
Eγ3

sr1

)∥∥∥
L2,f5

+
∥∥∥nΓ6

·
(

σO6
EΓ6

sr2 − σO3
Eγ3

sr2

)∥∥∥
L2,f6

+
∥∥∥nΓ6

·
(

σO6
EΓ6

sr3 − σO3
Eγ3

sr3

)∥∥∥
L2,f7

+
∥∥∥nΓ6

·
(

σO6
EΓ6

sr4 − σO3
Eγ3

sr4

)∥∥∥
L2,f8

. (17)

2.2.2. Influence Function

The globally adaptive mesh refinement based only on posterior errors will improve
the calculation accuracy of AEM forward modeling in the whole calculation area. However,
when the mesh is refined to a certain level, the global mesh refinement will lead to a situation
where the number of elements is largely increased, but the accuracy is not much improved.
At this time, further mesh refinements cannot improve the accuracy, but instead greatly
increase the computational cost. Since in AEM, we are only interested in EM responses at
the receiver locations, the subdivision of underground space under EM receivers is very
important. The difference between the globally adaptive refinement and the goal-oriented
adaptive refinement is that the former refines the mesh globally, while the latter tends
to refine the elements that have a large impact on the receiver responses while ignoring
those that have small impacts on the receiver responses. To achieve this, we introduce a
goal-oriented adaptive meshing scheme to achieve local refinement only at the abnormal
bodies and electrical interfaces, which will greatly reduce the number of computations
while ensuring the accuracy.

To realize the goal-oriented adaptive mesh refinement, we introduce in this paper a
weighted coefficient into the posterior error estimation by solving the dual problem of the
above forward modeling. Assuming that the linear equation system satisfied by the electric
fields within elements where the receivers are located is L(E), the adaptive algorithm
aims to reduce the value of the linear error function L(e) by refining the mesh, where
e = E − Eh is the error between the numerical solution Eh and the real solution E, and L(E)
is only related to the elements containing the receivers. Furthermore, the dual problem of
the forward modeling can be defined as

B∗(W, N) =L(N) , ∀N ∈ H(curl, Ω), (18)
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where W is the influence function [31] and B∗(W, N) is the dual form of B(W, N). Since
B(W, N) is self-dual, Equation (18) can be rewritten as

B(W, N) =L(N) , ∀N ∈ H(curl, Ω). (19)

Defining w as the error of W, i.e., w = W − Wh, where Wh is the FE solution of W,
then from (19), L(e) can be expressed as [22]

B(w, e) =L(e) , ∀e ∈ H(curl, Ω), (20)

while w can be obtained from

B(w, N) =L(N) , ∀N ∈ H(curl, Ω). (21)

L(N) is a linear functional of N, where N ∈ H(curl, Ω) [18]. The specific form of
B(w, N) can be written as

B(w, N) =
y

ve
(∇×w · ∇ ×N + iωµ0σw ·N)dv. (22)

Using (20) and the Cauchy–Schwarz inequality, the maximum value of L(e) can be
estimated by [32]

|L(e)| = |B(e, w)| ≤
Iall
∑

i=1
|Bi(e, w)| ≤

Iall
∑

i=1
‖e‖e,i‖w‖e,i

∼=
Iall
∑

i=1
Cn‖e‖L2,i‖w‖L2,i

, (23)

where Cn is a positive constant, and ‖·‖L2,i is the energy norm for the ith element that
is defined as ‖·‖L2,i =

√
|B(, )|. Since the true value of E cannot be obtained, e cannot

be obtained, either. From the physical meaning of ‖e‖L2,i, one can see that it reflects the
errors caused by using the finite dimensional numerical results to replace the true values.
Equation (14) just reflects this error, so we can substitute ‖e‖L2,i by ηe, i.e.,

ηL,i = ηe,i · ηw,i, (24)

where ηL,i is the weighted posterior error for element i, and ηw,i = ‖w‖L2 . After calculating
ηL,i for each element, we can select those elements with ηL,i larger than the preset threshold
and then refine them.

Figure 3 shows the flow chart of our FE forward modeling for AEM based on adaptive
octree meshes. In the figure, Niter is the number of iterations, Nmaxiter is the maximum
number of iterations, Nunknown is the number of unknowns, while Nmaxunknown is the
maximum number of unknowns. ζm,n denotes the relative errors between the forward
results at each frequency (m) and receiver point (n) of the last three iterations, and ζt is the
threshold set for ζm,n. V is the element volume, and Vmin is the smallest volume among
all elements. βi = ηL,i/ηL,max is the normalized weighted posterior error, while βt is the
threshold set for βt.
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3. Numerical Experiments

To verify the accuracy of the algorithm presented in this paper, we first assume a uniform
half-space model and compare the forward responses calculated by our adaptive octree mesh
with the semi-analytical solutions. We also compare the results from our goal-oriented adaptive
algorithm and the globally adaptive one. The half-space has a resistivity of 10 Ω·m, the
transmitting and receiving dipoles are both located in the air at the height of 45 m, and the
offset between them is 8 m. The frequency is 25,000 Hz. Note that for convenience, we used the
resistivity instead of the conductivity and the horizontal coplanar coil (HCP) system in all our
numerical experiments. Figure 4 shows the globally adaptive mesh and that generated by the
goal-oriented adaptive algorithm, the forward responses, and the relative errors with respect
to the semi-analytical solutions. It is seen from Figure 4a,b that with an increasing number of
elements, the forward results from the two adaptive algorithms converge quickly; the relative
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errors of the goal-oriented adaptive algorithm and the globally adaptive one both decrease
rapidly. When the number of unknowns increases to a certain level, the relative errors tend to
become stable. However, the comparison shows that the relative errors of our goal-oriented
adaptive algorithm decrease faster than the globally adaptive one, meaning that when using
the goal-oriented adaptive algorithm, one can obtain the same accuracy as the global adaptive
algorithm with fewer elements and unknowns. Comparing the meshes in Figure 4c–f, one can
clearly see that our goal-oriented adaptive scheme is more inclined to refine the elements in the
underground near the transmitting and receiving dipoles than the global adaptive algorithm, so
the goal-oriented adaptive algorithm presented here is more target-oriented in the process of
mesh refinement.
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Figure 4. Mesh generation and forward-modeling results for a half-space model. (a) The results
calculated using a global adaptive mesh and a goal-oriented adaptive one are compared with 1D semi-
analytical solutions; (b) their relative errors versus the number of unknowns; (c) global adaptive mesh;
(d) local view of the mesh marked by the white box in (c); (e) goal-oriented adaptive mesh; (f) local view
of the mesh marked by the white box in (e). β is the normalized weighted posterior error.
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To further validate our algorithm for the modeling of multi-frequency and multi-
receiver problems in AEM, we respectively calculate (1) Hz responses at 1600 Hz using the
goal-oriented adaptive mesh generated for 1600 Hz; (2) Hz responses at 25,000 Hz using
the goal-oriented adaptive mesh generated for 25,000 Hz; and (3) Hz responses at 1600 Hz
and 25,000 Hz, with Hz calculated using the goal-oriented adaptive mesh created for the
combined frequencies of 1600 Hz and 25,000 Hz. Then, we compare these results with those
obtained from the fourth order of spectral-element method [16]. Figure 5 shows the model.
The transmitting and receiving dipoles are both located at the height of 30 m with an offset
of 10 m. The abnormal body has a size of 80 m × 80 m × 60 m and a top depth of 40 m. The
resistivity of the half-space is 100 Ω·m, while the resistivity of the abnormal body is 1 Ω·m.
Figure 6 shows the meshes with different adaptive refinement strategies, while Figure 7
shows the calculation results. It is seen from Figure 6a,b that at low frequencies, the EM
system has a large penetration depth, and thus, a big range of adaptive mesh is generated
so that both the abnormal body and the deep earth are refined. From Figure 6c,d, it is seen
that at high frequencies, the EM system has a small penetration depth, so our adaptive
method only refines the mesh close to the surface and the upper part of the abnormal body.
From Figure 6e,f, it is seen that when the adaptive mesh is generated by considering two
frequencies together, the surface and abnormal body are both well-refined. This implies
that the mesh generated by combining the high and low frequencies takes care of both
the shallow and deep earth. From the model results shown in Figure 7a,b, one sees that
the forward responses using the single-frequency adaptive octree mesh and the octree
mesh from combined frequencies are in good agreement with those of the fourth order of
SE method, as the maximum relative errors of results calculated by the single-frequency
meshes and the mesh of combined frequencies are both less than 2.2% (Figure 7c,d). This
indicates that our adaptive algorithm is effective in dealing with the multi-frequency and
multi-receiver AEM modeling problem.
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Figure 6. Mesh generation for a block abnormal body embedded in a half-space in Figure 5. (a) Mesh
generated with single frequency of 1600 Hz; (b) local view of the mesh marked by the white box in
(a); (c) mesh generated with single frequency of 25,000 Hz; (d) local view of the mesh marked by the
white box in (c); (e) mesh generated using the combined frequencies of 1600 Hz and 25,000 Hz;
(f) local view of the mesh marked by the white box in (e). β is the normalized weighted
posterior error.
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Figure 7. AEM responses for the model in Figure 6 and their relative errors to those calculated by the
fourth-order SE method. (a) Results of 1600 Hz and 25,000 Hz using the mesh for a single frequency
in comparison to those of SE method; (b) results using mesh of combined frequencies in comparison
to the SE method; (c,d) are corresponding relative errors between our modeling results and those of
SE method.

It should be pointed out that although the single-frequency adaptive mesh can deliver
accurate EM results for the corresponding frequency, one needs to generate an adaptive
mesh for each frequency. For a multi-frequency AEM system, it will take much time to
generate these meshes, which will seriously affect the modeling efficiency. In contrast,
using our combined-frequency strategy, one can create a mesh once that can be used to
model AEM responses for multiple frequencies. This can save lots of computing resources.

Table 1 shows the comparison of the number of unknowns, time, and memory require-
ment for our FE method based on adaptive octree mesh for combined frequencies and SE
method for the block model in Figure 5 under the condition that roughly the same accuracy
is obtained for both methods. We use a Dell workstation with a single processor, Intel Xeon
gold6254 CPU @ 3.10 GHz (Santa Clara, CA, USA). It is seen from the table that when the
relative errors of both algorithms are less than 2.2% (see Figure 7d), our FE method based
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on the adaptive octree mesh is more than 2.3 times faster than the fourth-order SE method.
The memory requirement is also largely reduced.

Table 1. Comparison between SE and adaptive FE method using the octree mesh generated by
combined frequencies.

Method Frequency (Hz) Number of Unknowns Runtime (s) Memory (MB)

SE method
1600

521,352
31.56 14,806

25,000 31.38 14,818

FE method with
adaptive octree mesh

1600
255,325

13.21 4857
25,000 13.10 4859

To further verify the effectiveness of our adaptive algorithm for modeling the complex
geology, an undulating terrain and complex underground structure shown in Figure 8
are simulated in this section. The terrain was generated as a 2D random Gaussian rough
surface [33]. The abnormal body has a size of about 332 m× 198 m× 168 m and a top depth
of about 70 m. The half-space has a resistivity of 100 Ω·m, while the abnormal body has a
resistivity of 1 Ω·m. The flight altitude is 30 m, and the transmitter–receiver offset is 10 m.
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Figure 8. A complex abnormal body embedded in a half-space with undulating terrain. The dashed
line indicates the survey line.

First, we generate an adaptive mesh for the combined frequencies of 1600 Hz and
25,000 Hz, shown in Figure 9. It is seen that our adaptive refinement algorithm created a
good mesh for the complex geological model. The interfaces between the air and the earth
surface as well as between the abnormal body and its surrounding areas were all refined.
From Figure 9a,b, it is seen that when the frequency is low, the range of the adaptive mesh
generated is large, and the interfaces between the abnormal body, the surrounding rock,
and the deep earth are refined. When the frequency is high, the penetration depth gets
smaller, and only the elements close to the earth’s surface are refined (c.f. Figure 9c,d).
From Figure 9e,f, it is seen that the mesh for combined frequencies has the characteristics of
both low- and high-frequency meshes. The mesh is refined both at the undulating surface
and at the location of the abnormal body, while the elements in the deep earth are not
much refined. Figure 10 shows the forward responses using the mesh in Figure 9. It is
seen that the responses for each frequency calculated by the single-frequency mesh are in
good agreement with the results calculated by the mesh of combined frequencies. This
indicates again that the mesh generated for combined frequencies can be used to replace
the single-frequency mesh for AEM forward modeling and the calculation efficiency can
be largely improved. Additionally, from the results in Figure 10, it is seen that there is
an obvious mirror relationship between high-frequency EM responses and the terrain,
meaning that the terrain has a serious effect on AEM responses at high frequencies.
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Figure 9. Mesh generation for the complex model in Figure 8. (a) Single-frequency mesh for 1600 Hz;
(b) local view of the mesh marked by the white box in (a); (c) single-frequency mesh for 25,000 Hz;
(d) local view of the mesh marked by the white box in (c); (e) mesh for combined frequencies of 1600 Hz
and 25,000 Hz; (f) local view of the mesh marked by the white box in (e). β is the normalized weighted
posterior error.
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4. Conclusions

In this paper, based on the goal-oriented adaptive octree mesh scheme, we have suc-
cessfully developed a finite-element algorithm for the AEM modeling of multi-frequency
and multi-receiver problems. Considering the difference in mesh generations for hang-
ing faces and common faces, we separately calculated the posterior errors based on the
characteristics of the faces. Comparisons of the meshes generated by the globally adaptive
method and our goal-oriented adaptive method and their calculation results confirmed
that our goal-oriented adaptive algorithm is more suitable for AEM forward modeling. It
can largely improve the modeling efficiency while ensuring the computational accuracy.
Moreover, the comparison with the fourth-order SE method showed that under the same
accuracy, our adaptive FE method can improve the efficiency and save memory by up
to threefold. Finally, for the multi-frequency and multi-receiver AEM system, the mesh
generation method developed here for combined frequencies can create an optimal mesh
for multi-frequency AEM modeling. The numerical experiments showed that this kind
of mesh can deliver results at the same accuracy as the single-frequency meshes; how-
ever, lots of time is saved compared to when generating the single-frequency meshes. It
is expected that the presented algorithm will provide an effective means for 3D AEM
forward modeling.
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