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Abstract: As-built building information modeling (BIM) model has gained more attention due
to its increasing applications in construction, operation, and maintenance. Although methods
for generating the as-built BIM model from laser scanning data have been proposed, few studies
were focused on full-scale structures. To address this issue, this study proposes a semi-automated
and effective approach to generate the as-built BIM model for a full-scale space frame structure
with terrestrial laser scanning data, including the large-scale point cloud data (PCD) registration,
large-scale PCD segmentation, and geometric parameters estimation. In particular, an effective
coarse-to-fine data registration method was developed based on sphere targets and the oriented
bounding box. Then, a novel method for extracting the sphere targets from full-scale structures was
proposed based on the voxelization algorithm and random sample consensus (RANSAC) algorithm.
Next, an efficient method for extracting cylindrical components was presented based on the detected
sphere targets. The proposed approach is shown to be effective and reliable through the application
of actual space frame structures.

Keywords: space frame structure; 3D reconstruction; as-built modeling; point cloud data; registration;
segmentation

1. Introduction

A typical space frame, as depicted in Figure 1, is a structural system composed of steel
tubes arranged so that forces are transferred three-dimensionally (3D), and the tubes are
usually connected by spherical joints [1–3]. With the advantages of light weight, rapid
construction, and low cost, space frame structures have been widely adopted in long-span
buildings, such as sports arenas, exhibition pavilions, transportation terminals, warehouses,
and factories. It is worth noting that as-designed building information modeling (BIM)
models of space frame structures can facilitate structural optimization during the design
phase [4–7], and the as-built BIM models have gained more attention due to their increasing
applications in construction, operation, and maintenance [8–10]. During a construction
process, real-time quality control and early defects detection can be effectively achieved
based on as-built BIM models. In various operation and maintenance activities during the
construction process, retrofit and renovation solutions of existing space frame structures
can be easily analyzed based on the continuously updated as-built BIM model to avoid
unwanted collisions. However, it is currently difficult to obtain as-built BIM models for
most existing space frame structures as they rely on a lot of tedious manual operations.
Therefore, there is an urgent need to effectively create as-built BIM for such structures.
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structures. Recently, a high-technology field data acquisition system of laser scanners with 
fast data-acquisition ability and millimeter-level accuracy has been extensively used in the 
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previous works, terrestrial laser scanning (TLS) technology can be adopted in reconstruct-
ing long-span space frame structures due to its capability of rapid and accurate collection 
of point cloud data (PCD) at long distances. The second step for generating an as-built 
BIM model is to register data. To obtain the full coverage of a scene, multiple scans from 
different viewpoints are necessary and must be transferred into a unified coordinate sys-
tem in a registration process. Although remarkable progress has been made in automated 
registration based on machine learning [13,14], accurate registration based on sphere tar-
gets is still desirable for practical applications where user intervention is needed to be 
enabled. To ensure the accurate detection of sphere targets (72.5 mm in diameter), the 
maximum allowable distance between a laser scanner and sphere targets of about 20 m 
greatly decreases the long-distance data-acquisition ability of the laser scanner. Thus, an 
effective registration method is needed to be developed for long-span space frame struc-
tures. The third step for generating the as-built BIM model is to reconstruct the object. 
Steel structural element is a major structural type accounting for 33% of all industrial ob-
jects. Research efforts have been made on the reconstruction of simple structural compo-
nents with simple spatial relationships, such as walls and floors [15]. However, few stud-
ies have been conducted on full-scale structural components with complex relationships 
[16,17]. Recently, a semi-automated approach for generating the parametric BIM model 
for a full-scale steel structure with complex connections has been proposed, with the PCD 
segmentation performed manually [18]. As a large number of cylindrical steel tubes with 
complex relationships are contained in a space frame structure, the manual extraction of 
components is time-consuming and laborious. Efficient segmentation of components is 
thus needed. 

To address the above-mentioned issues, this study proposes a semi-automated and 
effective approach to generate the as-built BIM model for a full-scale space frame structure 
with TLS data. The contributions of this study are described as follows: (1) intended for 
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Typically, the generation of an as-built BIM model involves three steps. The first step
is to collect data. Traditional data collection methods of total stations, measuring tapes,
and stereo cameras are time-consuming or inaccurate, especially for large and complex
structures. Recently, a high-technology field data acquisition system of laser scanners
with fast data-acquisition ability and millimeter-level accuracy has been extensively used
in the architecture, engineering, and construction (AEC) industry [11,12]. Encouraged
by the previous works, terrestrial laser scanning (TLS) technology can be adopted in
reconstructing long-span space frame structures due to its capability of rapid and accurate
collection of point cloud data (PCD) at long distances. The second step for generating
an as-built BIM model is to register data. To obtain the full coverage of a scene, multiple
scans from different viewpoints are necessary and must be transferred into a unified
coordinate system in a registration process. Although remarkable progress has been made
in automated registration based on machine learning [13,14], accurate registration based
on sphere targets is still desirable for practical applications where user intervention is
needed to be enabled. To ensure the accurate detection of sphere targets (72.5 mm in
diameter), the maximum allowable distance between a laser scanner and sphere targets of
about 20 m greatly decreases the long-distance data-acquisition ability of the laser scanner.
Thus, an effective registration method is needed to be developed for long-span space frame
structures. The third step for generating the as-built BIM model is to reconstruct the object.
Steel structural element is a major structural type accounting for 33% of all industrial objects.
Research efforts have been made on the reconstruction of simple structural components
with simple spatial relationships, such as walls and floors [15]. However, few studies have
been conducted on full-scale structural components with complex relationships [16,17].
Recently, a semi-automated approach for generating the parametric BIM model for a
full-scale steel structure with complex connections has been proposed, with the PCD
segmentation performed manually [18]. As a large number of cylindrical steel tubes with
complex relationships are contained in a space frame structure, the manual extraction of
components is time-consuming and laborious. Efficient segmentation of components is
thus needed.

To address the above-mentioned issues, this study proposes a semi-automated and
effective approach to generate the as-built BIM model for a full-scale space frame structure
with TLS data. The contributions of this study are described as follows: (1) intended for
space frame structures, an effective coarse-to-fine data registration method was developed
based on sphere targets and the oriented bounding box (OBB); (2) a novel parallelizable
method for extracting sphere targets from full-scale structures was proposed based on the
voxelization algorithm and random sample consensus (RANSAC) algorithm; (3) an efficient
method for extracting cylindrical components was presented based on the detected sphere
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targets; and (4) the semi-automated generation of the as-built BIM model for a full-scale
space frame structure with spherical and cylindrical components was introduced for the
first time.

After the introduction section, this paper is organized as follows. Section 2 presents an
overview of the relevant work for PCD registration, PCD segmentation, and 3D reconstruc-
tion of structural components. Section 3 describes the proposed approach for generating
the as-built BIM model for a full-scale space frame structure with terrestrial laser scanning
data. Section 4 further describes the applications of the proposed approach in full-scale
space frame structures. Finally, Section 5 summarizes and concludes this study.

2. Relevant Work

As aforementioned, before model reconstruction, all sets of PCD need to be registered
to a uniform coordinate system, and each component data should be segmented accu-
rately. Therefore, Section 2.1 describes recent research related to data registration. PCD
segmentation methods in engineering applications are further introduced in Section 2.2.
Finally, relevant work on 3D reconstruction methods for each component data is described
in Section 2.3.

2.1. PCD Registration

The commonly available registration methods are the iterative closest point (ICP)
algorithm and its variants [19–21]. However, the ICP algorithm is likely to cause a local
minimum, as it requires an initial and proper transformation between the adjacent PCD.
To overcome the drawback of the ICP algorithm, many registration methods tend to use a
coarse-to-fine strategy to provide an initial and proper transformation to the fine registration.

During the past decade, coarse registration algorithms, which are typically feature-
based, including feature extraction and correspondence identification, have been exten-
sively studied and developed. These algorithms focus on how to efficiently extract common
features in different sets of PCD and successfully match them. The extracted geometric
features include point [22], plane [23], fast point feature histogram (FPFH) [24], and so
on. The correspondence can be established by RANSAC-based approaches. Due to the
high efficiency and low-time complexity of image processing technology, feature-based
image registration algorithms have been widely adopted to register PCD. For example, in
an image-based PCD registration method, features can be detected by many descriptors,
including scale invariant feature transform (SIFT) [25], the smallest univalue segment
assimilating nucleus (SUSAN) [26], and speeded-up robust features (SURF) [27]. With the
rapid development of deep learning algorithms, many deep neural networks have been
proposed for PCD registration. For instance, Aoki et al. [28] proposed pointNetLK for PCD
registration by adopting the modified Lucas and Kanade (LK) algorithm to circumvent the
need for convolution on PointNet representation. Lu et al. [29] presented DeepVCP being
an end-to-end learning-based 3D PCD registration framework. However, these methods
are not robust nor effective in processing a large and complex PCD with numerous back-
ground noises and outliers caused by mixed pixels and mutual occlusions. As current fine
registration algorithms can provide sufficient accuracy but rely on good initial positions,
there is a need to develop a robust method to achieve coarse registration in space frame
PCD with numerous background noises and repetitive structures.

A practical and accurate registration based on sphere targets (72.5 mm in diameter)
is preferred for actual engineering applications, which require the introduction of user
intervention. To ensure sphere targets are accurately detected, the maximum allowable
distance between the laser scanner and the sphere targets of 20 m would greatly decrease
the long-distance data-acquisition ability of a laser scanner. To overcome this drawback,
this study replaces the sphere targets with large-diameter spherical joints in the coarse
registration. An effective coarse-to-fine data registration method is developed specifically
for space frame structures based on sphere targets and the OBB.
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2.2. PCD Segmentation

Currently, software-aided and semi-automatic techniques dominate PCD segmenta-
tion. Various standalone computer programs, such as Trimble RealWork [30], Geomagic
Wrap [31], and Edgewise [32], allow users manually segment the PCD. However, cur-
rent commercial software requires precise reference parameters, such as the diameter of
spheres, before components can be detected. As there are often several components with
different geometrical parameters in a space frame structure, the reference parameters need
to be modified manually. Therefore, the software-aided technique relies largely on man-
ual intervention, which is prone to errors. Contrasting to software-aided techniques, the
semi-automatic technique adopts many advanced algorithms to reduce manual interven-
tion [33–35], including region growing [36], random sample consensus (RANSAC), and
Hough transform [37] algorithms. For example, Pu et al. [38] adopted the region-growing
algorithm to extract the PCD of a plane; Schnabel et al. [39] adopted the RANSAC algorithm
to segment the PCD of cylindrical pipes; Abusaina et al. [40] adopted the Hough transform
algorithm to extract the PCD of a sphere. However, few studies have been conducted on
large-scale PCD. Furthermore, the PCD segmentation based on the estimation of normal
vectors and curvature is time-consuming and very sensitive to noises and outliers [41–43].
To overcome this shortcoming, a novel method for extracting sphere targets from full-scale
structures is proposed based on the voxelization algorithm and RANSAC algorithm (VR-
eSphere). Then, based on these extracted sphere targets, an efficient method for extracting
cylindrical components was presented in this study.

2.3. 3D Reconstruction of Structural Components

To create a BIM model of a structural component, geometrical parameters or features,
such as section dimensions, lengths, corners, and lines, are essential [44]. Hence, the
problem of accurate inverse modeling can be considered in how to accurately estimate
dimensions. For steel structural components, Cabaleiro et al. [16] proposed a method to
automatically generate a 3D model of frame connections by using the Hough transform
to detect lines in 2.5D data. Based on the analysis of these detected lines, geometric and
topological information about the frame connections can be obtained. All geometric results
can be imported to commercial BIM software to create 3D models. Cabaleiro et al. [45]
also generated as-built BIM models of deformed steel beams by hyperplane fitting and
critical edge extraction based on the Hough transform. To automatically obtain a 3D BIM
model of a steel frame, Laefer and Truong-Hong [17] determined the main sections of
each steel component by using the robust principal component analysis (RPCA). Each
section’s data was compared with standard sections in the database to determine the
best matching dimensions. The as-built model was then generated from the standard
model. Liu et al. [46] developed a method to model and analyze the structural performance
of curved steel components based on PCD collected by a 3D handheld scanner, which
requires close scanning distances. Yang et al. [18] proposed a semi-automated method
to create the as-built BIM model for structural steel bridges. They manually segmented
the target data to be reconstructed and used region growing to extract each component
data. The center axis and section dimensions are then estimated for different types of
steel components by using PCA and RANSAC. The model of the extracted component
was created according to the estimated parameters, but the undetected components were
created manually. Although the above methods are effective for specific targets, with
the exception of the method proposed by Yang et al. [18], none of the above studies are
applicable to full-scale structural components with complex relationships. Yang et al. [18]
provide a good technical route for the 3D reconstruction of steel structures. The accuracy
of their dimensional estimation method is reliable, but the preprocessing method is not
suitable for space grid structures with a lot of background noise and a large number of
members with complex connection relationships. Therefore, inspired by the above studies,
this study will focus on the preprocessing of the space frame data and apply the RANSAC
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algorithm to dimensional estimation in order to efficiently and accurately obtain control
parameters for the 3D reconstruction of space frame structural components.

3. Methodology

This study proposes a semi-automated and effective approach to generate the as-
built BIM model for a full-scale space frame structure with terrestrial laser scanning data.
The proposed approach involves the following three steps: (1) the registration of large-
scale PCD; (2) the segmentation of large-scale PCD; and (3) the estimation of geometric
parameters. Figure 2 shows the flowchart for generating the as-built BIM model.
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3.1. Registration of Large-Scale PCD

A novel PCD registration method, known as Target Oriented Bounding Box–Iterative
Closest Point (TO–ICP), is proposed specifically for space frame structures in this study,
which includes sphere detection, OBB detection, coarse registration, and fine registration.

The sphere detection was processed on spherical joints (400–800 mm in diameter),
being widely distributed in a space frame structure, including sphere segmentation and
sphere fitting, as described in Sections 3.2.1 and 3.3.1, respectively. Considering the fact
that a large number of spherical joints can be scanned by a terrestrial laser scanner at each
station, the correspondences between spherical joints are difficult to be directly identified.
Although four-point congruent set (4PCS) technology [22,47] is effective in establishing
correspondences between two subsets, obtaining the congruent set of tuples can also be
challenging for 4PCS due to similar spatial arrangements of spherical joints. To address this
issue, the OBB of space frame structures was adopted to globally locate detected spheres.
The terrestrial laser scanner is generally leveled, and most modern scanners are capable
of making a leveling compensation for slight tilting. Therefore, the PCD can be directly
projected to a horizontal plane. Consequently, the OBB can be detected by the functions
of cvFindContours and cvMinAreaRect2 [48], based on the binary images generated by
two-dimensional (2D) PCD on the horizontal plane, as illustrated in Figure 3. The OBB
matching is performed at the four corners represented by A, B, C, and D. Therefore, there
are two candidate matchings between different OBBs obtained, respectively, from the target
PCD and source PCD, as depicted in Figure 4. From the two candidate matchings, the one
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with a larger number of sphere correspondences (k) can be chosen. Considering m spheres
{Si} from source PCD and n spheres {Ti} from target PCD, k is given as

k =
m

∑
i=1

n

∑
j=1

η

(√
(Six − Tjx)

2 + (Siy − Tjy)
2
)

(1)

where Six and Siy are, respectively, the x and y coordinates of Si; Tjx and Tjy are, respectively,
the x and y coordinates of Ti; and the function η(�) is defined as

η(�) =
{

0 � > Dlim
1 � < Dlim

(2)

where Dlim represents the threshold distance. Coarse registration was performed on the
sphere correspondences with η = 1 denoted as <S, T>. Based on <S, T>, Procrustes analysis
technique [49] was adopted to estimate the rotation matrix R and translation matrix t,
which are given as

W =
k

∑
i=1

(Si − µS)(Ti − µT)
T (3)

W = UΣVT (4)

R = UVT (5)

t = µT − RµS (6)

where Si and Ti are, respectively, the 3D coordinate vectors of the source and target spheres
contained in <S, T>; µS and µT are, respectively, the mean vectors of Si and Ti; U, ∑, and V
are obtained from matrix W using the singular value decomposition. The coarse registration
of large-scale PCD is shown in Figure 5a.

The coarse registration only uses the centers of detected spheres. Therefore, the registra-
tion quality of the coarse registration to be guaranteed is entirely dependent on the accuracy
of the sphere estimation. Therefore, the PCD was finely adjusted by the ICP algorithm [21].
The fine registration of large-scale PCD is shown in Figure 5b. Moreover, Figure 5c shows
the data registration result using the FPFH algorithm for comparison. The FPFH algorithm
calculates high-dimensional point features and performs feature correspondence based
on the RANSAC algorithm. It can be noticed that direct data registration based on point
features fails as there are numerous background noises and repetitive structures.
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3.2. Segmentation of Large-Scale PCD
3.2.1. Sphere

For large-scale PCD, the estimation of normal vectors and curvature is time-consuming
and very sensitive to noises and outliers. To overcome this drawback, a novel parallelizable
method is proposed for extracting the sphere targets from full-scale structures based on the
voxelization algorithm and RANSAC algorithm.

First, large-scale PCD were subdivided into supervoxels of the size Dmax ×Dmax ×Dmax,
using the voxelization algorithm [50], as shown in Figure 6, where Dmax represents the
largest diameter of the spheres contained in a space frame structure, which can be easily
obtained from the design information.

Second, the RANSAC algorithm was adopted to detect the sphere in each supervoxel.
For each point set {p} contained in a supervoxel, random subsets with four points are
selected and used to fit the sphere. The fitted spheres are then evaluated by a function C
given as

C = ∑
i

ρ(e2
i ) (7)

where ei is the distance between the fitted sphere surface and the ith point, and ρ is a
function defined as

ρ
(

e2
i

)
=

{
1 e2

i ≤ t2

0 e2
i > t2 (8)
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where t is a threshold that can be preset according to accuracy requirements and is taken
as 2 mm in this study. The key parameter for the RANSAC algorithm is the number of
iterations In, which can be determined through the Monte Carlo type probabilistic approach
given as

In =
lg(1− w)

lg(1− ε4)
(9)

where w is a coefficient usually set as 0.99, and ε is the percentage of inliers calculated
adaptively by

ε = np/nt. (10)

where nt is the number of points contained in {pi}, and np is the minimum number of
required points empirically set as 300 in this study. If the diameter estimated by the
RANSAC algorithm ranges from 0.5Dmax to Dmax, the inliers will be selected into a set
denoted as {ps}.

Last, the points contained in {ps} are clustered by using the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm [51]. Figure 7 illustrates
42 spheres successfully segmented from the large-scale PCD shown in Figure 6. It is worth
noting that the analysis of the PCD in these supervoxels is independent and can be carried
out in a parallel manner. Even though the RANSAC requires several calculations in each
supervoxel, the efficiency is still acceptable.
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3.2.2. Cylinder

Cylindrical steel tubes are connected by two adjacent spherical joints, serving as the
prior knowledge for extracting cylinder PCD. A fast and easy method is proposed in this
study to extract the cylinder PCD of a space frame structure (FE-eCylinder), including
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the building relationship between spheres and the extracting cylinder PCD by k-Nearest
Neighbors (kNN) with a radius threshold [52].

For each detected sphere represented by 0, as depicted in Figure 8, a kNN with a
radius threshold (rmax) is used to establish the candidate relationships (i.e., 0–1, 0–2, 0–4,
0–5, 0–6, 0–7, 0–8, 0–9) between spheres, where rmax is set as the maximum length of steel
tubes. Any unreasonable relationship 0–i (i.e., 0–2) should be removed provided that the
following condition is satisfied:

θij ≤ θlimit&&Li > Lj (11)

where i is j ∈ {1,2,3,4,5,6,7,8,9}; θij denotes the angel between vectors 0–i and 0–j; θlimit is
taken as 10◦ for actual space frame structures; Li and Lj represent, respectively, the lengths
of Lines 0i and 0j.
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Based on the reasonable relationships between spheres (0–1, for example), a rough
PCD extraction is first conducted on Point D by kNN with the radius threshold equal to
half the length of Line 01 (Figure 9), where Point D denotes the midpoint of Line 01. Second,
a fine PCD extraction is conducted based on Line AB. To overcome the negative effects of
sphere PCD on the cylinder PCD extraction, Line AB should be shorter than Line 01. In this
study, the lengths of 0A and B1 were empirically taken as 1.2 times the sphere radius, which
does not affect the parameter estimation of the cylinder PCD. Other lengths that achieve
the same effect are also feasible. Line AB was divided into n equal increments. For each
equal increment, the kNN, with a radius threshold of 0.2 m being the maximum radius of
the steel tube, was processed to extract the cylinder PCD. A factor η was calculated by

η = m/n (12)

where m denotes the number of equal increments containing neighbors. If η is larger than
50%, the extracted cylinder PCD is considered to be reliable.
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3.3. Estimation of Geometric Parameters
3.3.1. Sphere

As the sphere PCD obtained by the method described in Section 3.2.1 has no outliers
and is reliable, the least squares algorithm can be adapted to fit the sphere. Figure 10 shows
two examples of extracted sphere PCD (blue) and the spheres fitted by the least squares
algorithm (cyan). A sphere in the cartesian coordinate system can be described by Equation
(13) with the center coordinate (xc, yc, zc) and radius r:

(xi − xc)
2 + (yi − yc)

2 + (zi − zc)
2 = r2 (13)

where xi, yi, zi (i = 1, 2, . . . , n) are the coordinates of sphere PCD, and xc, yc, zc, and r can
be obtained by Equations (14) and (15):

−2xc
−2yc
−2zc

x2
c + y2

c + z2
c − r2

 = (ETE)
−1

ET F (14)

E =



x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1
• • • •
xn yn zn 1

F =



−x2
1 − y2

1 − z2
1

−x2
2 − y2

2 − z2
2

−x2
3 − y2

3 − z2
3

−x2
4 − y2

4 − z2
4

•
−x2

n − y2
n − z2

n

 (15)
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3.3.2. Cylinder

Realizing that the cylinder centerline is approximate to Line 01 (Figure 11a), the cutting
plane perpendicular to Line 01 was adopted to extract the cross-sectional PCD set, based
on which a series of centers can be obtained using the RANSAC algorithm. The cylinder
centerline can then be estimated based on these obtained centers using the RANSAC
algorithm, as depicted in Figure 11b. The cylinder PCD projected along the cylinder
centerline was adopted to estimate the cylinder radius using the RANSAC algorithm, as
shown in Figure 11c. With these steps described above, the cylinder can be effectively fitted.
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Figure 11. Cylinder fitting: (a) cutting plane; (b) estimation of cylinder centerline; (c) estimation of
cylinder radius.

4. An Application in Full-Scale Space Frame Structures
4.1. Data Collection

To validate the proposed approach for generating the as-built BIM model for full-
scale space frame structures with terrestrial laser scanning data, a real-world space frame
structure located at Luzhou in Sichuan Province (China) was scanned using FARO S150 [53].
Multiple scans were made at 22 locations, as indicated in Figure 12a, where #1–#7 and
#16–#22 were scanned with an angular resolution of 0.07◦, and #8–#15 were with an angular
resolution of 0.036◦. These scanner locations were initially determined based on the results
of scan planning [54] and then were supplemented by the scanner operators based on site
conditions and their experience. To ensure successful registration, adjacent scanned PCD
should be overlapped with at least three spherical joints, which was ensured by a scanner
operator. Figure 12b shows an actual photo of data collection in the field. All scanned PCD
were pre-processed by sub-sampling with the size of 10 mm using a personal computer
of Intel Core i7-7700k CPU @ 4.20GHz made in China. All algorithms are implemented
in Python. Table 1 lists the details of scanned PCD, with each having the approximate
dimensions of 125 m × 120 m × 10 m.

Table 1. Summary of scanned PCD.

Location Original/Sampling Points Location Original/Sampling Points

#1 13,988,195/5,368,352 #2 16,275,140/7,570,197
#3 15,392,697/7,544,656 #4 13,397,295/9,125,325
#5 13,707,609/9,275,676 #6 12,143,921/7,807,302
#7 21,742,499/9,807,240 #8 59,541,256/14,504,592
#9 58,729,766/15,087,340 #10 59,910,220/14,766,215

#11 48,133,412/14,796,388 #12 37,703,339/12,295,436
#13 56,738,434/14,511,595 #14 54,680,413/14,092,693
#15 36,803,597/13,461,163 #16 13,339,396/6,231,241
#17 13,152,792/5,565,005 #18 13,997,682/5,975,098
#19 18,719,062/11,503,259 #20 18,436,252/12,229,958
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of the construction site.

4.2. Results and Discussion
4.2.1. Registration of Large-Scale PCD

Typically registered scans are shown in Figure 13. To evaluate the TO–ICP method,
the rotation error eR, translation error eT, and consumption time are introduced, where eR
and eT are defined as

eR = arccos(
tr(Rc)− 1

2
)− arccos(

tr(Rt)− 1
2

) (16)

eT = ||tc − tt || (17)

where Rc and tc are, respectively, the rotation and translation matrices estimated by the
TO–ICP method; Rt and tt are, respectively, the ground truth rotation and translation
matrices generated by the manual registration. As indicated in Table 2, both eR and eT
are approximately equal to zero, demonstrating the accuracy of the TO–ICP method. The
consumption time ranges from 3874 s to 6696 s, with sphere detection accounting for the
most. The registration results of the 22 scanned PCDs are shown in Figure 14, containing
235,391,564 points.

Table 2. Typical details of large-scale PCD registration.

Target PCD Source PCD
eR (◦) *

eT (mm)
Computation Time (s) **

ex ey ez 1 2 3 4

#1 #2 0 0 0 0.0001 6558 12 6 120
#8 #9 0 0 0 0.00004 3882 30 35 119

#12 #13 0 0 0 0.0002 3715 27 19 113
#17 #18 0 0 0 0.00008 5981 11 4 119

* ex, ey, and ez are, respectively, the rotation errors in x, y, and z directions; ** 1 represents the sphere detection;
2 represents the OBB detection; 3 represents the coarse registration; 4 represents the fine registration.
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Figure 14. Registered results of 22 scanned PCDs.

4.2.2. Segmentation of Large-Scale PCD

To evaluate the VR-eSphere and FE-eCylinder methods, a PCD with 5,208,163 points,
as shown in Figure 6, was processed. Since accurate sphere detection can guarantee
successful data registration, this study further illustrates the advantages of the proposed
method in the coarse registration process by comparing VR-eSphere with a curvature-based
method. The comparison of sphere PCD segmentation is illustrated in Figure 15, where the
detected points are distinguished by red color. As seen, there are many errors in sphere
PCD segmentation in the curvature-based method induced by outliers, while all points
detected by the VR-eSphere method are correct, demonstrating that this method is robust
to noises and outliers. However, the time consumed in the VR-eSphere method is relatively
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longer. Figure 16 shows the comparison of cylinder PCD segmentation, from which it
can be concluded that the FE-eCylinder method is more accurate and effective than the
curvature-based method. It is worth mentioning that the FE-eCylinder is limited to space
frame structures.
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Figure 15. Comparison of the segmentation of sphere PCD, where the detected points are in red
and the original points are in blue: (a) segmentation by VR-eSphere (computation time = 3683 s);
(b) segmentation by the curvature-based method (computation time = 3360 s).
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In this study, since there are no incorrectly detected objects but only missed objects in
the event of a detection failure, the segmentation results are evaluated by

Recall = TP/(TP + FN) (18)

where TP is a true positive, representing the number of detected components, and FN is a
false negative, representing the number of undetected components.

As shown in Figure 17 and Table 3, 802 out of 850 spheres were successfully extracted
from the 22 sets of scanned PCDs and registered in a unified coordinate. It is worth noting
that 48 spheres were not detected because these component data may be sparse due to
being occluded by some background objects, such as protective nets and scaffolding. Based
on the detected spheres, 3099 out of 3295 cylinders (Figure 18) were successfully extracted
from the registered PCD, as shown in Figure 18. Therefore, the segmentation method
proposed in this study has a high recall rate of about 94%.

Table 3. Evaluation of the proposed segmentation method.

Item Sphere Cylinder Total

Recall (%) 94.4% 94.1% 94.1%
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4.2.3. BIM Reconstruction

Based on the estimated geometric parameters sorted in a text file, a solid-based
family was adopted to form the components through the use of the Revit application
programming interface (API). All successfully detected components (about 94%) can be
automatically generated as solid units based on their estimated dimensions, as shown in
Figure 19a. However, components that fail detection (about 6%) require manual inverse
modeling based on their PCDs, as shown in Figure 19b. As it takes about 6 h to achieve an
automated BIM reconstruction of about 94% of the total components using the proposed
approach, compared to a total of approximately 100 h using manual inverse modeling
for all components, this demonstrates a significant improvement in the efficiency of the
BIM model reconstruction of the space frame structure by using the proposed approach.
Figure 19c shows the effect of overlaying the PCD without background noise on the as-built
model. To evaluate the accuracy of the as-built model, the as-built model is discretized into
a set of dense PCD [44] and considered as a reference. The distance between each point in
the space frame PCD and its corresponding nearest neighbor in the as-built model PCD is
calculated and shown in Figure 19d. From the frequency distribution corresponding to the
absolute distances in Figure 19d, it can be seen that most of the points have an absolute
distance of less than 0.01 m. The accuracy of this generated as-built model is acceptable for
subsequent engineering management applications.
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Figure 19. BIM reconstruction result: (a) the automatically generated as-built model; (b) the as-built
model after manual completion; (c) the PCD of space frame structure superimposed on the as-built
BIM model; (d) accuracy evaluation of the generated as-built model.

To further assess the as-built BIM model accuracy, this study evaluates the results of the
parameter estimation of the detected components. As the estimation of the dimensions of
both spherical joints and cylindrical steel tubes is based on the RANSAC algorithm, which
has a close error accuracy, only the estimation accuracy of the spherical joints is discussed
here. Diameter estimates for two different diameters of spherical joints in the space frame
structure are used to compare with the design values. Table 4 lists the allowable errors
δs specified in the Chinese code GB 50205-2020 [55], where Ds represents the as-designed
diameter of a sphere. When the discrepancy between an estimate and a design value
is within the tolerance defined in the specification, it demonstrates that the cumulative
error consisting of manufacturing and algorithm is acceptable. The comparison results are
given in Figure 20. As seen, 90% and 78% of satisfactory results are reached, respectively,
for 450 mm- and 600 mm-diameter spherical joints. The majority of the spherical joints
meet the specification requirements, and those that exceed them have errors very close
to the tolerances, which demonstrates that the as-built model is reliable for subsequent
management operation and maintenance.

Table 4. Allowable errors specified in the Chinese code GB 50205-2020 [55].

Items Allowable Errors δs

Ds <= 300 mm ±1.5 mm
300 mm < Ds <= 500 mm ±2.5 mm
500 mm < Ds <= 800 mm ±3.5 mm

Ds > 800 mm ±4.0 mm



Remote Sens. 2023, 15, 2806 17 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 21 
 

 

  
(a) (b) 

Figure 20. Histogram of evaluation results: (a) Ds = 450 mm; (b) Ds = 600 mm. 

5. Conclusions 
This study describes an effective semi-automated approach for generating the as-

built building information modeling (BIM) model for a full-scale space frame structure 
with terrestrial laser scanning data by including the large-scale point cloud data (PCD) 
registration, large-scale PCD segmentation, and geometric parameter estimation. A case 
study conducted on a full-scale space frame structure was used to verify the validity of 
the proposed approach. The main conclusions of this study include the following: 
(1) The proposed TO–ICP enables the automatic registration of PCD of space frames 

with high accuracy; 
(2) The total computation time of the proposed VR-eSphere and FE-eCylinder is approx-

imately half that of the curvature-based feature detection methods; 
(3) Although manual modeling is required for undetected components, the proposed 

BIM reconstruction approach significantly improves the efficiency of obtaining the 
as-built BIM model of full-scale space frame structures with cylindrical and spherical 
components. The effectiveness and reliability of the method are demonstrated by its 
application in the actual space frame structure. 
However, this study still has some limitations. TO–ICP may not be suitable for the 

space frame structure with a circular shape as the OBB of different scanned data does not 
have significant differences. FE-eCylinder cannot be used for the detection and dimen-
sional estimation of curved components because the key to fitting the curved component 
is the extraction of the central axis. Moreover, the PCD of undetected components needs 
to be modeled manually, which is still a time-consuming task. Therefore, in future work, 
research should be undertaken to improve the quality of collected PCD and to improve 
the accurate extraction of undetected components from PCD. The effective registration of 
space frames with circular shapes and the automatic inverse modeling of curved compo-
nents will be further investigated. 

Author Contributions: Conceptualization, J.L.; methodology, G.C.; software, G.C. and D.L.; valida-
tion, G.C.; writing—original draft preparation, G.C.; writing—review and editing, D.L. and Y.F.C.; 
visualization, D.L.; funding acquisition, J.L. and D.L. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: The research was funded by the National Key Research and Development Program of 
China (No.2021YFF0500903) and the National Natural Science Foundation of China (No.52130801, 
No.52108283). The APC was funded by the National Key Research and Development Program of 
China (No.2021YFF0500903). The opinions expressed in this paper belong solely to the authors. 

Figure 20. Histogram of evaluation results: (a) Ds = 450 mm; (b) Ds = 600 mm.

5. Conclusions

This study describes an effective semi-automated approach for generating the as-
built building information modeling (BIM) model for a full-scale space frame structure
with terrestrial laser scanning data by including the large-scale point cloud data (PCD)
registration, large-scale PCD segmentation, and geometric parameter estimation. A case
study conducted on a full-scale space frame structure was used to verify the validity of the
proposed approach. The main conclusions of this study include the following:

(1) The proposed TO–ICP enables the automatic registration of PCD of space frames with
high accuracy;

(2) The total computation time of the proposed VR-eSphere and FE-eCylinder is approxi-
mately half that of the curvature-based feature detection methods;

(3) Although manual modeling is required for undetected components, the proposed
BIM reconstruction approach significantly improves the efficiency of obtaining the
as-built BIM model of full-scale space frame structures with cylindrical and spherical
components. The effectiveness and reliability of the method are demonstrated by its
application in the actual space frame structure.

However, this study still has some limitations. TO–ICP may not be suitable for the
space frame structure with a circular shape as the OBB of different scanned data does not
have significant differences. FE-eCylinder cannot be used for the detection and dimensional
estimation of curved components because the key to fitting the curved component is the
extraction of the central axis. Moreover, the PCD of undetected components needs to be
modeled manually, which is still a time-consuming task. Therefore, in future work, research
should be undertaken to improve the quality of collected PCD and to improve the accurate
extraction of undetected components from PCD. The effective registration of space frames
with circular shapes and the automatic inverse modeling of curved components will be
further investigated.
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