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Abstract: Forest inventory has been relying on labor-intensive manual measurements. Using remote
sensing modalities for forest inventory has gained increasing attention in the last few decades.
However, tools for deriving accurate tree-level metrics are limited. This paper investigates the
feasibility of using LiDAR units onboard uncrewed aerial vehicle (UAV) and Backpack mobile
mapping systems (MMSs) equipped with an integrated Global Navigation Satellite System/Inertial
Navigation System (GNSS/INS) to provide high-quality point clouds for accurate, fine-resolution
forest inventory. To improve the quality of the acquired point clouds, a system-driven strategy for
mounting parameters estimation and trajectory enhancement using terrain patches and tree trunks
is proposed. By minimizing observed discrepancies among conjugate features captured at different
timestamps from multiple tracks by single/multiple systems, while considering the absolute and
relative positional/rotational information provided by the GNSS/INS trajectory, system calibration
parameters and trajectory information can be refined. Furthermore, some forest inventory metrics,
such as tree trunk radius and orientation, are derived in the process. To evaluate the performance of
the proposed strategy, three UAV and two Backpack datasets covering young and mature plantations
were used in this study. Through sequential system calibration and trajectory enhancement, the
spatial accuracy of the UAV point clouds improved from 20 cm to 5 cm. For the Backpack datasets,
when the initial trajectory was of reasonable quality, conducting trajectory enhancement significantly
improved the relative alignment of the point cloud from 30 cm to 3 cm, and an absolute accuracy
at the 10 cm level can be achieved. For a lower-quality trajectory, the initial 1 m misalignment of
the Backpack point cloud was reduced to 6 cm through trajectory enhancement. However, to derive
products with accurate absolute accuracy, UAV point cloud is required as a reference in the trajectory
enhancement process of the Backpack dataset.

Keywords: LiDAR; feature extraction/matching; Backpack MMS; UAV MMS; system calibration;
GNSS/INS trajectory enhancement; forest inventory

1. Introduction

Forests provide critical ecosystem services (e.g., fiber and timber), but are constantly
challenged by various environmental stressors. Data-driven policies and management
practices, powered by accurate inventory, are essential for the long-term sustainabil-
ity of forest ecosystems. Traditionally, forest inventory has been conducted manually,
which is expensive and time-consuming. With recent advances in sensor and algorithmic
technologies, remote/proximal sensing, including (a) LiDAR and photogrammetry from
manned/uncrewed aerial vehicles, (b) stationary terrestrial laser scanners (TLS), and (c) mo-
bile ground LiDAR, has recently been explored as an alternative for automated tree-level
inventory at various scales. These sensors/platforms have trade-offs in terms of cost, field
survey efficiency, spatial coverage, spatial resolution, and level of detail of the acquired
information [1–3].
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The forestry research community has shown a keen interest in digital aerial photogram-
metry using imagery obtained by manned aerial systems to derive inventory biometrics—
e.g., tree height, stem volume, and basal area [4–6]. However, the major limitation of this
approach is that image-based point clouds primarily represent the outer envelope of a
forest canopy. On the other hand, LiDAR energy can penetrate through gaps between
leaves, allowing it to capture data from below-canopy structures. In this regard, manned
airborne LiDAR, which provides data with large spatial coverage and fine resolution, is
widely used to derive leaf area index (LAI), canopy height, crown dimension, as well as the
attributes beneath the canopy, such as stem map and terrain information [7–10].

Compared with manned aerial systems, uncrewed aerial vehicles (UAVs) possess
distinct advantages due to their affordability, close sensor-to-object distance, and ease
of deployment and operation. These factors enable UAVs to provide high spatial and
temporal data effectively. Several studies derived forest biometrics using orthophotos and
point clouds generated from UAV images [11–15]. UAV LiDAR matches most advantages
of manned airborne LiDAR, except for reduced spatial coverage. Numerous research
investigations have applied UAV LiDAR data to segment individual trees and estimate
various forest attributes, including canopy cover, tree height, diameter at breast height
(DBH), and above-ground biomass [16–23]. However, when conducting UAV LiDAR flights
above the forest canopy, the capability to map below-canopy structures deteriorates due to
factors such as tree density and leaf cover. Achieving detailed mapping of below-canopy
structures, which is crucial for obtaining precise estimates of forest biometrics such as DBH
and debris, cannot always be guaranteed.

Ground systems, including TLS and mobile ground LiDAR, offer the ability to acquire
detailed information beneath the forest canopy. Previous research utilized TLS data with
high spatial resolution to estimate forest structural metrics for individual trees [2,24,25]. For
TLS, conducting large-scale field surveys is time-consuming. Moreover, the post-processing
of acquired data is complex. On the other hand, mobile ground systems can maneuver
within the area of interest to cover large areas [26]. Several studies used ground systems
to generate stem maps, derive DBH estimates, and conduct crown segmentation [27–31].
Nevertheless, ground systems are susceptible to occlusions caused by terrain and above-
ground features, and obstacles on the forest floor can restrict the movement of the platforms.
The main challenge for under-canopy mobile LiDAR surveys is the intermittent access to
Global Navigation Satellite System (GNSS) signals. Having continuous access to GNSS
signals is critical to deriving reliable trajectory information and, consequently, mapping
products with high georeferencing accuracy.

Several studies tackled the mapping in GNSS-denied/challenging environments to
derive high-quality LiDAR point clouds for forest inventory. Kukko et al. [32] proposed
a trajectory enhancement strategy for a LiDAR system mounted on an all-terrain vehicle.
LiDAR points from a short time period were reconstructed using the initial trajectory gen-
erated through the processing of data acquired by GNSS/Inertial Navigation System (INS).
Then, centroids of tree trunks were extracted from each section of LiDAR data and matched.
Corrections to the initial trajectory were estimated by considering two constraints: main-
taining the relative position/orientation transformation between two successive epochs in
the initial trajectory and minimizing the discrepancies among conjugate tree trunk centroids
derived from different LiDAR sections. Although high relative accuracy was achieved for
the tree trunk locations, this trajectory enhancement approach has several limitations: (a) it
is based on a data-driven approach, while assuming that system calibration parameters
and short-term trajectory used to generate an individual LiDAR section are errorless, which
is not often the case; (b) since only the relative position/orientation information of the
initial trajectory is used, an additional transformation step is required to align the corrected
trajectory with the initial one to ensure some level of absolute accuracy, which could lead
to aggregated errors; and (c) using only centroids of tree trunks for trajectory enhancement
leads to weak control in the vertical direction. Chiella et al. [33] merged information from
GNSS, Attitude and Heading Reference Systems (AHRS), and 2D LiDAR odometry for
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mobile mapping system (MMS) navigation. The LiDAR-based odometry utilized tree trunk
features to derive the motion of the platform through a scan matching algorithm. Their
work’s limitations include: (a) it only evaluated the positional trajectory parameters, while
the orientation parameters were not estimated, and (b) it cannot deal with 3D LiDAR, since
the scanning mechanism of 2D LiDAR formed the basis for their odometry strategy.

Tang et al. [34] investigated a Simultaneous Localization and Mapping (SLAM)-aided
positioning solution using point clouds from a small-footprint LiDAR to estimate the
orientation parameters of the MMS trajectory. They derived 2D tree stem positions using
integrated GNSS/INS and SLAM/INS trajectories to compare the accuracy in open and
mature forest areas. The accuracy of the SLAM/INS trajectory was 0.16 m and 0.27 m in
the X and Y directions, respectively, as compared with 0.36 m and 0.32 m from GNSS/INS
trajectory. Their key limitations are: (a) the approach required the range of points to be
limited (25 m in their study) to ensure a small laser beam footprint size; (b) they did not
estimate positional trajectory parameters; (c) their approach did not include GNSS with
LiDAR and INS to refine the trajectory; and (d) the achieved accuracy was suitable for tree
stem localization, but was not adequate for more intricate metrics, such as tree diameter,
basal area, etc. Qian et al. [35] used the same platform as Tang et al. [34] in an approach
that incorporated heading angles and velocities from GNSS/INS to improve the positional
accuracy of LiDAR-based SLAM. Both position and orientation parameters of the trajectory
were estimated in their research. They extracted 2D tree stem locations with a 0.06 m
accuracy from point clouds reconstructed using the derived trajectory. The main limitation
of their approach is the requirement of a very good distribution of features to obtain reliable
results for LiDAR-based SLAM. Moreover, while the approach provided good results in
feature-rich forests, it did not perform well in open forests with very sparse trees.

Su et al. [26] developed a Backpack MMS composed of two LiDAR units and an
Inertial Measurement Unit (IMU). They implemented a LiDAR-based SLAM to estimate
the trajectory position and orientation parameters. They derived two forest inventory
variables—tree height and DBH. The tree height was estimated with an accuracy of 2.24 m
and the DBH had an accuracy of 0.03 m. There are several limitations to their study: (a) their
approach relied solely on LiDAR-SLAM, whereas GNSS and INS were not integrated, i.e.,
the data were not georeferenced, thus rendering it impossible to conduct multi-temporal
data acquisition and forest monitoring; (b) their LiDAR-SLAM strategy required a consid-
erable amount of manual correction to generate reasonable LiDAR point clouds in complex
natural forests; (c) they did not investigate or address the misalignment of point clouds
in the same area captured from different Backpack MMS tracks; and (d) their study sites
were relatively small (30 m by 30 m), with about 12–27 trees in each site and, thus, the
duration of each data acquisition was very short to be impacted by inaccurate trajectory
parameters. Polewski et al. [36] explored the possibility of marker-free co-registration of
UAV and Backpack LiDAR point clouds in forests. The UAV data were georeferenced,
but the Backpack trajectory was estimated using LiDAR-based SLAM. They estimated the
rotation, translation, and scaling parameters between the UAV/Backpack point clouds
using individual tree locations as tie points. The limitations to their approach are: (a) they
did not investigate the trajectory inaccuracy and its impact on point cloud alignment within
the Backpack dataset and (b) they assumed a rigid body transformation between the point
clouds from the two systems, which is not applicable for cases with inaccurate trajectory
during under-canopy mapping, which variably impacts the point cloud from one area
to another.

In summary, the limitations of prior research include: (a) traditional approaches rely
on acquired data from expensive manned airborne systems, which cannot be collected
frequently to provide data with high temporal resolution; (b) cost-effective UAV-based
photogrammetric and LiDAR data are unable to provide fine-resolution forest metrics
for individual trees; (c) static terrestrial LiDAR systems are prone to occlusions, and
require time-consuming and labor-intensive field surveys; (d) mobile ground LiDAR and
photogrammetric systems are affected by GNSS signal outages, which deteriorate the
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georeferencing accuracy of derived products; and (e) the synergistic characteristics of UAV
and mobile ground mapping systems are not fully explored. Research on improving the
quality of mobile terrestrial remote sensing systems under GNSS signal outages is still
lacking in terms of (a) partially refining positional or attitude information; (b) requiring
extensive preprocessing for deriving suitable features for trajectory enhancement; (c) being
incapable of handling different sensing modalities (e.g., images together with 2D and 3D
LiDAR units); (d) not taking full advantage of onboard IMUs; (e) limiting the range of
acquired data to a few meters; (f) not providing georeferenced inventory metrics that could
aid in tracking forest growth from temporal data acquisitions; and (g) being quite complex
for scalable implementation.

In response to the majority of stated limitations of state-of-the-art techniques for accu-
rate forest stem-level mapping, this study proposes a system-driven framework capable
of conducting system calibration and trajectory enhancement for LiDAR units mounted
on UAV/Backpack MMS to generate accurate point clouds for forest inventory. More
specifically, features including tree trunks and terrain patches are extracted from the Li-
DAR point clouds. By minimizing discrepancies among features captured from different
timestamps/tracks and different systems while considering both absolute and relative
positional/rotational information provided by the GNSS/INS-based trajectory, system cali-
bration and trajectory information are refined through a non-linear least squares adjustment
(LSA) process. The key contributions of this work are itemized as follows:

• Develop a general, system-driven framework capable of conducting system calibra-
tion and/or trajectory enhancement for LiDAR MMS in forest environments, while
deriving forest inventory biometrics such as tree trunk radius and orientation;

• Conduct in situ system calibration and trajectory enhancement for UAV datasets under
leaf-off conditions to derive point clouds with high relative and absolute accuracy;

• Assess the performance of the proposed trajectory enhancement strategy for Backpack
datasets with trajectories of varying quality in young/mature plantations and examine
if UAV data can be used as a reference to improve the relative/absolute quality of
Backpack point clouds.

The remainder of this paper is structured as follows: Section 2 introduces the
UAV/Backpack MMS, study sites, and acquired datasets used in this study; Section 3
proposes a system-driven strategy for system calibration and trajectory enhancement
utilizing terrain patches and tree trunks extracted from LiDAR point clouds; Section 4
presents experimental results for UAV and Backpack datasets to evaluate the performance
of the proposed strategy; finally, Section 5 summarizes the findings of the research along
with recommendations for future work.

2. Acquisition Systems and Dataset Description

For this study, a total of five datasets were collected from two forest plantations using
three UAV and one Backpack mobile mapping systems. These systems were developed in-
house by the Digital Photogrammetry Research Group (DPRG) at Purdue University. In this
section, the four mobile mapping systems are first introduced, followed by a description of
the covered plantation areas and acquired datasets.

2.1. UAV and Backpack MMS

In this study, three UAV systems were utilized (namely, UAV-1, UAV-2, and UAV-3
systems). The UAV-1 system (Figure 1a) comprised a LiDAR unit—Velodyne VLP-32C [37]—
and a camera—Sony α7R III. The UAV-2 system shared the same payload as the UAV-1
system, except that a Sony α7R camera was used. The UAV-3 system (as shown in Figure 1b)
carried an Ouster OS2-64 LiDAR [38], a Sony RX1RII camera, and a Headwall Nano
Hyperspec VNIR camera. The LiDAR units on the UAV systems were mounted with their
rotation axes approximately parallel to the flying direction. For all systems, the LiDAR
data were directly georeferenced through an Applanix APX15 v3 GNSS/INS unit [39]. The
GNSS/INS unit, with an IMU data rate of 200 Hz, provided trajectory with an accuracy of
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2–5 cm for position, 0.025◦ for roll/pitch angles, and 0.080◦ for heading angle in open sky
conditions after post-processing. The Backpack MMS (as shown in Figure 1c) consisted of a
Velodyne VLP-16 Hi-Res LiDAR [40] and a Sony α7R II camera. LiDAR data were directly
georeferenced using a Novatel SPAN-CPT GNSS/INS unit [41]. For this unit, the IMU data
rate was 100 Hz, and it provided a post-processing accuracy of 1–2 cm for position, 0.008◦

for roll/pitch angles, and 0.026◦ for heading angle.
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Figure 1. Utilized mobile mapping systems and onboard sensors in this study: (a) UAV-1 system,
(b) UAV-3 system, and (c) Backpack system.

To generate LiDAR point clouds from these MMSs, mounting parameters including
lever arm and boresight angles relating the LiDAR unit frame to the GNSS/INS body
frame needed to be established. In this study, the UAV and Backpack MMSs underwent a
feature-based system calibration [42]. Based on the specifications of the involved sensors,
the expected accuracy of the point cloud following the system calibration was estimated
using a LiDAR Error Propagation Calculator [43]; for the UAV MMS with 50 m flying
height, the expected accuracy was 5–6 cm at the nadir position in both horizontal and
vertical directions. The horizontal accuracy increased to 8–9 cm at the edge of the swath.
For the Backpack system, the expected accuracy was 3 cm at a range of 50 m.

2.2. Study Sites

The study sites used for this research were a young—Plot 115—and a mature—Plot 3b—
forest plantation located at Martell Forest, West Lafayette, IN, USA, as shown in Figure 2a.
Martell Forest is a research forest owned and managed by Purdue University. Plot 115
was planted in 2007 with northern red oak (Quercus rubra) as the primary species and burr
oak (Q. macrocarpa) as trainers. The plot follows a grid pattern consisting of 22 rows and
50 trees per row. The spacing between neighboring rows is around 5 m and between-tree
spacing within a row is approximately 2.5 m. Tree height in the study area ranges from
10 to 13 m at measurement year 13 with an average DBH of 12.7 cm. Within each row,
the branches of neighboring trees interlace with each other. The understory vegetation
within the plot, including voluntary seedlings and herbaceous species, is removed on an
annual basis. In 2021, there were a total of 1,080 trees in Plot 115. The plot went through
a tree-thinning activity in late February 2022, and 410 trees were cut down, as shown in
Figure 2b. The mature plantation Plot 3b is a northern red oak (Quercus rubra) provenance
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test that was successively planted in 1962, 1963, and 1964 with seed sources throughout
the eastern USA and Canada. The initial planting pattern had 50 rows and 34 columns,
and the between-row/between-column distance is approximately 2.5 m. After decades of
destructive felling of some trees for research purposes, there are around 550 trees left. Tree
height in the study area ranges from 24 to 28 m.
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2.3. Dataset Description

For the young plantation, Plot 115, three datasets were acquired: (a) the YP-UAV-2021
dataset collected by the UAV-1 system on 13 March 2021 under leaf-off conditions, (b) the YP-
UAV-2022 dataset collected by the UAV-2 system on 3 March 2022 under leaf-off conditions,
and (c) the YP-BP-2021 dataset collected by the Backpack system on 5 August 2021 under
leaf-on conditions. It is worth noting that the YP-UAV-2022 dataset was obtained after the
tree-thinning activity. As for the mature plantation Plot 3b, two datasets were collected
under leaf-off conditions: (a) the MP-UAV-2023 dataset acquired by the UAV-3 system on
20 March 2023 and (b) the MP-BP-2023 dataset acquired by the Backpack system on 7 March
2023. Given that tree trunks might not be captured by UAV LiDAR systems during leaf-on
conditions [44], all UAV datasets were collected under leaf-off conditions, as the proposed
framework is based on the availability of tree trunk features. To obtain the highest level of
accuracy in the UAV-based point clouds, points were reconstructed only when the laser
beam pointing direction was within ±70◦ from the nadir. Further information and details
regarding these datasets will be presented in the subsequent subsections.

2.3.1. Datasets of the Young Plantation

Both UAV datasets were collected at a 40 m height with a flying speed of 3.5 m/s.
The YP-UAV-2021 mission included 12 east–west flight lines with an 11 m lateral distance
between adjacent ones. Considering ±70◦ off-nadir reconstruction, the side lap of the
point cloud was 95%. The YP-UAV-2022 dataset had 10 flight lines with a 13 m lateral
distance, resulting in an approximately 80% side lap. Figure 3 shows a top view of the
GNSS/INS-derived trajectory for the two UAV datasets. Both UAV systems were flown
above the canopy with continuous access to GNSS signals; thus, the derived trajectory
is expected to be accurate. As mentioned earlier, the YP-UAV-2022 dataset was captured
after a tree-thinning activity, resulting in a significant amount of tree debris remaining
on the plantation floor. Figure 4a,b present the reconstructed point clouds after height
normalization relative to the ground level in the 1–3 m range for the two UAV datasets,
respectively. While the YP-UAV-2021 dataset displays well-defined tree trunks, debris
is visible in the YP-UAV-2022 dataset. This is also evident in a terrestrial image (shown
in Figure 4c) captured near the data acquisition date of the YP-UAV-2022 dataset. The
presence of woody debris is expected to create difficulties in extracting tree trunks and
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terrain patches, which will be employed in the subsequent system calibration and trajectory
enhancement process.
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(b) YP-UAV-2022 datasets, as well as (c) a terrestrial image showing existing debris captured in the
YP-UAV-2022 dataset.

Furthermore, it is noteworthy that the mounting parameters of the UAV-2 system
are outdated, which resulted in an anticipated decrease in the geometric accuracy for the
YP-UAV-2022 dataset. Figure 5 shows a sample tree from the two UAV datasets where
LiDAR points with large range measurements come from flight lines with large planimetric
distances to this tree. For the YP-UAV-2021 point cloud, the noise level in the X direction
(along-flight direction) was much higher compared with that in the Y direction (across-flight
direction). Noisy points are mostly of large range measurements, thus suggesting issues
with the system calibration parameters and/or trajectory that affected the along-flight
direction more than the across-flight one. As for the YP-UAV-2022 dataset with inaccurate
mounting parameters, dual versions of the tree trunk can be observed in both the X and
Y directions.
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height with a speed of 3.6 m/s. The flight mission comprised 14 north–south flight lines, 
with an 8 m lateral distance between neighboring ones. The side lap percentage of the 
point cloud was 97% while considering ±70° off-nadir reconstruction. Figure 7 shows a 
top view of the UAV trajectory (colored in red) obtained from the GNSS/INS post-pro-
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Figure 5. A sample tree (colored by LiDAR range) in the YP-UAV-2021 and YP-UAV-2022 datasets
viewed from the (a) X-Z and (b) Y-Z planes.

For the YP-BP-2021 dataset, the Backpack system was carried while walking under the
forest canopy between individual tree rows. The mission consisted of 22 north–south tracks
and each of them lasted around 2.5 min (as shown in Figure 3). At the end of each track, the
operator walked out of the canopy into open sky before the next track. This data acquisition
pattern guarantees a trajectory of reasonable quality without a dramatic increase in drifting
errors over time. The number of tracked satellites ranged from 3 to 5 and 9 to 11 when
walking under and outside the canopy, respectively. To demonstrate the impact of the
GNSS signal outages, a small region of interest (ROI) within the young plantation was
cropped from the Backpack point cloud generated from the GNSS/INS-derived trajectory,
as shown in Figure 6. The ROI chosen for examination is in the middle section of the whole
area. A spatial misalignment of about 1.7 m in the horizontal direction and 1.2 m in the
vertical direction can be observed in the point cloud.
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2.3.2. Datasets of the Mature Plantation

The MP-UAV-2023 dataset was acquired by the UAV-3 system at 50 m above ground
height with a speed of 3.6 m/s. The flight mission comprised 14 north–south flight lines,
with an 8 m lateral distance between neighboring ones. The side lap percentage of the point
cloud was 97% while considering ±70◦ off-nadir reconstruction. Figure 7 shows a top view
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of the UAV trajectory (colored in red) obtained from the GNSS/INS post-processing. In
Figure 8a, a sample tree from the UAV dataset is displayed, where point cloud alignment in
the X direction is reasonable, except for some noisy points with large range measurements.
However, in the Y direction (along-flight direction), the noise level is much higher than that
in the X direction.
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Regarding the MP-BP-2023 dataset, the mission included 12 north–south tracks and
each of them lasted around 2 min, as highlighted in blue in Figure 7. The Backpack system
was carried under the canopy throughout the entire mission without leaving the forest,
while the number of tracked satellites ranged from 0 to 6. Due to the denser canopy from
the mature plantation and lack of access to open sky during the mission, GNSS signal
outages are more severe than those for the young plantation. This resulted in a lower
quality trajectory of the MP-BP-2023 dataset compared with that of the YP-BP-2021 dataset,
despite the former being collected in the leaf-off condition while the latter was acquired
in the leaf-on condition. An ROI in the middle of this study site was extracted from the
Backpack point cloud and is presented in Figure 8b. The misalignment in the horizontal
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and vertical directions was up to 3.6 m and 10.5 m, respectively, indicating the poor quality
of the derived GNSS/INS trajectory.

3. System Calibration and Trajectory Enhancement Strategy

In this study, we propose a system-driven approach to reduce the misalignment within
point clouds caused by inaccurate LiDAR mounting parameters and/or GNSS signal
outages. The proposed strategy is based on the hypothesis that any inaccuracy related
to mounting parameters and/or trajectory information would manifest as discrepancies
among conjugate features, as demonstrated in the previous section. Figure 9 depicts the
framework for the proposed approach. This approach utilizes common features that can be
automatically identified and extracted from point clouds in forest environments. Specif-
ically, terrain patches and tree trunks were derived and used as planar and cylindrical
features, respectively, to refine system calibration and trajectory parameters. As shown
in Figure 9, Block 1 focused on extracting and matching planar and cylindrical features,
while Block 2 showed the optimization framework for system calibration and trajectory
enhancement. The output of the optimization process included refined mounting param-
eters, enhanced trajectory parameters (position and orientation), and estimated feature
parameters for each planar/cylindrical primitive. It is worth mentioning that derived
parametric models could provide critical forest inventory biometrics such as tree trunk
radius and orientation, which is also a key contribution of the proposed strategy.
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3.1. Feature Extraction and Matching

In this subsection, we present the strategy for extracting and matching planar features
(terrain patches) and cylindrical features (tree trunks) from point clouds captured by
different LiDAR MMSs. A prerequisite for reliable feature extraction is that the used point
cloud has a relatively good quality in a local neighborhood. In this study, given that UAV
systems have continuous accessibility to GNSS signals, they produced LiDAR point clouds
with reasonable quality. Therefore, the feature extraction was directly conducted on the
entire point cloud. On the other hand, by assuming that the point cloud from a single track
of the Backpack dataset had relatively good quality, feature extraction was performed on
each track separately.

To begin with, the point clouds (either the entire point cloud for UAV datasets or indi-
vidual tracks for the Backpack datasets) were reconstructed using the original GNSS/INS-
derived trajectory and initial LiDAR system calibration parameters. Then, a ground fil-
tering algorithm—the adaptive cloth simulation proposed by Lin et al. [45]—was applied
to generate a digital terrain model (DTM) and, furthermore, derive bare earth (BE) and



Remote Sens. 2023, 15, 2799 11 of 28

above-ground (AG) points. Specifically, LiDAR points within a height buffer above the
DTM (e.g., 0.5 m in this study) were categorized as the BE point cloud, while the remaining
points were considered the AG point cloud. The BE point clouds were used for terrain
patch extraction and matching, as will be discussed in Section 3.1.1. The AG point clouds
were used for conducting individual tree detection/localization followed by tree trunk
extraction and matching, as will be discussed in Section 3.1.2.

3.1.1. Terrain Patch Extraction and Matching for Vertical Control

Despite the varying size and shape of above-ground forest entities, within a local
neighborhood, it is possible to approximate the ground as a planar surface. Terrain patches—
i.e., small segments of the BE point cloud in a local area—extracted and matched in
individual tracks and/or different datasets, were used as planar features to provide vertical
control for system calibration and trajectory enhancement. For terrain patch extraction,
regularly spaced 2D seed points were created within the ROI, where the Z coordinates
were obtained from the DTM. For each seed point, its neighboring points within a given
search radius were identified from the BE point cloud. A dimensionality-based analysis,
as described in Demantké et al. [46], was conducted to test the planarity of the local
neighborhood. Iterative plane fitting—i.e., multiple iterations of plane fitting followed by
removing outliers based on the root-mean-square (RMS) value of the fitting error—was
performed to derive segmented points and parameters describing the respective plane
model. Figure 10 shows sample terrain patches extracted from one track of the YP-BP-2021
dataset. Once the terrain patches from different point clouds were extracted, features that
met the following criteria were matched: (a) they were extracted from the same seed point
and (b) the angle between their normal vectors was within a pre-defined threshold.
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3.1.2. Tree Trunk Extraction and Matching for Horizontal Control

Tree trunks were used as cylindrical features to provide horizontal control, as they
are distinct objects and their planimetric locations remain the same over time. Tree trunk
extraction started by isolating the lower portion of the AG point cloud (i.e., hypothesized
trunk portion) based on pre-defined height range thresholds (namely, hmin and hmax) above
the DTM, as shown in Figure 11. The height/density-based peak detection approach
proposed by Lin et al. [44] was adopted to identify individual trees in the hypothesized
trunk portion. Their approach utilizes a grid-based evaluation of the sum of normalized
elevations relative to the ground level of all points to identify local peaks that will be
designated as tree trunk locations. Detected planimetric locations are then adopted to
identify corresponding LiDAR points from the hypothesized trunk portion. First, for
a detected tree with planimetric location ( Xt, Yt), the seed point that corresponded to
the tree trunk portion was defined as (Xt, Yt, ZG + ∆h ), where ZG is the ground height
derived from DTM and ∆h is a pre-defined height above ground (∆h is selected to be
within the range of hmin and hmax). Then, a spherical region centered at the seed point
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with a pre-defined radius (e.g., 0.5 m) was created. LiDAR points within this region of the
hypothesized trunk portion were analyzed to determine the presence of a linear/cylindrical
feature using a dimensionality-based approach [46]. If a linear/cylindrical feature was
detected, an iterative model fitting and outlier removal process was employed to derive
the cylindrical parametric model. Subsequently, a region growing approach was applied
to incrementally include neighboring points that belong to the current feature, provided
their normal distances from the corresponding parametric model were below a specified
multiple by the RMS of the fitting error. The augmentation process terminated when no
points could be included in this feature. The output of the feature extraction included
the segmented points and parameters describing the respective cylinder model. Figure 11
shows sample tree trunks extracted from an individual track of the YP-BP-2021 dataset.
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After extracting tree trunks from each point cloud, a feature matching procedure was
carried out to identify conjugate trunks from different point clouds. Since misalignment
among the point clouds was most significant in the Z direction, planimetric locations of the
extracted tree trunks were utilized in the matching. To illustrate the proposed strategy, we
used a Backpack dataset as an example, since tree trunk matching is especially challenging
for such data due to GNSS signal outages. Although drifting errors caused by signal
outages may increase over time, the relative alignment between successive LiDAR tracks
was still of reasonable quality. Thus, the matching process was sequentially performed
on successive tracks. Specifically, for a LiDAR track pair, an Iterative Closest Point (ICP)
algorithm was used to register the 2D locations of derived tree trunks from the candidate
track to those from the reference track. If two trunks from different tracks had a planimetric
distance smaller than 0.5 m after the registration, they were considered conjugate. However,
this process assumes that the misalignment between two tracks in the planimetric direction
can be modeled by a 2D rigid body transformation, which is not always true. To address
this issue, derived tree trunks from the candidate track can be divided into several portions
along the track. The registration and matching process can then be conducted on each
portion individually. Furthermore, if a UAV dataset was included in this procedure, we
used its derived 2D trunk locations from the entire point cloud as reference due to their high
absolute accuracy. Then, tree trunks from each Backpack track or subtrack were directly
matched to the UAV reference ones.

3.2. Optimization Framework for System Calibration and Trajectory Enhancement

Extracted and matched planar/cylindrical features from single or multiple datasets
were adopted to (a) refine the LiDAR system calibration parameters, (b) enhance the quality
of the GNSS/INS-derived trajectory, and (c) improve the alignment of the point cloud. Con-



Remote Sens. 2023, 15, 2799 13 of 28

ceptually, the proposed optimization framework aimed at minimizing the normal distance
between LiDAR points and the respective parametric models for planar/cylindrical features
by refining system calibration and trajectory parameters through a non-linear LSA. The
point positioning equation was the basis of this optimization framework. For any LiDAR
point I captured at time t, its coordinates in the mapping frame

(
rm

I (t)
)

were defined by

the trajectory position and orientation parameters at the corresponding time
(

rm
b(t), Rm

b(t)

)
,

LiDAR mounting parameters including lever arm and boresight angles
(

rb
lu, Rb

lu

)
, and laser

unit frame coordinates of the point at the firing time
(

rlu(t)
I

)
. rlu(t)

I was derived from raw
LiDAR measurements, including range and pointing direction measurements of the LiDAR
unit. The mathematical model is expressed symbolically in Equation (1). The corrected
coordinates of the same point after system calibration and trajectory enhancement will
depend on the refined mounting parameters

(
rb

lu(refined), Rb
lu(refined)

)
and estimated

corrections to the trajectory position/orientation parameters
(

δrm
b(t), δRm

b(t)

)
, as expressed

in Equation (2).
rm

I (t) = f
(

rm
b(t), Rm

b(t), rb
lu, Rb

lu, rlu(t)
I

)
(1)

rm
I (t)corrected = f

(
rm

b(t), δrm
b(t), Rm

b(t), δRm
b(t), rb

lu(refined), Rb
lu(refined), rlu(t)

I

)
(2)

Solving for the trajectory corrections at every timestamp of laser beam firing is not
recommended as it would cause over-parametrization in the LSA. Since we were dealing
with a platform that exhibited a relatively smooth trajectory and moderate dynamics,
the initial high-frequency trajectory (e.g., 100–200 Hz) was reduced to a lower frequency,
using a user-defined down-sampling time interval ∆T. The down-sampled trajectory
points are henceforth denoted as trajectory reference points, as shown in Figure 12. The
trajectory corrections at a particular firing timestamp were then modeled as pth-order
polynomial functions of unknown corrections for their n neighboring trajectory reference
points. Symbolically, this polynomial modeling is expressed in Equation (3), where it can
be seen that for a generic timestamp, T0, its trajectory corrections (denoted generically as
δθm

b(T0)
) are a function of the polynomial order along with the timestamps and trajectory

corrections of its n closest reference points. The selection of the down-sampling time
interval ∆T, polynomial order p, and number of neighboring trajectory reference points n,
is determined by considering the characteristics of the platform dynamics.
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δθm
b(T0)

= f
(

p, T0, Ti, Ti+1, . . . , Ti+n−1, δθm
b(Ti)

, δθm
b(Ti+1)

, . . . , δθm
b(Ti+n−1)

)
(3)

The mathematical models for the proposed LSA encompass two types of constraints:
(a) objective functions arising from LiDAR feature points and (b) objective functions to incor-
porate prior information provided by GNSS/INS trajectory. The former aims at minimizing
the normal distance of each LiDAR point from the parametric model of its corresponding
planar/cylindrical feature. The minimization function is expressed mathematically in
Equation (4). Here, Fm

k denotes the parametric model of the kth feature in the mapping
frame, and nd

(
I, t, Fm

k
)

represents the normal distance from the LiDAR point I captured at
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time t to its corresponding feature k. An a priori variance, denoted by σ2
nd, is associated with

each of these constraint equations to assign range-based adaptive weights to the normal
distance for each LiDAR feature point. LiDAR feature points captured within a pre-defined
range threshold from the LiDAR unit (ρmax) are assumed to conform to their corresponding
features more accurately than further points, which would be more prone to noise. The
adaptive variance is defined according to Equation (5), which describes the assumption
that a point with a range ρi below ρmax exhibits a constant variance of σ2

ref, while a point
with a greater range has an increasing variance (or, lesser weight). Here, σ2

ref represents the
nominal expected variance for the LiDAR points and can be determined from the error
propagation according to the sensors’ specifications. The parameters describing a planar
feature include the normal vector

(
wx, wy, wz

)
and its normal distance from the origin d, as

shown in Figure 13a; out of these four parameters, three can be designated as independent.
In this work, wz is fixed to one since the normal vectors of all terrain patches will have a
predominant component along the Z-axis. The parameters for a cylindrical feature include
the direction vector of its axis

(
ux, uy, uz

)
, a point on the axis (x0, y0, z0), and radius r, as

shown in Figure 13b. Out of these parameters, there are only five independent ones—two
out of

(
ux, uy, uz

)
, two out of (x0, y0, z0), and r. Since the orientation of all tree trunks will

be predominantly vertical, in this study, uz and z0 are fixed to 1 and 0, respectively.

argmin
ffi`m

b(Tref)
,rb

lu,Rb
lu,Fm

k

∑
∀LiDAR feature points

(
nd

(
I, t, Fm

k
))2

σ2
nd

(4)

σ2
nd =

(
max(ρmax, ρi)

ρmax
× σref

)2
(5)
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A second set of constraint equations was introduced in the LSA to ensure that the
corrections to the trajectory reference points were commensurate with provided informa-
tion by the GNSS/INS post-processing from absolute and relative points of view. In an
absolute sense, constraint equations were introduced to minimize the change in position
and orientation parameters δθm

b(t) for each trajectory reference point depending on the
reported standard deviation by the GNSS/INS post-processing, as given by Equation (6),
where Nt denotes the total number of trajectory reference points. From a relative point of
view, the change in the distance traversed between two consecutive trajectory reference
points was minimized based on the reported velocity accuracy of the trajectory, as given by
Equation (7). In this equation, Di denotes the distance between the positions of the ith and
(i + 1)th reference points. By including these constraint equations, the short-term (mainly
provided by the IMU) and long-term (mainly provided by the GNSS) information from the
GNSS/INS-based trajectory were utilized together with the LiDAR observations to ensure
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the best accuracy of the enhanced trajectory. One should note that adding the minimization
constraints in Equations (6) and (7) based on prior knowledge ensured that corrections
to trajectory reference points were zero if there were no LiDAR feature points to assist in
their estimation (i.e., there were no feature points with timestamps associated with these
reference points).

argmin
ffi`m

b(t) i

Nt

∑
i=1

(
δθm

b(t)i

)2

σ2
θi

(6)

argmin
δrm

b(t) i
,δrm

b(t) i+1

Nt−1

∑
i=1

(
Dicorrected

(
rm

b(t)i
, δrm

b(t)i
, rm

b(t)i+1
, δrm

b(t)i+1

)
− Di

(
rm

b(t)i
, rm

b(t)i+1

))2

σ2
v

(7)

Based on the above discussion, we can determine the total number of unknowns and
constraint equations involved in the LSA model for dataset(s) with NLu LiDAR units, Nt tra-
jectory reference points, npp LiDAR points captured over Np planar terrain patches, and npc
LiDAR points captured over Nc cylindrical tree trunks. The unknowns include 6NLu LiDAR
mounting parameters, 6Nt trajectory reference point corrections to position/orientation
parameters (δθ), 3Np planar terrain patch feature parameters (one for each planar feature
is fixed), and 5Nc cylindrical tree trunk feature parameters (two for each cylindrical feature
are fixed). It is worth mentioning that due to the potential correlation between LiDAR
mounting parameters and trajectory information, conducting system calibration and tra-
jectory enhancement simultaneously could lead to inaccurate estimation of the involved
parameters. Therefore, in the case that both tasks are required, system calibration will be
performed while fixing the trajectory information, followed by trajectory enhancement
while fixing the refined mounting parameters.

The estimation of the system calibration parameters and trajectory corrections is based
on the contribution of the LiDAR constraints (Equation (4)). The effective contribution
towards LSA is only along the normal direction(s) to the feature [47]. Hence, there is
an effective contribution of one equation per LiDAR point captured over a planar or
cylindrical feature, thus resulting in a total of npp and npc constraint equations from
LiDAR points along terrain patches and tree trunks, respectively. Additionally, there
are 6Nt and (Nt − 1) constraint equations based on prior absolute and relative trajectory
information, respectively. The LSA for system calibration and trajectory enhancement is
conducted iteratively until the change in the RMS of normal distances of the LiDAR points
from the corresponding features is less than a pre-defined threshold. Once the trajectory
enhancement is conducted, estimated corrections of reference points are then used to correct
the initial trajectory information at the original data rate through the utilized pth-order
polynomial function.

The proposed system calibration and trajectory enhancement strategy, including
feature extraction, matching, and optimization framework, offers several salient features.
First, the constraint equations are not restricted to a single platform/sensor/dataset. The
LSA model can be used to conduct simultaneous multi-sensor, multi-temporal, and multi-
platform system calibration and trajectory enhancement. Second, the proposed strategy
could be used for refining system calibration parameters and enhancing the trajectory
information for one or more systems without including any reference system with accurate
trajectory (e.g., UAV datasets in this study). Third, the approach allows using one or
more systems with accurate system calibration parameters and trajectories as a reference
to refine the respective parameters for other systems. In order to accomplish this, the
system calibration parameters and trajectory parameters for the reference system(s) are
fixed (or assigned low a priori variance) in the LSA model while the parameters for other
systems are estimated. For instance, in this study, the UAV MMS dataset with relatively
accurate trajectory information could be used as a reference while conducting trajectory
enhancement for the Backpack MMS dataset with poor-quality trajectory. Lastly, some



Remote Sens. 2023, 15, 2799 16 of 28

critical forest inventory biometrics such as tree trunk radius and orientation are also derived
in the proposed strategy.

4. Experimental Results

This section presents experimental results to validate the proposed system calibration
and trajectory enhancement strategy in terms of the improvement in the alignment of
UAV and Backpack MMS point clouds. It is worth mentioning that the mounting param-
eters of the Backpack system were calibrated and the sensor-to-object distances during
the data acquisition were quite close. In this case, the impact of potential errors in the
mounting parameters on the 3D coordinates of LiDAR points was negligible compared to
that caused by the inaccurate trajectory. Therefore, trajectory enhancement was the focus
for the Backpack datasets, while the mounting parameters were assumed errorless in the
conducted experiments.

Since the alignment of UAV point clouds was reasonable, terrain patches and tree
trunks were extracted from the entire point cloud from each UAV dataset. Therefore, there
was no need for intra-dataset feature matching. The used radius for the extraction of planar
terrain patches was set to 1 m. For tree trunk extraction, the minimum and maximum
height thresholds (hmin and hmax) were set to 0.5 m and 2.5 m for the YP-UAV-2021 dataset.
Due to existing debris in the YP-UAV-2022 dataset and understory vegetation in the mature
plantation for the MP-UAV-2023 dataset, the respective height range thresholds were set
to 1.5 m and 3.5 m. A total of 3248 terrain patches were extracted from each of the UAV
datasets over the young plantation, while 843 and 540 tree trunks were identified in the
YP-UAV-2021 and YP-UAV-2022 datasets, respectively. The fewer tree trunks in the YP-
UAV-2022 dataset were due to the thinning activity conducted prior to this acquisition. As
for the MP-UAV-2023 dataset, 531 tree trunks and 4610 terrain patches were derived.

For the YP-BP-2021 and MP-BP-2023 datasets, the individual tracks were reconstructed
using the GNSS/INS trajectory. Then, feature extraction was conducted on each track
separately. The feature extraction parameters for the two Backpack datasets were set to
be identical with those for the YP-UAV-2021 and MP-UAV-2023 datasets, respectively.
In total, 3248/3260 terrain patches and 929/499 tree trunks were established for the YP-
BP-2021/MP-BP-2023 datasets. Since this study also aims at investigating the impact
of incorporating reference UAV for trajectory enhancement for Backpack datasets with
poor-quality trajectories, features from the MP-BP-2023 and MP-UAV-2023 datasets were
matched, resulting in 3256 and 492 common terrain patches and tree trunks, respectively.
One should note that unmatched features between these datasets were still used in the LSA,
as they still contributed towards the estimation of dataset/system-specific parameters.

The expected accuracy of post-LSA normal distance related to the planar and cylindri-
cal features (σref) was set to 5 cm. While conducting trajectory enhancement for UAV and
Backpack datasets, the trajectory reference points were established at a frequency of 1 Hz
(the frequency of the original trajectory was 200 Hz and 100 Hz for the UAV and Backpack
systems, respectively). Corrections to the position and orientation parameters at the laser
beam firing timestamps were established using those associated with the three neigh-
boring reference points through a second-order polynomial function. The performance
of the proposed system calibration and trajectory enhancement approach was evaluated
as follows:

Estimated trajectory corrections: The evaluated corrections for the high-frequency trajec-
tory (i.e., following the interpolation process while using estimated corrections for the
reference points) were used to illustrate the required trajectory changes to ensure better
alignment for the point cloud. Statistical measures (mean and STD) and magnitude of the
corrections for individual poses were reported in a tabular form and visualized using a
color-coded trajectory with the colors representing the magnitude of applied corrections.
Relative accuracy of derived point clouds: The relative accuracy was qualitatively as-
sessed by checking the alignment of the point cloud in an individual dataset corresponding
to a profile and/or individual trees. For quantitative assessment, statistical measures of
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normal distances between the LiDAR points and their respective best-fitting plane/cylinder
before and after the LSA process were reported.
Absolute accuracy of derived point clouds: Since the two UAV datasets over the young
plantation were collected in different years using different systems, well-aligned point
clouds from such datasets indicate that the conducted system calibration and trajectory
enhancement framework achieved high absolute accuracy for all acquired UAV datasets.
Then, results from the UAV datasets were used as references to analyze the absolute
accuracy of the Backpack point clouds after trajectory enhancement for the young and
mature plantations. The above comparison was performed qualitatively and quantitatively.
The former was conducted by visually checking the alignment of point clouds from different
datasets for a profile and/or individual trees. The latter utilized the refined parametric
model of extracted/matched terrain and tree trunk features for numerical evaluation of the
quality in the Z and X/Y directions, respectively. More specifically, the X and Y coordinates
of established seed points for terrain patch extraction were used to derive the Z coordinates
from the respective refined plane parameters for each dataset. The differences between the
Z values for each terrain patch represented the alignment degree in the vertical direction.
For tree trunk features, a point on the refined cylinder axis was derived by setting a common
Z coordinate for each dataset (e.g., the Z coordinate of the seed point used for tree trunk
extraction from the reference dataset). The derived X and Y coordinates of that point were
regarded as the planimetric tree location. The absolute accuracy in the X and Y directions
was then estimated using the planimetric distances between respective tree locations from
different datasets.

The following discussion starts by presenting the sequential system calibration and
trajectory enhancement results for the UAV datasets in Section 4.1; trajectory enhancement
results for the Backpack datasets with/without UAV point cloud as a reference will be
introduced in Section 4.2.

4.1. System Calibration and Trajectory Enhancement for UAV Datasets

In this study, sequential system calibration and trajectory enhancement was conducted
on each UAV dataset separately. More specifically, using extracted features, corrections to
trajectory reference points were set to zero and fixed while estimating the system calibra-
tion parameters in the LSA (due to the acquisition under open sky conditions, observed
misalignments were initially attributed to erroneous system calibration parameters). Upon
convergence, the refined mounting parameters were fixed and then trajectory corrections
were estimated in a second LSA round. The resulting point clouds were finally checked for
any additional improvement.

In the first LSA process, LiDAR boresight angles (∆ω, ∆φ, ∆κ), as well as lever arm
components in the X and Y directions (∆X and ∆Y), were estimated. The Z lever arm
component was fixed due to the unavailability of vertical control for these datasets [48].
Table 1 presents the initial and refined system calibration parameters, along with their
corresponding STD values. The estimated parameters exhibit small STD values, and
it has been observed that they are not highly correlated. These findings indicate that
LiDAR mounting parameters were accurately estimated. Additionally, by comparing the
refined mounting parameters with the initial ones in Table 1, one can see that the lever-arm
components remain relatively stable for the three systems. The boresight pitch ( ∆φ) and
heading (∆κ) angles of the UAV-1 system exhibit a change of 0.10◦, whereas the boresight
heading (∆κ) angles of the UAV-2 and UAV-3 systems exhibit a change of around 0.25◦. For
the YP-UAV-2022 dataset with 40 m flying height, a change of 0.25◦ in the heading angle
would result in an up to 0.5 m variation in the along-flight direction (X direction) for a
LiDAR point at the edge of the swath (i.e., at ±70◦ off-nadir). Similarly, this change would
lead to a 0.6 m variation for the MP-UAV-2023 dataset at 50 m flying height in the Y (i.e.,
along-flight) direction.
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Table 1. Initial and refined mounting parameters using the proposed system calibration approach for
the UAV datasets.

Mounting
Parameters ∆ω(◦) ∆φ(◦) ∆κ(◦) ∆X(m) ∆Y(m) ∆Z(m)

YP-UAV-2021

Initial 0.499 −0.132 −0.092 −0.140 0.036 0.000

Refined 0.466
±0.001

−0.249
±0.002

−0.193
±0.003

−0.133
±0.001

0.042
±0.001 N/A

YP-UAV-2022

Initial 1.261 −0.276 0.129 −0.115 0.022 0.100

Refined 1.202
±0.001

−0.295
±0.002

−0.139
±0.003

−0.095
±0.001

0.010
±0.001 N/A

MP-UAV-2023

Initial 0.392 0.077 0.022 −0.042 −0.039 0.014

Refined 0.364
±0.001

0.096
±0.002

0.286
±0.002

−0.053
±0.001

−0.045
±0.001 N/A

To evaluate the improvement after system calibration, Figure 14 displays sample
trees from the three UAV datasets using the initial (in red) and refined (in blue) mounting
parameters. The figure shows that misalignment in the YP-UAV-2021 dataset decreased
slightly after the system calibration. However, the level of alignment in the X direction
was still worse than that in the Y direction. This observation suggests that trajectory
enhancement may still be required to achieve a better-quality point cloud. For the YP-UAV-
2022 dataset, the alignment improved more significantly in both the X and Y directions. In
terms of the MP-UAV-2023 dataset, initial point cloud alignment in the Y direction was
poorer. After system calibration, those few points with large X discrepancies were closer to
the tree trunk, and the alignment in the Y direction improved significantly.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 28 
 

 

Table 1. Initial and refined mounting parameters using the proposed system calibration approach 
for the UAV datasets. 

 Mounting 
Parameters 

𝚫𝝎 (°) 𝚫𝝓 (°) 𝚫𝜿 (°) 𝚫𝑿 (𝒎) 𝚫𝒀 (𝒎) 𝚫𝐙 (𝒎) 

YP-UAV-
2021 

Initial 0.499 −0.132 −0.092 −0.140 0.036 0.000 

Refined 0.466 
±0.001 

−0.249 
±0.002 

−0.193 
±0.003 

−0.133 
±0.001 

0.042 
±0.001 

N/A 

YP-UAV-
2022 

Initial 1.261 −0.276 0.129 −0.115 0.022 0.100 

Refined 
1.202 

±0.001 
−0.295 
±0.002 

−0.139 
±0.003 

−0.095 
±0.001 

0.010 
±0.001 

N/A 

MP-UAV-
2023 

Initial 0.392 0.077 0.022 −0.042 −0.039 0.014 

Refined 
0.364 

±0.001 
0.096 

±0.002 
0.286 

±0.002 
−0.053 
±0.001 

−0.045 
±0.001 

N/A 

To evaluate the improvement after system calibration, Figure 14 displays sample 
trees from the three UAV datasets using the initial (in red) and refined (in blue) mounting 
parameters. The figure shows that misalignment in the YP-UAV-2021 dataset decreased 
slightly after the system calibration. However, the level of alignment in the X direction 
was still worse than that in the Y direction. This observation suggests that trajectory en-
hancement may still be required to achieve a beĴer-quality point cloud. For the YP-UAV-
2022 dataset, the alignment improved more significantly in both the X and Y directions. 
In terms of the MP-UAV-2023 dataset, initial point cloud alignment in the Y direction was 
poorer. After system calibration, those few points with large X discrepancies were closer 
to the tree trunk, and the alignment in the Y direction improved significantly. 

    
(a) (b) (c) (d) 

  

 
(e) (f) 

Figure 14. A sample tree in the original point clouds (in red), point clouds after system calibration 
(in blue), as well as point clouds after conducting system calibration and trajectory enhancement (in 
green): YP-UAV-2021 dataset views along (a) X-Z and (b) Y-Z planes, YP-UAV-2022 dataset views 
along (c) X-Z and (d) Y-Z planes, as well as MP-UAV-2023 dataset views along (e) X-Z and (f) Y-Z 
planes. 

  

Figure 14. A sample tree in the original point clouds (in red), point clouds after system calibration
(in blue), as well as point clouds after conducting system calibration and trajectory enhancement
(in green): YP-UAV-2021 dataset views along (a) X-Z and (b) Y-Z planes, YP-UAV-2022 dataset
views along (c) X-Z and (d) Y-Z planes, as well as MP-UAV-2023 dataset views along (e) X-Z and
(f) Y-Z planes.
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Once the trajectory enhancement was conducted through a second LSA round while
fixing previously estimated mounting parameters, refined trajectory information at the
original data rate (200 Hz) was derived. Table 2 presents the mean and STD of the differ-
ences between initial and refined position/orientation parameters for the UAV datasets.
These statistics were derived while considering only trajectory epochs associated with
the used calibration/trajectory enhancement primitives (hereafter denoted as adjusted
trajectory epochs). The mean difference values for all parameters were close to zero for the
three datasets. The STD values for the position differences were within 4 cm, which was
at the same level as the nominal positional accuracy of the GNSS/INS unit. In terms of
the orientation parameters, the heading angle (κ) had the largest STD value (highlighted
in bold in Table 2), which can be explained by the relatively lower accuracy of trajectory
heading when compared with the roll/pitch angles provided by the GNSS/INS integration.
The impact of an inaccurate heading angle on LiDAR points was along the flying direc-
tion. This level of heading correction explains the origin of the previously observed worse
alignment in the X direction (along-flight direction) in Figure 14a,c for the two datasets
over the young plantation. This was confirmed through the improved quality along the
X direction for the sample tree in the same figure after conducting the sequential system
calibration and trajectory enhancement (in green). Improvements can also be observed
in the Y direction for the YP-UAV-2022 dataset. Regarding the MP-UAV-2023 dataset,
although the improvement was not as significant as the other two shown in Figure 14,
the definition of tree trunk/branches was cleaner after refining the trajectory information.
In general, after sequential system calibration and trajectory enhancement, the levels of
alignment in the X and Y directions for the sample trees of all datasets were quite similar.

Table 2. Mean and STD of differences between initial and refined trajectory information for the
UAV datasets.

Number of Adjusted
Trajectory Epochs

Statistics
Measures

Xdif
(m)

Ydif
(m)

Zdif
(m)

ωdif
(◦)

φdif
(◦)

κdif
(◦)

YP-UAV-2021
95,088

(200 Hz)
Mean −0.002 −0.001 0.013 0.001 0.001 0.015
STD 0.042 0.018 0.027 0.043 0.058 0.159

YP-UAV-2022
102,927
(200 Hz)

Mean −0.001 0.000 0.004 0.004 0.001 −0.046
STD 0.031 0.022 0.040 0.034 0.061 0.138

MP-UAV-2023
149,588
(200 Hz)

Mean 0.001 0.000 −0.003 0.007 −0.001 −0.067
STD 0.042 0.043 0.032 0.067 0.050 0.109

The performance of the proposed system calibration and trajectory enhancement is
evaluated quantitatively through Table 3, which reports the mean, STD, and RMS values of
normal distances between the LiDAR feature points and their corresponding best-fitting
plane/cylinder before and after the two-step LSA. The RMS of normal distances before
the LSA indicates that the initial alignment for the YP-UAV-2021 dataset was better than
that of the YP-UAV-2022 and MP-UAV-2023 datasets (this was mainly due to the inaccurate
boresight heading (∆κ) angles for the latter). After the LSA, significant improvements in
the alignment of tree trunks can be observed for all UAV datasets. The RMS value of the
normal distances associated with cylindrical features for the YP-UAV-2021 dataset was
2 cm smaller than that for the YP-UAV-2022 dataset. This difference can be attributed to the
higher height range (i.e., 1.5 m to 3.5 m) used for extracting tree trunk features in the latter
dataset to avoid the inclusion of existing debris within the tree trunk features. As a result,
more LiDAR points along tree branches were mistakenly extracted as tree trunks, resulting
in a larger point to cylindrical feature normal distance. The mature plantation dataset had
the smallest residuals for the cylindrical features. This could be explained by the clearer
definition of trunks in mature trees compared with young ones, which allows for a more
reliable estimation of cylindrical models and leads to smaller fitting errors.
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Table 3. Quantitative evaluation of point cloud alignment before and after sequential system calibra-
tion and trajectory enhancement for the UAV datasets.

Dataset Point-to-Feature
Normal Distance

# Points
(Thousands)

Before LSA After LSA

Mean
(m)

STD
(m)

RMS
(m)

Mean
(m)

STD
(m)

RMS
(m)

YP-UAV-2021
Planar Features 10,313 0.036 0.037 0.052 0.032 0.033 0.046

Cylindrical Features 412 0.107 0.106 0.151 0.048 0.053 0.072

YP-UAV-2022
Planar Features 10,698 0.056 0.054 0.078 0.038 0.041 0.056

Cylindrical Features 310 0.181 0.147 0.233 0.061 0.076 0.097

MP-UAV-2023
Planar Features 6341 0.034 0.032 0.047 0.026 0.026 0.036

Cylindrical Features 681 0.211 0.122 0.244 0.041 0.050 0.064

The above evaluation focuses on the relative accuracy of each UAV dataset. The
absolute accuracy of the point clouds after the proposed system calibration and trajectory
enhancement was validated by analyzing the agreement of point clouds from the two
datasets over the young plantation. Figure 15 shows the sample tree after sequential
system calibration and trajectory enhancement for the YP-UAV-2021 and YP-UAV-2022
datasets. It is clear in this figure that the tree trunk and branches aligned well in both
the X and Y directions. The alignment in the Z direction was slightly worse than that in
the X and Y directions (around an 8 cm Z-shift between the two datasets). This is mainly
because the lever arm Z components of the two UAV systems were derived through manual
measurements and fixed in the LSA. Moreover, lower alignment quality in the Z direction
could be attributed to falling leaves and debris on the plantation floor. Table 4 presents
the quantitative evaluation of the point cloud alignment using the extracted features. In
the vertical direction, there was a shift of 10 cm between the two point clouds, which is in
agreement with the observed discrepancies in Figure 15. For the derived tree trunks, the
mean, STD, and RMS values of the X and Y coordinate differences as well as the planimetric
distances between tree locations suggest that the tree locations are in agreement with an
accuracy of 0.1 m. This planimetric alignment is slightly worse than what has been observed
through visual check. Through closer inspection of the point clouds, the large planimetric
distances between conjugate tree trunks were mainly caused by the mistakenly extracted
branches in the YP-UAV-2022 dataset. Overall, it can be concluded that after conducting
the LSA using the proposed framework, the point clouds from the UAV systems achieved
high relative and absolute accuracy. Hereafter, refined point clouds from the YP-UAV-2021
and MP-UAV-2023 datasets are used as references to evaluate the performance of trajectory
enhancement for the Backpack datasets, which will be presented in the next subsection.
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Table 4. Quantitative evaluation of point cloud alignment before and after sequential system calibra-
tion and trajectory enhancement for the UAV datasets.

Comparison Statistics
Measures

Terrain Patches
(3248 Features)

Tree Trunks
(494 Features)

dZ
(m)

dX
(m)

dY
(m)

Planimetric
Distance (m)

YP-UAV-2021 vs.
YP-UAV-2022

Mean −0.099 0.019 −0.059 0.097
STD 0.037 0.055 0.089 0.073
RMS 0.106 0.058 0.107 0.121

4.2. Trajectory Enhancement Results for the Backpack Datasets

To evaluate the performance of the proposed approach in handling trajectories with
different qualities, the two Backpack datasets collected under different conditions were
used for the assessment. In this study, the conducted experiments are as follows:

• YP-BP-2021: Given that trajectory with frequent access to open sky areas was of
reasonable quality, trajectory enhancement was conducted on the YP-BP-2021 dataset
without including the UAV data.

• MP-BP-2023: Due to the extended periods of GNSS signal outages, the GNSS/INS-
derived trajectory was of lower quality. For this dataset, trajectory enhancement was
first conducted using solely Backpack LiDAR (Test 1). Then, the MP-UAV-2023 data
were included as a reference for trajectory enhancement of the Backpack dataset (Test 2).
In this test, LiDAR features from the Backpack and UAV datasets were simultaneously
included in the LSA, while refined mounting parameters and trajectories for the UAV
dataset were treated as errorless.

The relative accuracy of the Backpack point clouds after trajectory enhancement was
evaluated first. Figure 16 shows the same profiles (as presented in Section 2.3) from the
YP-BP-2021 and MP-BP-2023 datasets after trajectory enhancement for the conducted exper-
iments. Compared with the generated point clouds using the GNSS/INS-derived trajectory
(as shown in Figures 6 and 8b), drastic improvements can be observed in the Backpack
point clouds after trajectory enhancement for all experiments. The initial misalignment of
1–2 m and 10 m for the young/mature plantation point clouds was significantly reduced,
where the definition of tree trunks and branches is quite clear. Additionally, the inclusion
of the reference UAV dataset did not considerably impact the relative accuracy of the point
cloud of the MP-BP-2023 dataset after trajectory enhancement.

The above findings were further verified through a quantitative evaluation, which is
presented in Table 5. This table reports the mean, STD, and RMS values of normal distances
of the LiDAR points to their corresponding best-fitting plane/cylinder before and after the
LSA process for the three experiments. Before trajectory enhancement, the RMS values
indicate that the initial Backpack point cloud alignment for the YP-BP-2021 dataset was
much better than that for the MP-BP-2023 dataset. After trajectory enhancement, the RMS
values for the YP-BP-2021 dataset show an overall accuracy of 3.4 cm and 2.4 cm for planar
and cylindrical features, respectively. The RMS values for the two tests of the MP-BP-2023
dataset were in the range of 4–5 cm, which were larger due to the presence of low branches
and understory vegetation in the mature plantation site. Overall, it can be concluded that
all tests achieved high relative accuracy for both datasets. Furthermore, regardless of the
trajectory quality, the proposed trajectory enhancement approach allows for deriving point
clouds with good intra-dataset alignment using solely Backpack LiDAR data without the
need for a reference point cloud.
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Figure 16. Side view of sample profiles (colored by time) after trajectory enhancement depicting the
alignment quality for: (a) the YP-BP-2021 dataset, as well as the MP-BP-2023 dataset from (b) Test 1
and (c) Test 2.

Table 5. Quantitative evaluation of point cloud alignment before and after trajectory enhancement
for the Backpack datasets.

Conducted Test Point-to-Feature Normal
Distance

# Points
(Thousands)

Before LSA After LSA

Mean
(m)

STD
(m)

RMS
(m)

Mean
(m)

STD
(m)

RMS
(m)

YP-BP-2021
Planar Features 16,789 0.224 0.171 0.282 0.026 0.021 0.034

Cylindrical Features 10,805 0.190 0.181 0.262 0.016 0.017 0.024

MP-BP-2023, Test 1 Planar Features 15,002 0.530 0.804 0.963 0.026 0.032 0.041
Cylindrical Features 10,329 0.472 0.388 0.611 0.029 0.041 0.050

MP-BP-2023, Test 2 Planar Features 15,002 0.530 0.804 0.963 0.034 0.044 0.055
Cylindrical Features 10,329 0.472 0.388 0.611 0.034 0.043 0.055

Figure 17 portrays the enhanced trajectory colored by the magnitude of estimated
corrections to the position parameters for the Backpack tests, where unadjusted trajectory
points (i.e., trajectory epochs that do not correspond to any LiDAR features in the LSA)
are colored in grey. Since the entire mission of the MP-BP-2023 dataset was within the
mature plantation, all trajectory points were adjusted. For the YP-BP-2021 dataset, the
figure clearly indicates higher correction magnitudes at the middle portion of the canopy
compared with the north and south edges where the GNSS signal reception is better. The
largest magnitude of positional corrections is around 1.3 m. In terms of the tests for the
MP-BP-2023 dataset, the corrections were much larger. While no obvious pattern can be
observed for Test 1 (Figure 17b), the largest corrections (around 8.6 m) took place at the
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middle tracks for Test 2, where drift errors caused by GNSS signal outages accumulated
the most (Figure 17c).
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Figure 17. Enhanced trajectory for the Backpack datasets colored by the magnitude of interpolated
corrections for the position parameters (unadjusted trajectory points are colored in grey) overlaid on
the study site’s point cloud (colored by height): (a) the YP-BP-2021 dataset, as well as the MP-BP-2023
dataset from (b) Test 1 and (c) Test 2.

Statistics of trajectory corrections are presented in Table 6, where the mean and STD
values for the adjusted trajectory epochs are reported. The STD values for the position
differences of the YP-BP-2021 dataset were in the range of 20 cm to 30 cm, which were
much higher than the values for the UAV datasets (shown in Table 2). For the MP-BP-2023
dataset, the STD values for the two tests were compatible—within 1 m for the X and Y
coordinates and around 2.6 m for the Z direction. However, we can observe a constant
correction to the positional components for Test 2 when incorporating reference UAV data
in the LSA, while the mean values for Test 1 are close to zero. This indicates a discrepancy
between the derived point clouds from Tests 1 and 2 for the MP-BP-2023 dataset. For the
orientation parameters, like the UAV datasets, the heading angle (κ) shows the largest
corrections for all experiments. The differences between orientation corrections for these
three experiments were not as significant as the ones for the positional components. This
signifies that for these datasets, GNSS signal outages affected the positional component of
the trajectory more than the orientation one.

Table 6. Mean and STD of differences between initial and refined trajectory information for the
Backpack datasets.

Number of Adjusted
Trajectory Epochs

Statistics
Measures

Xdif
(m)

Ydif
(m)

Zdif
(m)

ωdif
(◦)

φdif
(◦)

κdif
(◦)

YP-BP-2021
226,500
(100 Hz)

Mean 0.021 0.026 0.003 0.000 0.000 0.060
STD 0.186 0.279 0.261 0.005 0.026 0.115

MP-BP-2023, Test 1 148,500
(100 Hz)

Mean −0.017 0.003 0.123 0.009 0.069 0.139
STD 0.976 0.554 2.567 0.060 0.059 0.191

MP-BP-2023, Test 2 148,500
(100 Hz)

Mean −0.185 0.239 −3.275 0.000 0.002 0.087
STD 0.985 0.578 2.603 0.033 0.034 0.191

Lastly, the absolute accuracy of the Backpack point clouds after trajectory enhancement
was evaluated through a comparison with the refined point cloud from the UAV datasets.
Figure 18 shows the sample trees after trajectory enhancement of the Backpack point clouds
overlaid with the respective refined UAV point clouds. It can be seen in the figure that the
tree trunk from the Backpack point cloud was in good agreement with the UAV data in
both X and Y directions for the young plantation datasets, whereas small misalignment can
be observed in the Z direction. For the MP-BP-2023 dataset with poor-quality trajectory,
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there was a large shift (around 3.5 m) in the Z direction between the UAV point cloud and
refined Backpack point cloud from Test 1. When the reference UAV point cloud was used
in the trajectory enhancement process, the derived Backpack point cloud was well-aligned
with the UAV data in all directions, as presented in Figure 18c.
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Quantitative comparison between the Backpack and UAV point clouds was carried
out using the terrain patches and tree trunks. Table 7 reports the Z differences between the
terrain patches as well as X/Y differences and planimetric distances between estimated tree
locations from the Backpack and respective UAV datasets. In this table, the alignment in
the Z direction suggests that conducted trajectory enhancement of the YP-BP-2021 dataset
achieved a vertical accuracy of 3.4 cm, while the comparison of tree trunks reveals that
the tree locations are in agreement with an accuracy of 0.1 m. As for the MP-BP-2023
dataset with lower-quality trajectories, the misalignment in the horizontal and vertical
directions is around 0.2 m and 3.4 m, respectively, for Test 1 using solely Backpack LiDAR
data. This misalignment is consistent with the mean corrections to the trajectory positional
components for Test 2 (as presented in Table 6). As a result, when incorporating reference
UAV point cloud, Test 2 provided results with high absolute accuracy—the alignment in
all directions was within 6 cm. In summary, for the Backpack dataset with poor-quality
trajectory, a reference point cloud is needed to achieve high absolute accuracy through the
proposed trajectory enhancement strategy.

Table 7. Quantitative evaluation of the absolute accuracy of the point cloud from the Backpack
datasets after trajectory enhancement through a comparison with the reference UAV datasets using
extracted terrain patches (for vertical direction) and tree trunks (for planimetric direction).

Comparison Statistics Measures
Terrain Patches Tree Trunks

dZ
(m)

dX
(m)

dY
(m)

Planimetric
Distance (m)

YP-BP-2021 vs.
YP-UAV-2021

Mean 0.004 −0.005 −0.028 0.078
STD 0.033 0.061 0.070 0.059
RMS 0.034 0.062 0.075 0.097

MP-BP-2023 Test 1 vs.
MP-UAV-2023

Mean 3.414 0.190 −0.210 0.392
STD 0.138 0.224 0.245 0.192
RMS 3.417 0.294 0.323 0.437

MP-BP-2023 Test 2 vs.
MP-UAV-2023

Mean −0.003 −0.003 0.002 0.076
STD 0.035 0.048 0.066 0.030
RMS 0.035 0.048 0.066 0.082
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5. Conclusions

In this paper, a system-driven framework for system calibration and trajectory enhance-
ment for LiDAR units mounted on UAV and Backpack MMS is proposed to generate accu-
rate point clouds for fine-resolution forest inventory. The strategy starts by reconstructing
point clouds using initial system calibration parameters and GNSS/INS trajectory. Terrain
patches and tree trunks are then extracted and matched from the LiDAR point clouds. By
minimizing the discrepancies among features from different tracks/datasets/systems while
considering the absolute and relative positional/rotational information from the initial
trajectory, system calibration parameters and trajectory information are refined through a
non-linear LSA. This strategy can be conducted on multi-temporal, multi-platform datasets
to ensure the best point cloud alignment. Meanwhile, as part of the process, important
forest inventory metrics such as tree trunk radius and orientation are derived.

To evaluate the performance of the proposed strategy, three UAV and two Backpack
datasets over young and mature plantations were used in this study. For the UAV datasets,
sequential system calibration and trajectory enhancement were conducted to improve
the accuracy of the point clouds while avoiding any potential correlation among system
calibration and trajectory parameters. The results after the system calibration and trajectory
enhancement show a reduction in the fitting error for the used terrain patches and tree
trunks from 20 cm to 5 cm. The agreement of point clouds from the two UAV datasets over
the young plantation reveals that an absolute accuracy in the range of 10 cm was achieved.
Overall, it can be concluded that after conducting the LSA using the proposed framework,
the point clouds from the UAV systems achieved high levels of relative and absolute
accuracy. As for the Backpack datasets, the trajectory of the one collected at the young
plantation is of reasonable quality due to its frequent access to open sky. On the other hand,
the trajectory related to the dataset at the mature plantation has poor quality. The trajectory
enhancement using solely Backpack LiDAR data significantly improved the fitting error
of terrain patches and tree trunks in the point cloud from 30 cm to 3 cm and 1 m to 6 cm
for the two Backpack datasets. The absolute accuracy of the Backpack point clouds was
evaluated through a comparison with the refined UAV point clouds. While using trajectory
with reasonable accuracy, the proposed trajectory enhancement approach improved the
absolute accuracy of the Backpack point cloud to the 10 cm level. However, when using the
lower-quality trajectory, the absolute accuracy of the derived point clouds was poor. After
adopting the refined UAV point cloud as a reference, a similar level of absolute accuracy
was achieved compared with the dataset with trajectory of reasonable quality.

In summary, the findings of this study for accurate forest stem-level mapping using
UAV and Backpack MMS are as follows:

• For applications requiring point clouds within a 20 cm level of accuracy, UAV LiDAR
systems with reasonable system calibration parameters and trajectory information
can directly provide point clouds that meet such requirements. For applications
requiring a 5 cm or better level of accuracy, sequential system calibration and trajectory
enhancement is recommended.

• For Backpack systems, the quality of trajectory is affected by GNSS signal outages.
Therefore, trajectory enhancement is necessary to improve the quality of point clouds.
Frequent access to open sky areas can ensure a reasonable-quality trajectory without
a dramatic increase in drifting errors over time. In this case, trajectory enhancement
can be conducted without any reference dataset. However, for situations with more
severe GNSS signal outages, a reference point cloud (e.g., UAV point cloud) is needed
to improve the quality of Backpack point clouds in terms of the absolute accuracy.

The proposed and validated system calibration and trajectory enhancement framework
for forest plantations will be used as the foundation for future research targeting accurate
under-canopy mapping in rapidly changing natural forest environments. Hence, for
future work, the performance of the proposed strategy will be evaluated on natural forests
including those with dense canopies, such as tropical areas. In such cases, more severe
GNSS signal outages will pose additional challenges for reliable feature extraction and
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matching. Modifications to the proposed algorithm will be investigated to increase its
robustness to false tree trunk matching in cases where high misalignment within the point
cloud might lead to a version of any tree trunk being matched with one of its neighboring
trees. Integrating raw IMU measurements, GNSS observations, and RGB imagery with
LiDAR will be also explored to provide additional constraints to achieve trajectories with
higher accuracy.
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