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Abstract: This paper utilizes high-resolution ERA5 hourly data from 1980 to 2020 and long-term
normalized difference vegetation index (NDVI) time series obtained from remote sensing and applies
trend analysis, correlation analysis, lag analysis, and other methods to study the spatiotemporal
characteristics of extreme rainfall at daily and hourly scales in the Huang-Huai-Hai Plain. The paper
explores the NDVI’s variability and its relationship with extreme hourly precipitation and analyzes
the main factors affecting it. The study made the following observations: (1) The extreme daily
precipitation in the Huang-Huai-Hai Plain shows a decreasing trend, with a 13.6 mm/yr reduction
rate. In contrast, the proportion of extreme rainfall to total precipitation generally exceeds 20%, and
the intensity of extreme rain has gradually increased. The spatial distribution pattern of extreme
rainfall follows the distribution pattern of China’s rain belts, with the terrain being an important
influencing factor. The high-incidence areas for extreme rainfall are the Huaihe River region and the
Shandong Peninsula. (2) The observed significant increase in hourly extreme precipitation events
in the Shandong and Henan provinces of the Huang-Huai-Hai Plain has led to an increased risk
of flooding, while the corresponding events in the northwest region of the Plain have exhibited
a gradual weakening trend over time. (3) The extreme hourly precipitation in the Huang-Huai-
Hai plain shows a frequent and scattered pattern, with decreasing intensity over time. Extreme
precipitation mainly occurs in the first half of the night, especially between 19:00 and 21:00, with
extreme hourly rainfall intensity fluctuating between 0.2 and 0.25 and the proportion of rainfall to
total precipitation reaching as high as 10%. The spatial distribution of extreme hourly rainstorms
during the peak period (19:00–21:00) exhibits a high rainfall volume, intensity, and frequency pattern
in the eastern region, while the western part exhibits low rainfall volume, intensity, and frequency.
(4) The incidence of extremely heavy rainfall in an hour has exhibited a more significant increase
compared to extreme daily events in the Huang-Huai-Hai Plain, primarily in the form of backward-
type precipitation. Hourly extreme precipitation events in the Huang-Huai-Hai Plain are affected
by terrain and land use/cover change (LUCC), with the micro-topography of hilly areas leading
to a concentrated distribution of precipitation and LUCC suppressing extreme precipitation events
in arid climates. (5) At the ten-day scale, the spatial distribution of the NDVI shows a gradually
increasing trend from northwest to southeast, with the highest NDVI value reaching up to 0.6 in
the southern part of the study area. For extreme hourly precipitation, there is no significant change
observed at the multi-year ten-day scale; while the NDVI in the northern and central parts of the
Huang-Huai-Hai Plain shows a significant decreasing trend, in contrast, it presents a significant
increasing trend in the southern region. (6) Finally, the correlation between NDVI at the ten-day scale
and extreme hourly precipitation exhibits a decreasing pattern from north to south, with a correlation
coefficient decreasing from 0.48 to 0.08. The lagged correlation analysis of extreme hourly rainfall
and NDVI for one, two, and three ten-day periods shows that the lagged effect of extreme hourly
precipitation on NDVI is negligible. Analyzing the correlation between extreme hourly rainfall and
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NDVI for different months, the impact of extreme hourly precipitation on NDVI is predominantly
negative, except for June, which shows a positive correlation (0.35), passing the significance test.
This study offers a scientific foundation for enhancing disaster warning accuracy and timeliness and
strengthening the research on disaster reduction techniques.

Keywords: NDVI; extreme hourly precipitation; extreme daily precipitation; rainfall type; topography;
land use and land cover change

1. Introduction

The intensification of global warming has been progressively leading to more severe
and recurrent extreme weather events [1]. Extreme weather events are strongly inclined
towards amplification in magnitude, frequency, and probability [2–6]. As a consequence
of climate change, there is a rise in the number of extreme weather incidents involving
heavy rain and precipitation. The destructive effects of these events encompass floods,
landslides, and endangerment to human lives, infrastructure, farms, and ecological sys-
tems [7]. Moreover, climate change is responsible for the modification of rain patterns,
which in turn results in fluctuations in both the frequency and intensity of rain occurrences;
however, increased precipitation does not always increase total annual or seasonal rain—it
just occurs during more intense events [8]. Significant regional disparities in precipitation
and economic development make China highly vulnerable to extreme rainfall [9,10]. For
instance, based on data from the International Disaster Database, in 2010 alone, the losses
caused by hydrological disasters in China reached as high as USD 18.9 billion, representing
40% of the global total [11]. On 21 July 2012, a severe rainstorm struck Beijing, causing
79 fatalities and economic damages amounting to CNY 11.64 billion [12]. On 20 July 2021,
a devastating rainstorm hit Zhengzhou, resulting in 398 deaths and numerous people
reported missing, while causing direct economic damages totaling CNY 120.6 billion [10].
Therefore, a reasonable assessment of extreme precipitation’s spatial and temporal char-
acteristics, such as frequency, intensity, and variability, is essential for predicting future
rainstorms and upgrading disaster emergency response measures.

The study revealed an escalating tendency in the overall pattern of extreme daily
precipitation in China [13–18]. Observations from most meteorological stations indicate
an increase in the length of excessive precipitation periods, with earlier start dates and
later end dates [19]. The IPCC report demonstrates that precipitation’s temporal and
spatial distribution also changes due to global warming. The topography and wetness vary
significantly in different regions, with extreme rainfall exhibiting high regional complexity
and spatiotemporal variability [20–23]. The research uncovered a fascinating trend: a
noticeable decline in extreme precipitation events in the northern, central, and northeastern
areas of China over time. Simultaneously, there has been a rise in these occurrences
within the northwestern, southwestern, and Yangtze River regions. This shift in extreme
precipitation events highlights the complex interplay of various factors and underscores
the need for further investigation and adaptation strategies in response to these changing
patterns [24–27]. These regional differences are caused by insufficient moisture availability
on land, natural climate variability, and dynamic changes.

In addition, studies have found that the most significant increases were for extreme
precipitation events, which could reach 99.8% or 99.9% on the sub-daily scale [28–31],
emphasizing the importance of using sub-daily scale observations. The intensification rate
of short-term extreme precipitation (sub-daily extreme precipitation) has exceeded that
of extreme daily precipitation [32–35], mainly due to the release of latent heat, triggering
short-term convective rainfall [36]. The characteristics of sub-daily extreme precipitation
are significantly different from those of daily-scale rainfall, and the degree of disaster it
causes far exceeds that of daily-scale rain [37]. The magnitude of the tragedies is much
higher than that of daily-scale events [38].
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The Huang-Huai-Hai Plain falls under the influence of the East Asian monsoon system
and varies across different climatic regions. Due to significant changes in monsoon climate,
unique terrain distribution, the wide span of land, and complex terrain, floods caused by
extreme precipitation in summer have brought considerable losses to the economy and
human life [39–41]. Most of the past studies conducted on the Huang-Huai-Hai Plain
were based primarily on data related to daily precipitation, focusing on inter-decadal,
long-term trends or primarily on extreme precipitation with a duration of 1 day or more.
The hydrological consequences of excessive rainfall are influenced by various factors,
among which the time of the precipitation event plays a crucial role. For example, short-
term rain (on an hourly scale) is often caused by convective storms, which can lead to
flash floods. Multi-day extreme rainfall is usually considered to be the leading cause of
large-scale floods [42,43].

The study suggests that the most pronounced increases in extreme precipitation
events may happen at sub-daily scales, potentially resulting in more frequent and intense
flash floods [44]. Compared to extreme precipitation events lasting several hours, daily-
scale and multi-day-scale extreme precipitation cannot accurately reflect the frequency
and intensity of excessive rainfall, nor can they capture many details of the precipitation
process [45,46]. Additionally, extreme precipitation at sub-daily time scales can exacerbate
flood events [47,48]. Therefore, studying the robust precipitation characteristics of sub-
daily time scales in the H-Plain region is necessary. The spatial heterogeneity of the
H-Plain’s surface morphology may result in complex regional-scale features of extreme
hourly precipitation. Areas with complex geography usually experience rapid changes in
extreme hourly precipitation from occurrence to peak [49].

During the examination of data related to extreme precipitation events, a multitude
of research has employed various data sources. These consist of satellite remote sensing
data (for example, TRMM, GPM, and IMERG), meteorological station observational data
(including surface precipitation, temperature, and humidity), and climate reanalysis data
(such as ERA-Interim, NCEP/NCAR, and ERA5 reanalysis data). By utilizing these diverse
data sources, researchers can gain a more in-depth understanding of extreme precipitation
events and develop more accurate predictive models [50–52]. These data sources feature
different temporal and spatial resolutions, enabling researchers to analyze extreme precipi-
tation events from multiple perspectives [53]. For instance, satellite remote sensing data
provide continuous precipitation monitoring on a global scale, suitable for long-time series
and large-area research. In contrast, meteorological station observation data offer high-
temporal-resolution precipitation information, facilitating the hourly capture of extreme
precipitation events [54]. Simultaneously, climate reanalysis data provide more complete
and consistent climate background information for research, contributing to the analysis
of the association between extreme precipitation events and atmospheric circulation [55].
Regarding the methods for processing and analyzing extreme precipitation events, stan-
dard methods include the sliding window method, the climate index method, empirical
orthogonal function analysis (EOF), fluctuation analysis (such as wavelet analysis), and
machine learning [56–58]. Utilizing these approaches, scientists are able to explore the
spatiotemporal distribution features of extreme precipitation events and their connections
to extensive climate factors (such as ENSO, AMO, and PDO) [59]. By applying the sliding
window technique and EOF analysis, the spatiotemporal fluctuation traits of extreme pre-
cipitation occurrences in Northeast China and their association with climate oscillations
have been uncovered. In recent years, machine learning methods in extreme precipitation
event research have become increasingly widespread, such as predicting the occurrence
probability of extreme precipitation events using random forest models [47].

Researchers employ multi-source data with different spatiotemporal resolutions when
analyzing extreme precipitation events, providing abundant information for their study.
In terms of processing and analysis methods, the sliding window method, climate in-
dex method, empirical orthogonal function analysis, fluctuation analysis, and machine
learning methods are widely applied, helping to reveal the spatiotemporal features of
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extreme precipitation events and their associations with large-scale climate factors. These
comprehensive methods strongly support the study of extreme precipitation events and
their impacts.

Due to economic growth and population concentration, the Huang-Huai-Hai Plain, a
vital agricultural region in China, has experienced significant changes in its ecological envi-
ronment. Extreme rainstorms affect agricultural production and threaten the region’s social
stability and ecological security. Severe rainstorms are closely related to local flooding and
the environmental climate, and the mechanism behind extreme rainstorms is not precise.
Extreme precipitation events can cause significant disasters once they occur. Consequently,
investigating extreme precipitation in the H-Plain holds tremendous significance for facili-
tating the region’s high-quality development. It can help reveal the causes and evolution of
heavy rain and improve the accuracy and timeliness of disaster warnings. Investigating
the interplay between intense precipitation at sub-daily timescales and climate change and
anthropogenic activities in the H-Plain would offer a scientific foundation for both climate
adaptation measures and sustainable development strategies. This paper employs ERA5
data with an hourly resolution to examine alterations in patterns of extreme precipitation
at the sub-daily scale and identify the key factors that contribute to extreme precipitation’s
occurrence. Additionally, it examines the factors behind the spatiotemporal variations in
severe rainstorms at the sub-daily time scale. The specific issues addressed are as follows:

(1) The spatiotemporal features of excessive rainfall at hourly intervals are analyzed in
the H-Plain.

(2) The spatiotemporal differences between extreme hourly and daily precipitation in
this study area are analyzed.

(3) The main influencing factors of excessive hourly heavy rain in the H-Plain are identified.

2. Materials and Methods
2.1. Overview of the Study Area

Situated in east-central China, the H-Plain is encircled by the northern Yanshan Moun-
tains, the western Taihang Mountains, the eastern Bohai Sea and Yellow Sea, and the
southern Huai River. It includes parts or all of Beijing, Tianjin, Hebei, Shandong, and
Henan provinces and is a floodplain formed by intermittent floods of the Yellow, Huai,
and Hai Rivers (see Figure 1). The H-Plain plays a crucial role as a grain cultivation region
in China, producing summer corn and winter wheat. The region features a moderate
monsoon climate, with an annual average temperature that varies between 8 and 15 ◦C;
the mean annual precipitation is 734.9 mm [60]. The rain is primarily concentrated from
July to September. The precipitation levels per year fall within the range of 500 to 1000 mm.
Under the influence of the southeast monsoon, the area experiences a decline in available
resources from southeast to northwest. Approximately 20–30% of these resources can be
utilized for agricultural production, which falls short of fulfilling the demand for grain
production. Therefore, a large amount of supplementary irrigation is still needed every
year to ensure grain production [61].

2.2. Data Introduction
2.2.1. NDVI Data and Preprocessing

In this study, we aimed to process and combine NDVI data derived from two different
remote sensing sources, namely, the AVHRR (Advanced Very High Resolution Radiometer)
and the MODIS (Moderate Resolution Imaging Spectroradiometer). By merging the data
from both sources, we successfully extended the time span of the dataset from 1982 to 2016,
providing a comprehensive and consistent record of NDVI measurements for ecological
and environmental research applications.

Data from AVHRR were procured from NASA’s Goddard Space Center, extending
from 1982 through 2010. Alternatively, MODIS surface reflectance information was collected
from the Terra satellite’s daily surface reflectance product, MOD09GA, formulated by
NASA’s MODIS terrestrial product division and spanning the years from 2010 to 2016.
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Figure 1. Overview of the natural features of study area. Note: Figure (A) shows the geographical
overview of the H-Plain; Figure (B) shows the LUCC of the H-Plain.

To maintain the integrity and uniformity of the data, various processing methods were
applied. For the AVHRR data, steps such as radiometric calibration, cloud identification and
removal, atmospheric adjustment, satellite drift rectification, and bidirectional reflectance
distribution function (BRDF) processing were executed. With regard to the MOD09GA
data, quality assessment, image mosaic, subsetting, format and projection alteration, and
other preprocessing tasks were carried out. These procedures were essential in acquiring a
dependable and coherent NDVI dataset for subsequent examination.

In order to synthesize the daily data into monthly data, the Maximum Value Compos-
ites (MVC) technique was employed. This strategy allowed for the minimization of cloud
or noise impacts present in the daily imagery, resulting in a more accurate representation
of the vegetation dynamics over the entire study period.

2.2.2. Meteorological Data and Preprocessing

This article uses ERA5 hourly precipitation data to study extreme rainfall events at the
hourly scale. The first step is to perform data quality control, including threshold value
checking, outlier handling, and time consistency verification. Since ERA5 data may have
trend bias in the frequency of heavy rainfall, data with strict quality control were used
to quantify the possible trend bias [62,63]. In this study, the precipitation characteristics
of ERA5 and ground meteorological station observation data from 1980 to 2018 were
calculated and compared, with specific results shown in Figure 2. Due to the availability of
hourly precipitation data, only a limited number of stations were selected to validate the
ERA5 hourly data. A total of 16 observation stations (station numbers: 54038, 53399, 53599,
53697, 54618, 54499, 54416, 54525, 54526, 54627, 54846, 54929, 54812, 54997, 57075, 57188)
were chosen, which uniformly cover the H-Plain region, verifying the scientific validity
and feasibility of the ERA5 data. Although slight differences exist in the precipitation
amounts described by the ERA5 data and ground observation data, the overall trend of
precipitation change is consistent, indicating that the quality-controlled ERA5 hourly data
exhibit good temporal consistency and coherence. Based on the above research, this paper
uses ERA5 hourly data to study the extreme precipitation events at an hourly scale in the
H-Plain region.
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2.3. Methods
2.3.1. Extreme Precipitation Indices

This paper uses the percentile method [64] to establish the extreme precipitation thresh-
olds for various time scales. All daily precipitation samples (daily precipitation ≥ 0.1 mm)
were sorted in ascending order, and the threshold for daily extreme precipitation was
determined by taking the value at the 95th percentile (R95daily). Similarly, all hourly
precipitation samples (daily precipitation ≥ 0.1 mm) were sorted in ascending order, and
the threshold for hourly extreme precipitation was established by using the value at the
95th percentile (R95hourly). These thresholds are used to determine eight precipitation
indices that describe extreme precipitation patterns at various time scales. Please refer to
Table 1 for the definitions and detailed descriptions of the eight indices.

Table 1. Delineation of extreme precipitation indices.

Precipitation Index Definition Unit

Precipitation (tp) The cumulative precipitation exceeding 0.1 mm mm
Daily rainstorm amount (tp_daily) Daily precipitation ≥ R95daily mm
Hourly rainstorm amount (tp_hourly) Hourly precipitation ≥ R95hourly mm

Contribution of rainstorm The ratio of the sum of precipitation above the rainstorm threshold
to the total amount of precipitation during the same period dimensionless

Contribution rate of heavy rainfall
area (contribution of area)

The ratio of the area where precipitation above the rainstorm
threshold occurs to the total area where precipitation occurs within
the same period

dimensionless

Frequency of rainstorm (frequency) Frequency of rainstorms dimensionless

Rainstorm intensity (intensity)
The ratio of cumulative precipitation surpassing a particular
threshold to the duration of precipitation meeting or exceeding that
threshold during the same period

mm/day or
mm/hour

Rainstorm dispersion (cv) The ratio of the standard deviation of intense rainfall to its
corresponding average during the same period dimensionless
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2.3.2. Sen’s Slope Estimation

Sen’s slope technique offers substantial benefits over basic linear regression when ana-
lyzing trends in time series data. This method effectively mitigates the effects of outliers on
the slope, does not necessitate a normal distribution for the time series, and accommodates
outliers and missing values. Sen’s slope is frequently employed in meteorological, remote
sensing, and ecological/environmental studies to examine time series data trends. Formula:
Sen’s slope calculation can be expressed as follows:

β = Median
(

xi − xj

i − j

)
(1)

Within the formula, “Median” represents the median function, and β illustrates the
time series’ evolving direction. When β > 0, it indicates an ascending trend, and a higher
value denotes a more noticeable upward trajectory. Conversely, when β < 0, it indicates a
descending trend, with a lower value signifying a more apparent decline.

2.3.3. Mann–Kendall (M-K) Test Method

The M-K test is an effective method for examining trends and abrupt changes in
time series data. It does not necessitate particular sample distributions, is less affected by
outliers, and offers a simple computation process. The steps for performing the M-K test
are as follows:

Sk = ∑k
i=1 ri (k = 2, 3, . . . , n) (2)

Assuming random independence in time series, the statistical parameter is defined
as follows:

UFk =
[sk − E(sk)]√

Var(sk)
(k = 1, 2, . . . , n) (3)

where UF1 = 0, E(sk) and Var(sk) are the mean and variance of the cumulative sum of
Sk and can be calculated from the following equation when x1, x2, . . . , xn are mutually
independent and have the same continuous distribution:

E(sk) =
n(n + 1)

4
(4)

Var(sk) =
n(n + 1)(2n + 5)

72
(5)

2.3.4. Maximum Value Composites

The Maximum Value Composite (MVC) concept was introduced by Holben [65]. The
particular equation for MVC [54] can be expressed as:

NDVIi = Max
(

NDVIij
)

(6)

where NDVIi denotes the NDVI in the ith month or the ith year and NDVIij represents the
NDVI data on the jth day in the ith month or on the jth month in the ith year.

3. Results
3.1. Spatiotemporal Characteristics of Extreme Daily Rainstorms

Figure 3 demonstrates that the precipitation levels in H-Plain follow a trend of steady
increase from north to south, with both extreme daily rainfall and the proportion of extreme
daily rainfall contribution showing a similar pattern. The maximum values of average
precipitation and excessive rain appear in the southern part of Henan province. In contrast,
The minimum values are situated in Hebei province’s northern region. The Huaihe River
region receives the most rainfall due to its location on the windward slope of the Dabie
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Mountains and the fact that the Huaihe River belongs to the temperate monsoon climate
zone, where the southeast monsoon from the ocean brings abundant rainfall.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 29 
 

 

𝑉𝑎𝑟(𝑠௞) = 𝑛(𝑛 + 1)(2𝑛 + 5)72  (5)

2.3.4. Maximum Value Composites 
The Maximum Value Composite (MVC) concept was introduced by Holben [65]. The 

particular equation for MVC [54] can be expressed as: 𝑁𝐷𝑉𝐼௜ = 𝑀𝑎𝑥൫𝑁𝐷𝑉𝐼௜௝൯ (6)

where 𝑁𝐷𝑉𝐼௜ denotes the NDVI in the ith month or the ith year and 𝑁𝐷𝑉𝐼௜௝ represents 
the NDVI data on the jth day in the ith month or on the jth month in the ith year. 

3. Results 
3.1. Spatiotemporal Characteristics of Extreme Daily Rainstorms 

Figure 3 demonstrates that the precipitation levels in H-Plain follow a trend of steady 
increase from north to south, with both extreme daily rainfall and the proportion of ex-
treme daily rainfall contribution showing a similar pattern. The maximum values of aver-
age precipitation and excessive rain appear in the southern part of Henan province. In 
contrast, The minimum values are situated in Hebei province’s northern region. The 
Huaihe River region receives the most rainfall due to its location on the windward slope 
of the Dabie Mountains and the fact that the Huaihe River belongs to the temperate mon-
soon climate zone, where the southeast monsoon from the ocean brings abundant rainfall. 

Distinctive droughts and floods in Shandong province are attributed to the notable 
influence of the Pacific subtropical high-pressure system, where the proportion of ex-
tremely heavy rainfall makes up a significant portion of the total rainfall, reaching up to 
50%. Meanwhile, the northern foothills of the Taihang Mountains have the greatest terrain 
fluctuations but have the least amount of daily rainstorms and the smallest proportion of 
daily rainstorms to total annual rainfall. The research findings indicate that the spatial 
distribution pattern of extreme daily precipitation in the study area is consistent with 
China’s rain belt distribution pattern. This implies that the region is subject to similar 
weather patterns and has comparable susceptibility to extreme precipitation events as 
other areas within the rain belt. The terrain is a critical determinant. The high-incidence 
areas of excessive daily rainfall are the Huaihe River and the Shandong Peninsula. 

 
Figure 3. Spatial properties of severe daily rainfall in the H-Plain. Note: Figure (A) shows the aver-
age precipitation; Figure (B) represents the average value of multi-year extreme rainstorms (mean 
R95daily); Figure (C) depicts the ratio of heavy rainfall to overall precipitation. 
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Distinctive droughts and floods in Shandong province are attributed to the notable
influence of the Pacific subtropical high-pressure system, where the proportion of extremely
heavy rainfall makes up a significant portion of the total rainfall, reaching up to 50%.
Meanwhile, the northern foothills of the Taihang Mountains have the greatest terrain
fluctuations but have the least amount of daily rainstorms and the smallest proportion of
daily rainstorms to total annual rainfall. The research findings indicate that the spatial
distribution pattern of extreme daily precipitation in the study area is consistent with
China’s rain belt distribution pattern. This implies that the region is subject to similar
weather patterns and has comparable susceptibility to extreme precipitation events as other
areas within the rain belt. The terrain is a critical determinant. The high-incidence areas of
excessive daily rainfall are the Huaihe River and the Shandong Peninsula.

Figure 4 presents the characteristics of the temporal variation in extreme daily precipi-
tation within the H-Plain. From 1980 through 2020, extreme rainfall experienced substantial
inter-annual fluctuations, and there was a significant decreasing trend observed in the an-
nual amount of extreme rainfall, with a yearly reduction rate of 13.6 mm (A). This suggests
that the region is experiencing a decline in the frequency and intensity of extreme precipi-
tation events. The contribution rate of extreme rainfall has shown a stable trend over the
years, remaining almost unchanged (B), accompanied by a consistently high contribution
rate that surpasses 20% on average, and in some years, up to 50%; the annual variation
amplitude was large. The contribution rate of extreme rainfall area, on the other hand,
showed a rapid decrease (C). This suggests a decline in the incidence of heavy rainfall,
while at the same time, there is an upsurge in the severity of excessive rainstorm events.
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Figure 4. Characteristics of the multi-year average daily extreme rainfall, the proportion of heavy
rain, and the proportion of rich rainfall area in the H-Plain. Note: Figure (A) illustrates the yearly sum
of precipitation; Figure (B) shows the contribution rate of rainfall; Figure (C) shows the proportion of
the area where rainfall occurs to the total area.

Figure 5 presents the statistical properties of the daily extreme precipitation sequence
in the H-Plain covering the period from 1980 to 2020. During this period, the frequency
of severe rainstorms shows a rapidly declining trend (A), with a significant inter-annual
variation. The intensity of extreme rainstorms remains unchanged (B), while the dispersion
of rainstorms decreased slowly over 40 years (C).
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Figure 5. Frequency, intensity, and dispersion characteristics of daily extreme rainfall in the H-Plain.
Note: Figure (A) represents the frequency of extreme rainfall events per year; Figure (B) illustrates
the yearly intensity of extreme rainfall occurrences; Figure (C) depicts the yearly dispersion of
such events.

3.2. Investigation into the Spatial and Temporal Features of Extreme Hourly Rainstorms

Figure 6 presents the spatial distribution characteristics of extreme hourly precipitation
in the H-Plain from multiple perspectives. Figure 6A illustrates the intensity of extreme
hourly rainfall, showing an overall increasing trend from west to east. The northwest
region of the H-Plain, located on the leeward slope of the Taihang Mountains, exhibits the
lowest intensity of extreme hourly rainfall, followed by Henan Province, with relatively low
intensity. In contrast, Shandong Province experiences the highest precipitation intensity.
Figure 6B displays the contribution rate of extreme hourly precipitation, demonstrating
an increasing pattern from west to east. The northwest and southwest regions show
lower contribution rates, while the Shandong Peninsula exhibits a high contribution rate
of extreme precipitation. These findings collectively indicate that Shandong Province
experiences significantly higher extreme precipitation events than other regions of the H-
Plain. Figure 6C represents the concentration degree of extreme hourly precipitation, with
the coastal areas of the Shandong Peninsula showing the highest concentration. Generally,
there is an increasing spatial differentiation trend from northwest to southeast. Figure 6D
shows the frequency of extreme hourly precipitation, which exhibits a similar pattern to
the concentration degree, with higher frequency gradually increasing from northwest to
southeast. The areas surrounding the Taihang Mountains have the fewest occurrences of
extreme hourly rainfall, while the eastern part of the H-Plain experiences a higher frequency.
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Figure 6. Characteristics of extreme hourly rainstorms in the H-Plain in terms of spatial distribution.
Note: Figure (A) displays the magnitude of intense hourly rainfall; Figure (B) presents the percentage
contribution of intense hourly rainfall, which is the proportion of extreme hourly rain compared to
the total rainfall; Figure (C) displays the dispersion of intense hourly rainfall; Figure (D) shows the
frequency of excessive hourly rainfall.
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The characteristics of extreme precipitation on an hourly basis over many years are
depicted in Figure 7. The frequency, intensity, and contribution rate of extreme hourly
precipitation show significant changes at different times, with relatively stable values
before 19:00 and reaching their peaks between 19:00 and 21:00. It can be deduced that
extreme hourly precipitation is more likely to occur during nighttime (dominated by the
first half of the night), which is completely different from the characteristics of extreme
daily precipitation [66].
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Figure 7. Temporal characteristics of extreme hourly rainstorms in the H-Plain. Note: (A) displays
the frequency of extreme precipitation per hour; (B) shows the distribution of extreme precipitation
frequency in a radial pattern; (C) presents the intensity of hourly extreme precipitation; (D) shows the
radial distribution of hourly extreme precipitation intensity; (E) illustrates the proportion of extreme
hourly precipitation relative to the overall precipitation; (F) shows the radial distribution of extreme
hourly precipitation as a proportion of the total precipitation.

Figure 8 illustrates the time-related features of extreme hourly rainfall in the H-Plain
over the last 40 years. The intensity (Figure 8A), frequency (Figure 8D), and dispersion
(Figure 8G) of extreme hourly rainfall have all exhibited a significantly decreasing trend at
the annual scale, with dispersion decreasing the fastest, suggesting that extreme rainfall
events have become more dispersed, resulting in a decline in associated risks. In terms of
seasonality, excessive hourly rainfall exhibits the most incredible intensity, frequency, and
dispersion during summer, whereas the opposite holds true during winter. The monthly
variation in extreme rainfall intensity, frequency, and dispersal is most significant in July,
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indicating that severe summer rainfall hazards are the greatest. The intensity of powerful
rainfall per hour displays diverse features on various time scales, with a declining tendency
regarding annual ranking and a notable upward trend for the monthly scale. Although
summer is the season with the highest strength for extreme hourly rainfall, it displays a
decreasing trend. Similarly, the frequency and dispersion of excessive hourly rainfall also
exhibit similar tendencies on both annual and monthly scales, but extreme hourly rain
in summer is significantly higher. In contrast, the dispersion of excessive hourly rainfall
shows a decreasing trend. In summary, it can be seen that extreme hourly rainfall shows a
characteristic of frequent and dispersed occurrence, and its intensity is decreasing.
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Figure 8. Multi-timescale characteristics of extreme hourly rainstorms in the H-Plain. Note: (A) shows
the annual variation in hourly extreme rainfall intensity; (B) shows the seasonal variation in hourly
extreme rainfall intensity; (C) shows the monthly variation in hourly extreme rainfall intensity; (D) il-
lustrates the interannual variability of extreme hourly rainfall frequency; (E) depicts the fluctuations
in the frequency of severe hourly precipitation across various seasons; (F) illustrates the fluctuations
in hourly extreme rainfall frequency monthly; (G) illustrates the changes in hourly extreme rainfall
dispersion throughout the year; (H) illustrates the seasonal fluctuations in dispersion in extreme
hourly rainfall; (I) demonstrates the monthly variation in dispersion in extreme hourly rainfall.
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Figure 9 illustrates the geographical features of severe hourly precipitation during two
particular periods (19:00 and 21:00, which exhibit the maximum frequency and intensity)
in the H-Plain. The typical geographical spatial distribution of intense rainfall indicates
that the eastern region receives a greater amount of rainfall with higher intensity and
frequency. The western region has less rain and lower power and frequency. Despite
the low precipitation and weaker intensity, the northern region exhibits a significant
contribution to extreme precipitation. At the same time, the western and southern parts
of Henan Province and the Shandong Peninsula have high rainfall, intensity, proportion,
and frequency, which are inextricably linked to the topography. The urban construction
land in the northern part of Hebei Province has less rainfall and lower intensity, proportion,
and frequency, indicating that urbanization specifically impacts extreme rainstorms in the
region. In addition, the rain and frequency at 21:00 showed a decreasing trend compared
with 19:00, indicating that the intense hourly rainstorms mainly occurred in the first half of
the night.
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3.3. Analysis of Extreme Hourly Rainstorm Extremes Characteristics 

Figure 9. A comparative analysis is conducted to examine the spatial features of extreme hourly
rainstorms at two specific time points (19:00 and 21:00) in the H-Plain. Note: Figure (A) illustrates
the precipitation quantity of the extreme rainfall event occurring at 19:00; Figure (B) illustrates the
intensity of extreme rainfall events at 19:00; Figure (C) illustrates the percentage of the total extreme
rainfall amount that occurred at 19:00; Figure (D) depicts the frequency of extreme rainfall events
at 19:00 in graphical form; Figure (E) illustrates the precipitation volume of the extreme rain event
occurring at 21:00; Figure (F) displays the intensity of extreme precipitation at 21:00; Figure (G)
displays the ratio of the amount of extreme rainfall at 21:00 to the overall amount of extreme rainfall;
Figure (H) illustrates the occurrence rate of extreme rainfall incidents at 21:00.

3.3. Analysis of Extreme Hourly Rainstorm Extremes Characteristics

Over the past forty years, a declining tendency has been identified in the peak value
of extreme hourly precipitation within the H-Plain region (Figure 10A), accompanied by
significant inter-annual variations, primarily oscillating between 20 and 45 mm. The fre-
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quency of occurrence of the maximum value of extreme hourly rainfall shows a decreasing
trend from 1:00 to 24:00 (Figure 10B), and the overall trend can be divided into three time
periods: 1:00–7:00, 8:00–19:00, and 20:00–24:00; extreme hourly rainfall shows an increasing
trend within each period.
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Figure 10. Extreme characteristics of extreme hourly rainstorms in the H-Plain. Note: Figure (A)
shows the annual maximum value of extreme hourly rainfall, and Figure (B) illustrates the frequency
of the maximum value of extreme rainfall on an hourly basis.

For the past 40 years, trailing-type precipitation has been the predominant form of
heavy rainfall in the H-Plain, with occasional balanced-type precipitation and bimodal
precipitation and rare single-day-type precipitation (Figure 11A). This suggests that the
precipitation is more concentrated and that the extreme precipitation characteristics at
hourly scales should be paid more attention to. According to Figure 11B, the trailing-type
precipitation occurs most frequently, indicating that the local rain has a fat-tail distribution.
The extreme hourly values of extremely heavy rainfall mainly happen in the first half of
the night. Although 2000 was recognized as a pivotal moment for climate change [55], the
rainfall type did not change before or after this point.
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Figure 11. The characteristics of rainfall types in extreme rainstorms in the H-Plain. Note: Figure (A)
presents the statistical distribution characteristics of five rainfall types across different decadal periods.
Rain type 1 represents predominant precipitation; rain type 2 represents post-dominant precipitation;
rain type 3 represents balanced precipitation; rain type 4 represents single-day precipitation; rain
type 5 represents bimodal precipitation; Figure (B) shows the proportion of five rainfall types across
different decadal periods. Rain type 1 represents predominant precipitation; rain type 2 represents
post-dominant precipitation; rain type 3 represents balanced precipitation; rain type 4 represents
single-day precipitation; rain type 5 represents bimodal precipitation.

3.4. The Impact of Extreme Hourly Precipitation on NDVI

Figure 12 displays the spatial distribution and variation trend characteristics of extreme
hourly precipitation and NDVI at the ten-day scale in the Huang-Huai-Hai Plain region.
The figure reveals that on a ten-day scale, the extreme hourly rainfall in the region exhibits
a distinct spatial differentiation pattern, increasing from the northwest to the southeast.
In particular, areas with higher elevations experience less extreme hourly precipitation
at the ten-day scale. In contrast, regions such as the Shandong Peninsula and Henan
exhibit substantial extreme hourly precipitation levels (Figure 12A). Based on the Sen’s
slope and Mann–Kendall (MK) test results, it can be observed that in the H-Plain region,
there has been no significant change in the extreme hourly precipitation at the multi-year
ten-day scale, as shown in Figure 12B. Correspondingly, the overall distribution of the
NDVI at the ten-day scale also demonstrates an increasing trend from the northwest to the
southeast. The northern part of the study area and some coastal regions exhibit lower NDVI
values, and land-use types in areas with lower NDVI values are predominantly urban. In
contrast, the southern part of the study area exhibits higher NDVI values, reaching up to
approximately 0.6, indicating a favorable local ecological environment. This translation
adheres to a rigorous and professional academic writing style. Figure 12D illustrates the
local NDVI variation trends. In the northern and central parts of the H-Plain, the NDVI
presents a significant decreasing trend, while in contrast, the southern region exhibits a
significant increasing trend. As can be inferred from the figure, the overall trend of the
NDVI in the H-Plain indicates environmental degradation.
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As shown in Figure 13, the correlation between extreme hourly precipitation at the
ten-day scale and NDVI exhibits a distinct regional differentiation pattern characterized by
a gradual decrease in the correlation coefficient from north to south. In the figure, only a few
individual coastal areas in the Shandong Peninsula exhibit a non-significant relationship
between extreme hourly precipitation and NDVI after conducting the significance test.
Specifically, the correlation between extreme hourly precipitation and NDVI is relatively
high in the northern part of the study area; it further decreases in the central part and is
the lowest in the southern part. Additionally, lagged correlations of one, two, and three
ten-day periods were analyzed for extreme hourly precipitation and NDVI, revealing that
the lagged effect of extreme hourly precipitation on NDVI is negligible.
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Owing to the delayed response of vegetation to climate variables, there exists a dis-
tinct lag effect in the relationship between NDVI and precipitation. Nevertheless, studies 
investigating the influence of extreme hourly precipitation on NDVI are scarce. Therefore, 
considering the instantaneous nature of excessive rainfall, this study calculates the corre-
lation between NDVI and extreme hourly precipitation at the same time (LC0), extreme 
hourly precipitation lagged by one period (LC1), extreme hourly precipitation lagged by 

Figure 13. Decadal-scale extreme hourly rainstorm and NDVI correlation analysis in the H-Plain.
Note: Figure (A) LC0 represents zero-lag correlation (no lag); Figure (B) LC1 represents first-order lag
correlation; Figure (C) LC2 represents second-order lag correlation, and Figure (D) LC3 represents
third-order lag correlation. The correlation coefficients in the figure are calculated under a significance
level of 5%. Among them, the black squares denote markers that did not pass the significance test.
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Owing to the delayed response of vegetation to climate variables, there exists a dis-
tinct lag effect in the relationship between NDVI and precipitation. Nevertheless, studies
investigating the influence of extreme hourly precipitation on NDVI are scarce. Therefore,
considering the instantaneous nature of excessive rainfall, this study calculates the corre-
lation between NDVI and extreme hourly precipitation at the same time (LC0), extreme
hourly precipitation lagged by one period (LC1), extreme hourly precipitation lagged by
two periods (LC2), and extreme hourly precipitation lagged by three periods to analyze the
lag effect of extreme hourly precipitation on NDVI. Combining Table 2 and Figure 14, The
examination of the relationship between extreme hourly precipitation and NDVI across
various months reveals that the effect of extreme hourly precipitation on NDVI is mainly
negative. The correlations for March, June, and October are statistically significant at the
p < 0.05 level. March and October show negative correlations, while June shows a positive
correlation. As seen in Figure 14, extreme precipitation is relatively low in March, while
vegetation has already begun to enter the growing season, characterized by a gradual
increase in NDVI; the lack of rainfall may have inhibited vegetation growth. June is part of
the rainy season, with substantial precipitation, and it coincides with summer; the lower
NDVI may be due to the synergistic effect of temperature, but rainfall positively impacts
NDVI during this time. In October, rain significantly decreases, but vegetation is still within
the growing season; the reduction in precipitation has a suppressive effect on the NDVI.

Table 2. Correlation coefficients of monthly-scale extreme hourly rainstorms and NDVI.

Month Correlation p_Value Significant

1 0.02 0.32
2 −0.28 0.09
3 −0.28 0.01 ***
4 −0.02 0.21
5 −0.01 0.54
6 0.35 0.00 ***
7 −0.08 0.11
8 −0.01 0.32
9 0.06 0.50
10 −0.21 0.03 ***
11 −0.23 0.12
12 0.14 0.16

Note: *** represents that the correlation coefficients have passed a significance test at a 95% confidence level,
indicating statistical significance.
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Figure 14. Correlation analysis of extreme hourly rainfall and NDVI at a monthly scale in the H-Plain.
Note: Figure (A) represents the climatological mean of extreme hourly precipitation for each month
over multiple years. The red color in the figure represents a positive correlation, while the blue color
signifies a negative correlation, and the symbol [***] indicates that the significance test of p < 0.05 is
passed. Figure (B) represents the average state of NDVI for each month over multiple years. The
red color in the figure represents a positive correlation, while the blue color signifies a negative
correlation, and the symbol [***] indicates that the significance test of p < 0.05 is passed.



Remote Sens. 2023, 15, 2778 20 of 26

4. Discussion

There are significant variations observed in the spatiotemporal distribution patterns
of extreme rainfall events when comparing the daily and hourly scales in the H-Plain. The
daily-scale extreme precipitation in this region is mainly distributed in summer. These
events tend to have a long duration and a large spatial extent due to the influence of warm
and humid airflow and convective activities [67–69]. On the other hand, extreme rainfall
events at the hourly scale are more likely to occur during spring, summer, and autumn
seasons and are often caused by cold fronts, convective activities, or low eddies, with short
durations and smaller spatial extents. The H-Plain is particularly prone to extreme hourly
rainfall during the rainy season and typhoon period. It is influenced by southwestern
warm and humid airflows and southeastern cold air, forming complex weather systems
and resulting in a higher frequency of extreme rainfall [70]. In the summer of the Shandong
Peninsula, especially in June and July, extreme daily precipitation is more frequent, while
heavy hourly rain occurs more frequently in August and September. The spatial and
temporal distributions of excessive rainfall in the H-Plain are considerably impacted by
the regional climate and weather systems at different time scales. Different meteorological
systems and climate mechanisms mainly cause these temporal differences. Hourly-scale
extreme rainstorm events are usually more dispersed in time, making them difficult to
predict and monitor, while daily extreme precipitation events generally have higher spatial
consistency and predictability.

The H-Plain region has been experiencing significant impacts from climate change
factors, such as monsoon intensity, El Niño events, and atmospheric circulation, which
have been observed to greatly affect extreme precipitation events [71,72]. The ecological
environment of the H-Plain region is heavily influenced by several climatic factors, which
also determine the frequency and intensity of extreme precipitation events in the area.
The precipitation patterns in the region are greatly affected by monsoons, which bring
increased water vapor during the summer months [73]. The intensity of the East Asian
monsoon activity plays a significant role in the occurrence rates of extreme precipitation
events [74], with studies indicating a positive correlation between monsoon strength and
the likelihood of such events [75]. In addition to monsoons, El Niño events also have a
significant impact on extreme precipitation events in the H-Plain region. These events
lead to changes in precipitation patterns, which affect both the frequency and intensity of
extreme precipitation events [76,77]. For instance, the 1998 El Niño event led to multiple
floods and disasters in the region, illustrating the potential consequences of such climatic
occurrences [78]. It is essential to comprehend and forecast El Niño occurrences to manage
disasters effectively, given that they often result in heightened frequency and intensity
of extreme precipitation events in the H-Plain region. Understanding the impact of El
Niño events is crucial in preparing for potential floods and disasters in the region. The
significance of predicting these events cannot be overstated, especially since they can
have devastating consequences on the ecological environment and the people living in the
region [79,80].

Changes in atmospheric circulation play a significant role in the development of
extreme precipitation events in the H-Plain region. Anomalies in such events can be
attributed to alterations in the transportation of water vapor by atmospheric circulation,
which affects the precipitation processes in the area [81]. For instance, when the Northwest
Pacific subtropical high is abnormally strong, the precipitation in the H-Plain region may
increase significantly, triggering extreme precipitation events [82]. This demonstrates the
importance of atmospheric circulation in shaping the region’s precipitation patterns and the
potential consequences of such changes. In light of these findings, future research plans to
quantify the relationships between these climatic factors and extreme precipitation events,
with the aim of more accurately assessing their contributions to extreme precipitation events
in the H-Plain region. This knowledge will not only help to understand the underlying
mechanisms driving extreme precipitation events but will also aid in developing more
effective strategies for mitigating the ecological and environmental impacts of such events.
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By exploring the complex interplay between monsoon intensity, El Niño events, and
atmospheric circulation, researchers can develop a more comprehensive understanding
of the H-Plain region’s vulnerability to extreme precipitation events and work towards
more resilient and adaptive strategies for managing the consequences of climate change.
In conclusion, climate change factors such as monsoon intensity, El Niño events, and
atmospheric circulation play a significant role in shaping extreme precipitation events in
the H-Plain region. By better understanding these factors and their relationships with
extreme precipitation events, researchers can more accurately assess their contributions
and develop targeted strategies for mitigating the ecological and environmental impacts of
such events in the region.

The distribution and intensity of extreme rainfall events can vary across different
areas of the H-Plain due to various factors such as topography, land use patterns, and
atmospheric conditions. This can result in spatial heterogeneities, where some areas
experience more intense and frequent extreme rainfall events compared to others. The
daily-scale severe rainstorm events in this region typically have a more comprehensive
distribution range, especially in the plain areas where the daily-scale extreme precipitation
is more uniformly distributed [83]. In contrast, hourly extreme rainfall events tend to
occur in local areas, in mountainous or hilly regions. This is due to the complexity of
the terrain and topography in these areas, leading to increased local precipitation and
more concentrated hourly extreme rainfall [84]. The distribution of excessive rainfall
at the daily scale is predominantly observed in the southern and western regions. In
contrast, the hourly-scale extreme precipitation is primarily distributed in the northeast
and central regions [85]. Due to warm and humid air currents, the occurrence and intensity
of precipitation events is higher in the eastern and southern regions of the H-Plain. As a
result, these areas are more prone to extreme weather conditions.

The northwestern and northern parts of the H-Plain tend to be drier, experiencing
fewer instances of extreme precipitation. Such events are typically caused by large-scale
weather systems that occur daily, such as typhoons and fronts, with a broader distribu-
tion. At the same time, hourly-scale excessive rainfall is usually caused by small-scale
convective systems, such as convective cloud masses and thunderstorms with a smaller
distribution [86]. For example, daily-scale extreme precipitation may be influenced mainly
by air pressure and temperature. In contrast, hourly-scale extreme precipitation may be
more influenced by convective layer structure and water vapor transport [87]. In addition,
extreme precipitation can be distributed differently at various scales due to topography
and land use factors [88,89].

The terrain of the study area is relatively flat, but micro-terrain features such as
the northern mountainous region and the southern hills affect the formation, intensity,
and spatial-temporal distribution of extreme rainfall to a certain degree by influencing
atmospheric stability, wind fields, and water vapor transport, among other factors [90].
Mountains can affect the generation of extreme precipitation by lifting or blocking low-level
airflow and inducing substantial rain when unstable airflow impacts the terrain [91,92].
Meanwhile, the terrain affects atmospheric water vapor transport, and upward airflow can
cause convective precipitation, enhancing precipitation intensity. Rainshadow phenomena
may occur near mountainous areas, resulting in less rainfall, and changes in wind direction
in hilly areas may cause intense precipitation to concentrate in specific areas [93,94].

Human activities have led to global warming and increased tropical humidity, increas-
ing precipitation in the H-Plain [95]. Human activities contribute more significantly than
natural climate change to the variance in maximum daily rainfall (about 10%). Rapid eco-
nomic development has occurred in the past 30 years [96]. Land use/cover change (LUCC)
has an important influence on weather phenomena such as precipitation. Paddy fields,
forests, and wetlands positively affect rainfall, as their centroids shift in the same direction
as the precipitation centroid. Compared with other land use types, forests significantly
impact increasing precipitation [97]. LUCC can significantly impact urban hydrological
systems, leading to increased risks of urban rain and flood events by reducing the ability



Remote Sens. 2023, 15, 2778 22 of 26

of the system to regulate floods, known as urban flood regulation services (UFRS) for
individual cities [98].

5. Conclusions

This study examines the temporal and spatial dynamics of daily and hourly extreme
rainfall in the H-Plain between 1980 and 2020, compares and analyzes their differential
characteristics, and explores the main factors affecting severe rainstorms at the hourly scale.
The following conclusions are drawn:

(1) The H-Plain exhibits a decreasing trend in extreme daily rainfall and an increasing
trend in intensity, with the Huaihe River region and the Shandong Peninsula being the
highest-incidence areas, where extreme daily rainfall occurs in a more concentrated
area and is likely to cause more serious disasters.

(2) Hourly extreme precipitation events have shown a significant increase in the Shan-
dong and Henan regions of the H-Plain, while in the northwest of the Plain, they have
shown a weakening trend.

(3) Hourly extreme rainfall events in the H-Plain typically occur frequently and in a
discontinuous manner, with intensity gradually decreasing over time. The peak
period of its occurrence is at night, mainly between 7 p.m. and 9 p.m. During the
peak time of 19:00–21:00, the distribution of extreme rainfall indicates that the eastern
region experiences more significant precipitation, intensity, and frequency, whereas
the western region has lower levels of rain, power, and frequency.

(4) Hourly extreme rainfall events in the H-Plain have increased more than extreme daily
events, and the rain type was mainly rear-type precipitation.

(5) Hourly extreme precipitation events in the H-Plain are greatly influenced by to-
pography and LUCC. The micro-topography in hilly areas leads to a concentrated
precipitation distribution, and LUCC suppresses extreme precipitation events under
dry climates.

(6) The spatial distribution of the NDVI at the ten-day scale exhibits a gradually in-
creasing trend from northwest to southeast, consistent with the pattern of extreme
hourly precipitation. For extreme hourly precipitation, there is no significant change
observed at the multi-year ten-day scale. The NDVI in the northern and central
parts of the H-Plain shows a significant decreasing trend; in contrast, it presents a
significant increasing trend in the southern region. Moreover, the correlation between
extreme hourly rainfall and NDVI at the ten-day scale demonstrates distinct regional
differentiation (almost all correlation coefficients pass the significance test), decreasing
gradually from north to south. The lagged correlation analysis of extreme hourly
precipitation and NDVI for one, two, and three ten-day periods shows that the lagged
effect of extreme hourly precipitation on the NDVI is negligible. The correlation
analysis of extreme hourly rainfall and NDVI for different months shows that extreme
hourly precipitation negatively impacts NDVI.
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