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Abstract: Canola and wheat are the main oilseed crop and grain crop, respectively, and they often
have similar phenological stages. The understanding of the interactions between microwave signals
with wheat and canola in different stages is important for their monitoring using synthetic aperture
radar (SAR) imagery. This paper investigates the characteristics of canola and wheat through the
use of backscattering profiles from multi-year Sentinel-1 images. Large fluctuations are observed for
the temporal backscattering profiles of canola and wheat in different growth statuses induced by
agrometeorological conditions in different years. The capability and stability of Sentinel-1 for wheat
and canola mapping is further investigated using single- and multi-temporal SAR images hosted in
Google Earth Engine (GEE) using the random forest classifier. Although different agrometeorological
conditions and field managements make the temporal profiles of backscattering variations, the large
difference in canopy structure allows SAR images to make the separability of canola and wheat stable
on Sentinel-1 images in different phenology stages. The classification accuracies and the feature
importance scores from multi-temporal classification in different years show that the backscattering
features obtained at flowering to maturity stages make more contributions to the good-quality
mapping of canola and wheat than those at other stages. The F1 scores of canola and wheat achieve
0.95 during the canola flowering and podding period, and the minimum F1 scores of 0.85 were
also obtained at other stages. These findings show that SAR images have great potential in the
good-quality mapping of canola and wheat in a wide phenology window.

Keywords: synthetic aperture radar; wheat; canola; Sentinel-1; Google Earth Engine

1. Introduction

The timely monitoring of canola and wheat crops, which are the world’s main oilseed
and grain crop, respectively [1,2], is critical to the balance of food supplies and food policy
making [3]. Canola and wheat are often planted at the same time and have similar growth
cycles in many areas. Their mapping on a large scale is the prerequisite for area extraction,
yield prediction and agricultural disaster prevention. Remote sensing techniques are of
great value to the effective management and monitoring of the environmental resources
of crops by providing frequent observations on a large scale [4–9]. Optimal observation
time has been studied for the discrimination of canola and wheat using different vegetation
indices derived from multispectral images [10]. It has been found that the spectral signature
exhibited during the flowering of canola can be used to effectively separate canola from
other crops [11–13]. Ashourloo et al. [11] developed an efficient index to separate canola
from wheat, based on their reflectance difference in near-infrared, green and red bands
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at the flowering stage. The normalized difference yellow index was also developed to
discriminate canola from wheat-like crops at the flowering stage [12,13]. It is important
to obtain multi-spectral images during the flowering period of canola for its mapping.
However, the time window of optical images is narrow and has no guarantee due to the
effect of cloudy and rainy days.

Synthetic aperture radar (SAR) provides the unique opportunity of regular obser-
vations for crop management, due to its capability of evading the effects of rain and
clouds [14–17]. In particular, changes in the geometric structures and dielectric properties of
crop canopies at different growth stages induce changes in microwave backscattering [18–20].
The mapping capability of some crops has been illustrated using different classification
frameworks such as machine-leaning- [21,22] or polarimetric-decomposition-based classi-
fiers [23–25]. These results show that backscattering coefficients, polarimetric information
and image acquiring time are all critical to achieve good classification results.

The backscattering of crops is greatly affected by canopy, especially the shape and
density of leaves and the structure of stems. The capability of SAR to distinguish broad-
leaved and narrow-leaved crops has been proven by researchers [14,26,27]. Arias et al. [14]
identified crops such as barley and corn with different canopy structures using time series
Sentinel-1 data. Wiseman et al. [26] found that there was a strong correlation between
polarimetric responses and dry biomass for canola and corn with broad leaves, but a weak
correlation for wheat with narrow leaves. Gella et al. [27] improved crop classification
accuracy by merging grain crops with similar leaf geometry by using multi-temporal SAR
images. Wheat and canola are two typical crops with different leaf shapes and canopy
structures, and some features on radar images have also been investigated for them in
specific phenological stages. High scattering randomness is observed for canola over
the pod development and ripening stages when pods in canopy increase the multiple
scattering [24,28]. Moreover, differential attenuation was observed over wheat, whose
vertical structure is significant at the jointing stage [29,30]. Some endeavors have been
made to find stable temporal profiles for canola and wheat and to analyze the sensitivity
of radar responses to their growth dynamics [29–31]. Bhogapurapu et al. [31] observed
that there are similar morphological changes during the growth of canola and wheat using
Sentinel-1 data. Mandal et al. [32] derived a dual-polarization radar vegetation index
called DpRVI that has a good positive correlation with the leaf area index, vegetation
water content and dry biomass of canola. Schlund and Erasmi [33] detected the shooting
and harvesting stages of wheat using the smoothed cross-polarization ratio of Sentinel-1
temporal images to reduce the effect of underlying surface.

Although attempts have been made to characterize and map canola and wheat us-
ing single- and multi-temporal SAR images, few studies have explored the classification
capability of SAR images for wheat and canola at different phenological stages and the
stability of SAR image classification under different agrometeorological environments.
There are still considerable variations in the SAR observations, due to the effect of man-
agement activities and environmental stresses in different years. For example, crops have
different growth statuses when rainfall, temperature or sowing date change in different
years. In this paper, time series Sentinel-1 images were acquired from 2016 to 2019 over a
canola and wheat production area in China to (1) characterize the temporal backscattering
profiles of canola and wheat and highlight their main evolution trends and fluctuation,
and (2) further explore the capability of Sentinel-1 for the mapping of canola and wheat in
different phenological stages and in different years.

2. Study Area and Dataset
2.1. Study Area

The study area is located in Erguna, Inner Mongolia, China, as shown in Figure 1, and
this region is the main spring-wheat- and rapeseed-producing area in China. The main
crops in the area are canola and wheat, and the cropland parcels of the farmland range from
0.33 km2 to 5.0 km2 in area. Although the cultivation methods are all machinery-based for
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the farmland, the management activity takes a long time due to the low population. For
example, the sowing period of crops may last for half of one month, and the growth cycle
of wheat and canola is similar in the study area. The rough growth schedule of canola and
wheat is shown in Figure 2: they are both sown from April and harvested in late August.
There is crop rotation in the study area in different years. The crop type, sowing date and
ploughing date of the fields in different years were provided by the farmland managers.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 18 
 

 

2. Study area and Dataset 
2.1. Study Area 

The study area is located in Erguna, Inner Mongolia, China, as shown in Figure 1, 
and this region is the main spring-wheat- and rapeseed-producing area in China. The 
main crops in the area are canola and wheat, and the cropland parcels of the farmland 
range from 0.33 km2 to 5.0 km2 in area. Although the cultivation methods are all machin-
ery-based for the farmland, the management activity takes a long time due to the low 
population. For example, the sowing period of crops may last for half of one month, and 
the growth cycle of wheat and canola is similar in the study area. The rough growth sched-
ule of canola and wheat is shown in Figure 2: they are both sown from April and harvested 
in late August. There is crop rotation in the study area in different years. The crop type, 
sowing date and ploughing date of the fields in different years were provided by the farm-
land managers. 

 
Figure 1. (a): Location of the study area, (b) farmland of study area derived from land cover data, 
(c) ground truth of Erguna in 2019, provided by farmland managers. 

 
Figure 2. Rough growth calendar of canola and wheat in Erguna. 

Most of the fields are planted with rainfed crops, and there is no manual irrigation 
during the growth cycle. The daily accumulative temperature and rainfall that were col-
lected from the China Meteorological Data Service Center (http://data.cma.cn/, accessed 
on 1 June 2022) are shown in Figure 3. It shows that there were large changes in the agro-
meteorological conditions in different years, which resulted in large fluctuations in yields 
of canola and wheat from 2016 to 2019, as shown in Figure 4. There were favorable weather 
conditions for a bumper harvest in 2018, whereas in 2017, a severe drought event occurred 

Figure 1. (a): Location of the study area, (b) farmland of study area derived from land cover data,
(c) ground truth of Erguna in 2019, provided by farmland managers.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 18 
 

 

2. Study area and Dataset 
2.1. Study Area 

The study area is located in Erguna, Inner Mongolia, China, as shown in Figure 1, 
and this region is the main spring-wheat- and rapeseed-producing area in China. The 
main crops in the area are canola and wheat, and the cropland parcels of the farmland 
range from 0.33 km2 to 5.0 km2 in area. Although the cultivation methods are all machin-
ery-based for the farmland, the management activity takes a long time due to the low 
population. For example, the sowing period of crops may last for half of one month, and 
the growth cycle of wheat and canola is similar in the study area. The rough growth sched-
ule of canola and wheat is shown in Figure 2: they are both sown from April and harvested 
in late August. There is crop rotation in the study area in different years. The crop type, 
sowing date and ploughing date of the fields in different years were provided by the farm-
land managers. 

 
Figure 1. (a): Location of the study area, (b) farmland of study area derived from land cover data, 
(c) ground truth of Erguna in 2019, provided by farmland managers. 

 
Figure 2. Rough growth calendar of canola and wheat in Erguna. 

Most of the fields are planted with rainfed crops, and there is no manual irrigation 
during the growth cycle. The daily accumulative temperature and rainfall that were col-
lected from the China Meteorological Data Service Center (http://data.cma.cn/, accessed 
on 1 June 2022) are shown in Figure 3. It shows that there were large changes in the agro-
meteorological conditions in different years, which resulted in large fluctuations in yields 
of canola and wheat from 2016 to 2019, as shown in Figure 4. There were favorable weather 
conditions for a bumper harvest in 2018, whereas in 2017, a severe drought event occurred 

Figure 2. Rough growth calendar of canola and wheat in Erguna.

Most of the fields are planted with rainfed crops, and there is no manual irrigation
during the growth cycle. The daily accumulative temperature and rainfall that were col-
lected from the China Meteorological Data Service Center (http://data.cma.cn/, accessed
on 1 June 2022) are shown in Figure 3. It shows that there were large changes in the
agrometeorological conditions in different years, which resulted in large fluctuations in
yields of canola and wheat from 2016 to 2019, as shown in Figure 4. There were favorable
weather conditions for a bumper harvest in 2018, whereas in 2017, a severe drought event
occurred in the growth stage of canola and wheat, resulting in yield reduction. Different
meteorological conditions coupled with crop rotation lead to variations in soil properties
and crop distribution in Erguna.

http://data.cma.cn/
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2.2. SAR Data

The Sentinel-1 Ground Range Detected (GRD) products acquired over the growth
period of the years from 2016 to 2019 were used. The revisit time of Sentinel-1 is 12 days, and
the acquired images are shown in Table 1. The central frequency of Sentinel-1 is 5.405 GHz
(C band), and the dataset was obtained in interferometric wave mode (IW) with a ground
resolution of 10 m [34]. The time series Sentinel-1 images were acquired and processed in
the cloud-based Google Earth Engine (GEE, https://earthengine.google.com/, accessed on
1 July 2022) platform to improve processing efficiency. This Sentinel-1 collection hosted in
GEE was preprocessed using the following steps: updating orbit metadata, thermal noise
removal, radiometric calibration and terrain correction. The Refined Lee filter [35] was then
applied to all scenes with a window size of 7 × 7 to suppress the speckle noise. Then the
filtered images were converted to decibels via log scaling (10 × log10 (image)). One thing
to note is that the Sentinel-1 image of 18 June 2016 was missing, and the backscattering
coefficients were obtained by linear interpolation of the adjacent images for temporal
profile analysis.

https://earthengine.google.com/
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Table 1. Parameters of the used Sentinel-1 images.

Year Mode Polarization Date of Acquisition Orbit Incidence Angel (◦)

2016 IW VV + VH 19 Apr., 1 May, 13 May, 25 May, 6 Jun., 30 Jun.,
12 Jul., 24 Jul., 5 Aug., 17 Aug., 29 Aug., 10 Sep. Descending 36–44

2017 IW VV + VH 2 May, 14 May, 26 May, 7 Jun., 19 Jun., 1 Jul., 13 Jul.,
25 Jul., 6 Aug., 18 Aug., 30 Aug., 11 Sep. Descending 36–44

2018 IW VV + VH 27 Apr., 9 May, 21 May, 2 Jun., 14 Jun., 26 Jun., 8 Jul.,
20 Jul., 1 Aug., 13 Aug., 25 Aug., 6 Sep. Descending 36–44

2019 IW VV + VH 22 Apr., 4 May, 16 May, 28 May, 9 Jun., 21 Jun., 3 Jul.,
15 Jul., 27 Jul., 8 Aug., 20 Aug., 1 Sep., 13 Sep. Descending 36–44

2.3. Auxiliary Data and Ground Reference Data

The land cover map of GlobeLand30 [36] was used to extract the farmland of Erguna
to mask out other landcover types; the spatial resolution of this dataset was 30 m and
the overall accuracy of the dataset was 85.72%. In order to further suppress SAR speckle
noise and to reduce the heterogeneity within field, an object-oriented classification method
was applied in the experiment. Considering that the boundary of the field is clear on the
optical images, the Sentinel-2 Top of Atmosphere (TOA) data of the study area were used to
segment fields, and the segments were used as masks for the classification using Sentinel-1
images. The co-registration of Sentinel-1 and Sentinel-2 was achieved using GEE. In view
of the cloud cover, Sentinel-2 images from June to August were selected by median filtering
to composite an image of Erguna with low cloud coverage. Generally, the boundary of the
field does not change much over the following year, so even if there are no optical images
in this year, the image of the previous year can still be used to segment the fields.

The farmland managers in the study area provided detailed information on some
fields from 2016 to 2019 for the study, including the longitude and latitude of fields, the
crop types, the sowing dates and the agricultural management methods. The ground truth
of the year 2019 is shown in Figure 1b, and Table 2 shows the fields’ number of ground
truths in different years. There are different management methods for the fields. Some
fields in the study area were ploughed before sowing, and some fields were ploughed after
harvest. In addition, pesticides were applied to some fields to control the vigorous growth
of crops.

Table 2. Number of ground truth fields provided by farmland managers in different years.

2016 2017 2018 2019

Wheat
Number of Fields 206 252 223 255

Area (ha) 4551 4937 4873 5369

Canola
Number of Fields 97 147 190 137

Area (ha) 2767 2781 4335 2148

In situ measurements were performed from August 1 to 9 (fruit development stage)
in the study area in 2017. The crop type, height, soil moisture and wet and dry weight of
biomass were all measured for each crop. Due to the low precipitation and high temperature
during the crop growth stage in 2017, as shown in Figure 3, the growth conditions of the
crops were poorer than those in the three other studied years. The yields in Figure 4
also show the poor growth of the crops in 2017. Figure 5 shows the canola and wheat
in different growth conditions in 2017. It shows that there is a large difference in height,
biomass and canopy density between well- and poorly grown wheat fields, and the same
for canola fields.
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3. Methodology

The methodology is shown in Figure 6. First, the Globeland30 data were used to
extract the farmland. Then, the composited Sentinel-2 images were used to segment the
farmland to obtain the field mask. Canola and wheat were then classified on single- or
multi-temporal SAR images masked by the fields’ segments by RF classifier in GEE. The
importance scores of features were derived from the multi-temporal classification.
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3.1. Segmentation of Fields by Sentinel-2 Images

The pixel-based SAR classification results are noisy because of the heterogeneity within
the fields and the speckle noise induced by the coherent imaging of SAR images [3]. A
feasible means is object-oriented classification [24], that is, pre-segmenting images and then
classifying them. In this paper, the simple non-iteration cluster (SNIC) superpixel segmen-
tation [37] was performed over a composited Sentinel-2 image to obtain the segments of
the study area. The SNIC segmentation algorithm clusters pixels without the use of the
K-means iterations, while explicitly enforcing connectivity from the start [37], which makes
it computationally cheaper and uses less memory.

Median filtering was used in filtering the Sentinel-2 TOA images to obtain a composite
image with a low cloud cover. Temporal images with a cloud coverage of less than 20%
from July to August were selected for median filtering. From 2016 to 2019, the number of
Sentinel-2 images used to construct cloudless images was 96, 96, 174 and 201, respectively.
In view of the resolution of Sentinel-1 images, the visible bands, red edge band and infrared
band of Sentinel-2 were selected, and then the median Sentinel-2 image was masked by
farmland extracted from GlobeLand30. Finally, the segments of farmland were obtained
using SNIC for each year, using the corresponding composited Sentinel-2 image.

3.2. Random Forest Classification and Accuracy Assessment

The RF classifier is an efficient classification method developed from ensemble learning
and decision trees [38]. Meanwhile, the importance scores of input features can be derived
from RF, which enable the assessment of contribution of each feature to the classification
results. In this paper, Gini importance [39] was used to assess the contribution of features in
the classification. It calculates each feature importance as the sum over the number of splits
(across all tress) that include the feature, proportional to the number of samples it splits.
The input features for the RF classifier are the backscattering coefficients of VH (σVH), VV
(σVV) and the cross-pol ratio (σVH/σVV). In this paper, the number of trees of RF was set
at 200, the number of features per split was the square root of the number of features, the
fraction of samples input to bag per tree was 0.5 and the minimum samples of leaf nodes
was 1. A certain number of samples were randomly selected from the ground truth of each
year. A total of 30% of the ground truths were used as training samples, and the remaining
70% were used as validation samples.

The producer accuracy (PA), user accuracy (UA), overall accuracy (OA), kappa coeffi-
cient and F1 score [40] were used to assess the classification results. The kappa coefficient
can make the accuracy assessment comprehensive by reducing the effect of uneven sample
distribution. The F1 score is the harmonic average of PA and UA (Equation (1)), reflecting
the overall performance of the classification results [41]. In this experiment, β was set at 1,
indicating that PA and UA are of equal importance.

F1 =
(1 + β2)× PA × UA

β2 × (PA + UA)
(1)

4. Results and Analysis

In this section, the temporal backscattering profiles of wheat and canola in four years
are compared, and the single- and multi-temporal classification results are analyzed to show
the discrimination of wheat and canola at different phenological stages and in different
years. The segmentation results using composited Sentinel-2 images of 2019 are shown in
Figure 7. Patches in different colors represent the objects after segmentation. The segmenta-
tion considers the Euclidean distance of the pixels, and the segmented object tends to be a
square shape. The used Sentinel-1 images were masked based on the segmentation results.
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4.1. Backscattering Analysis of Canola and Wheat

In the following sections, the temporal characteristics of the backscattering of canola
and wheat are analyzed. The mean value and standard deviation of the backscattering
coefficients derived from all the canola and wheat fields in ground truth from 2016 to 2019
are shown in Figure 8. As the figure shows, the backscattering profiles of one crop are
different in the four years. The fluctuations over the years hinder the finding of a stable
indicator for crop monitoring using SAR images, because the radar backscattering of crops
is affected by many factors, including crop status and soil moisture.
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Generally, σVV is higher than σVH at all the growth stages of canola and wheat, except
at the sowing stage, when the X-Bragg scattering is the dominant scattering mechanism [42].
The largest difference in backscattering was observed for the four years at the sowing stage,
when the ground roughness and soil moisture are the main factors for backscattering in
different years. After the tillering and leaf developing stage, the biomass and canopy
structure play an increasingly important role in the backscattering. To understand the
backscattering changes in canola and wheat more clearly, the growth profiles of canola and
wheat over the studied period are analyzed as follows.

4.1.1. Backscattering Profiles of Canola

The multi-year temporal profiles of canola are shown in Figure 8. In different years,
although σVV was always stronger than σVH, σVH, which has a strong correlation with
biomass, had greater changes than σVV during the growth cycle. In the sowing and
germination stages, canola has low biomass, and the SAR signal was mainly affected by
the soil moisture and surface roughness. From the end of May to the beginning of July,
canola develops from the germination stage to the jointing stage, and the σVH of canola
showed a gradually increasing trend as a result of its increasing biomass. The subsequent
enhancement of σVH can be explained by the appearance of flowers and pods, which form
a dense and wet layer in canopy. Starting in late July (the podding stage), the variation
in σVH started to decrease due to its smaller structural change and the weaker effect of
the underlying surface than that in the earlier stages. This is similar to the observation of
Deschamps et al. [43]. Canola develops pods and becomes mature in August (the podding
and fruit development stage), and in the analysis, the biomass peaked, which made the
σVH fluctuate less and peak at the podding and fruit development stage, peaking around
−10 dB in all four years. However, σVH saturated from the development of fruit to the
ripening stage due to a dense canopy formed by canola pods and the limited penetration
of the C-band wave. A noticeable drop was observed at the beginning of September (the
harvesting stage), when canola was in seasonal senescence and harvesting. However, the
backscattering coefficients were still higher than those in the sowing period due to the
residues [42].

The changes in σVV were more complicated than those in σVH because σVV is more
sensitive to the differential attenuation than σVH. From the germination stage in late May to
the jointing stage in early July, the σVV of canola increased by 5–6 dB in all years. While the
σVV increased slightly from the jointing stage in July to the ripening stage in August, the
increase was about 2 dB except for the canola in 2019. Although there was a sharp increase
in the σVV of canola from the leaf developing to the jointing stage in 2018, making a peak in
σVV in late June of 2018, σVV reached the subsequent peak in the fruit development stage in
August at about –7 dB, which is close to the peaks in other years. The backscattering profiles
in recent years show that the growth profiles of canola are stable during the flowering and
fruit development stages.

4.1.2. Backscattering Profiles of Wheat

Wheat exhibits a relatively lower backscattering than canola in σVV and σVH, as shown
in Figure 8. The main reason is that the biomass of wheat is usually lower than that of
canola, and wheat also has a significantly vertical differential attenuation after the jointing
stage [28,30]. In addition, the multi-year temporal profiles of wheat had larger changes than
those of canola, because the relatively sparse canopy of wheat allows for deep penetration
of the C-band wave. The scattering from the soil and the interaction of microwave with
wheat changes in different growth conditions cannot be ignored. Different from canola, the
σVH of wheat peaked earlier. Except for 2019, the σVH of wheat in other years had a small
change at the jointing and ripening stages for the relatively similar structure of wheat, and
the mean value of σVH fluctuated around –20 dB. The differences in biophysical parameters
between wheat and canola were greater during this period compared with those in earlier
periods, creating a large difference in the backscattering between wheat and canola at the
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stage. Similar to canola, wheat began to senesce after maturity in late August, leading
to a decrease in the water content of the wheat canopy. The only exception was in 2017,
when the backscattering of VH still remained stable at the senescence and harvesting stage,
which may be due to the difference in harvesting time and the post-harvest management.
Compared with σVH, the σVV of wheat was mainly the direct scattering from soil and the
attenuation caused by the predominately vertically oriented wheat stems, and it varied
considerably from year to year.

4.2. Classification Results of Canola and Wheat on Single-Temporal Images

The classification results of the crops in single-temporal images acquired in 2019 are
shown in Figure 9. The zoomed-in area shows the Yigen Farmland, where there was ground
truth provided by farm managers, and the results show that canola and wheat were well
classified in different phenological stages. Figure 10 shows the classification accuracies for
different images acquired in 2019. The lowest OA was 84%, which was obtained on 16 May,
corresponding to the germination stage of wheat and canola, and the highest OA of, 96%,
was reported from 27 July to 20 August, corresponding to the podding and ripening stage
of canola. The highest accuracy was also consistent with the earlier phenological analysis:
that the backscattering of canola and wheat has the largest difference and stability during
the flowering to ripening stages.
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The mapping accuracies of canola were high in the middle periods and significantly
decreased at the harvesting stage. The F1 score of canola before leaf development was
lower than that after leaf development, and the F1 score of canola reached the maximum
value of 0.98 on 27 July. From 15 July to 20 August, canola achieved satisfying mapping
accuracy, and the F1 scores remained above 0.95. Their classification accuracies decreased
below 0.9 at the beginning of September due to complex harvest patterns [42].

During the whole growth cycle, the PAs of wheat were above 90%, and the maximum
value was obtained on 15 July. Similar to canola, UA gradually increased with the growth of
wheat, and the gap between the UA and the PA of wheat narrowed because the structural
differences in wheat canopy in the middle and late stages were insignificant. However,
there was a large difference in soil moisture and roughness and sowing time for the fields
in the early stages. The F1 scores of wheat remained above 0.85 in all periods and exceeded
0.95 from 3 July to 20 August, corresponding to the heading, flowering and milking stages.

The classification accuracies are strongly related to the phenology of canola and wheat,
which is consistent with the backscattering variation mentioned in previous section. In all
the four years, the greatest differences in backscattering between canola and wheat were
found in July and August, corresponding to the flowering, milking and ripening stages.
The classification accuracy corresponding to the above period was also higher than that of
other periods. The results show that the best stages for canola and wheat classification are
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the flowering and milking stages. Although the separability of canola and wheat varies in
different phenological stages, the Sentinel-1 data generally achieved good separability for
canola and wheat in all stages.
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4.3. Classification Results of Canola and Wheat Using Multi-Temporal Images

The temporal profiles in Figure 8 show the fluctuations in backscattering caused by
agriculture management and agrometeorological conditions in different years. To verify
the mapping capability of canola and wheat using temporal Sentinel-1 dual-pol GRD
data, images in Table 3 that were acquired in each year (2016–2019) were used for crop
classification. Figure 11 shows the mapping results of canola and wheat in different years.
The classification accuracies are shown in Table 3, which shows that the F1 scores of canola
and wheat in four years were all higher than 0.9. The results show the strong discrimination
capability of temporal SAR images on wheat and canola, which have significantly different
canopy structures. Although Figures 4 and 5 show that there was a large difference in
growth conditions for different years or different fields in the same year, the different
growth conditions did not have a large effect on the classification of canola and wheat.
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Table 3. Classification accuracies of wheat and canola using multi-temporal images in different years.

Year Wheat Canola OA Kappa

2016 PA 0.96 0.91 0.94 0.87
UA 0.94 0.92 / /
F1 0.95 0.92 / /

2017 PA 0.94 0.97 0.95 0.90
UA 0.98 0.90 / /
F1 0.96 0.93 / /

2018 PA 0.95 0.97 0.95 0.93
UA 0.95 0.97 / /
F1 0.95 0.97 / /

2019 PA 0.96 0.95 0.96 0.94
UA 0.98 0.93 / /
F1 0.97 0.94 / /

4.4. Feature Importance Analysis

The relative importance scores of features were used to show the contributions of σVH,
σVV and cross-pol ratio (R), as shown in Figure 12. The importance of each feature changed
with the phenological stages. Figure 12 demonstrates that features in July and August
had higher scores than that in other dates for all years. This finding is also consistent
with the backscattering characteristic analysis and single-temporal classification results:
There is a large difference in the backscattering of canola and wheat from the flowering
stage to the ripening stage, and the classification results during these stages achieved
high accuracy. The importance scores of σVH and σVV for canola and wheat mapping did
not have a large differences for one stage. Thus, the dual-pol channels all had a strong
contribution to the separability of canola and wheat. The cross-pol ratio can weaken the
double bounce between soil and crop stalks, and has been used as a stable indicator in
the phenological stage monitoring of crops [33,44]. However, its importance scores in the
classification of wheat and canola was not always high. Given that the phenological-stage
monitoring pays more attention to the crop canopy and tends to obtain a stable indicator,
the canopy–ground interaction or the effect of different management methods may favor
the classification of wheat and canola to some extent. Figure 12 shows that the dual-pol
backscattering coefficients were enough for the mapping of wheat and canola, especially
from the jointing to the ripening stage. However, this does not mean that features with a
low score cannot be used for the classification of canola and wheat, because there is some
information redundancy between the features. In other words, if two features are highly
correlated and one feature has a high score, the other feature may have a low score.
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5. Conclusions

This paper investigates the temporal characteristics of canola and wheat in different
years and evaluates the capability of Sentinel-1 data for the mapping of canola and wheat
when the multi-year radar backscattering profiles have large fluctuation. The fluctuations
were induced by agrometeorological conditions and field managements in different years,
and made it difficult to find the standard growth profiles for canola and wheat. Larger
fluctuations were observed for canola and wheat over the early stages when the canopy
was sparse, and over the harvest stage when the harvest patterns were complex. Low
variances in backscattering were observed for canola and wheat from the flowering to the
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ripening stage, when high biomass limited the penetration, and the canopy of fields with
different sowing dates became similar.

Although there were large fluctuations for the multi-year backscattering of canola and
wheat, the different canopy structures of wheat and canola made them have significantly
different backscattering coefficients. The classification results show that there was good
separability for canola and wheat in all stages, and canola and wheat have a wider time
window for good-quality mapping with Sentinel-1 images than that with optical or multi-
spectral images. This finding is also consistent with the single-temporal classification results
and the importance scores of multi-temporal features. The single-temporal classification
accuracies of canola and wheat in the jointing stage were close to 90%, which is useful for
their mapping in the early phenological stage. The similar accuracies of single- and multi-
temporal classification in the middle phenological stages indicate that the single-temporal
Sentinel-1 image can sufficiently map the canola and wheat well. These backscattering
characteristics analysis and classification results show the capability of Sentinel-1 SAR
images in the mapping of canola and wheat on a large scale. In the future, canola and
wheat in different phenological divisions will be mapped in GEE using SAR images.
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