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Abstract: Hyperspectral image classification (HSI) has rich applications in several fields. In the past
few years, convolutional neural network (CNN)-based models have demonstrated great performance
in HSI classification. However, CNNs are inadequate in capturing long-range dependencies, while it
is possible to think of the spectral dimension of HSI as long sequence information. More and more
researchers are focusing their attention on transformer which is good at processing sequential data.
In this paper, a spectral shifted window self-attention based transformer (SSWT) backbone network
is proposed. It is able to improve the extraction of local features compared to the classical transformer.
In addition, spatial feature extraction module (SFE) and spatial position encoding (SPE) are designed
to enhance the spatial feature extraction of the transformer. The spatial feature extraction module
is proposed to address the deficiency of transformer in the capture of spatial features. The loss of
spatial structure of HSI data after inputting transformer is supplemented by proposed spatial position
encoding. On three public datasets, we ran extensive experiments and contrasted the proposed model
with a number of powerful deep learning models. The outcomes demonstrate that our suggested
approach is efficient and that the proposed model performs better than other advanced models.

Keywords: transformer; shifted window; spatial feature extraction (SFE); spatial position encoding
(SPE); hyperspectral image (HSI) classification

1. Introduction

Because of the rapid advancement of hyperspectral sensors, the resolution and accu-
racy of hyperspectral images (HSI) have also increased greatly. HSI contains a wealth of
spectral information, collecting hundreds of bands of electron spectrum at each pixel. Its
rich information allows for excellent performance in classifying HSI, and thus its application
has great potential in several fields such as precision agriculture [1] and Jabir et al. [2] used
machine learning algorithm for weed detection, medical imaging [3], object detection [4],
urban planning [5], environment monitoring [6], mineral exploration [7], dimensionality
reduction [8] and military detection [9].

Numerous conventional machine learning methods have been used to the classifi-
cation of HSI in the past decade or so, such as K-nearest neighbors (KNN) [10], support
vector machines (SVM) [11–14], random forests [15,16]. Navarro et al. [17] used neural
network for hyperspectral image segmentation. However, as the size and complexity of the
training set increases, the fitting ability of traditional methods can show weakness for the
task, and the performance often encounters bottlenecks. Song et al. [18] proposed a HSI
classification method based on the sparse representation of KNN, but it cannot effectively
apply the spatial information in HSI. Guo et al. [19] used a fused SVM of spectral and
spatial features for HSI classification, but it is still difficult to extract important features
from high-dimensional HSI data. Deep learning have developed rapidly in recent years,
and their powerful fitting ability can extract features from multivariate data. Inspired by
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this, the designed deep learning models have proposed in HSI classification tasks, such
as recurrent neural network (RNN) [20–22], convolutional neural network (CNN) [23–28],
graph convolutional network (GCN) [29,30], capsule network (CapsNet) [31,32], long short
term memory (LSTM) networks [33–35]. Although these deep learning models show
good performance in several different domains, they have certain shortcomings in HSI
classification tasks.

For CNNs, which are good at natural image tasks, Its benefit is that the image’s
spatial information can be extracted during the convolution operation. HSI-CNN [36]
stacks multi-dimensional data from HSI into two-dimensional data and then extracts
features efficiently. 2D-CNN [37] can capture spatial features in HSI data to improve
classification accuracy. However, HSI has rich information in the spectral dimension, and if
it is not exploited, the performance of the model is bound to be difficult to break through.
Although the advent of 3D-CNN [38–41] enables the extraction of both spatial and spectral
features, the convolution operation is localized, so the extracted features lack the mining
and representation of the global Information.

Recently, transformer has evolved rapidly and shown good performance when per-
forming tasks like natural language processing. Based on its self-attention mechanism, it is
very good at processing long sequential information and extracting global relations. Vision
transformer (ViT) [42] makes it perform well in several vision domains by dividing images
into patches and then inputting them into the model. Swin-transformer [43] enhances the
capability of local feature extraction by dividing the image into windows and performing
multi-head self-attention (MSA) separately within the windows, and then enabling the
exchange of information between the windows by shifting the windows. It improves the
accuracy in natural image processing tasks and effectively reduces the computational effort
in the processing of high-resolution images. Due to transformer’s outstanding capabilities
for natural image processing, more and more studies are applying it to the classification of
HSI [44–50]. However, if ViT is applied directly to the HSI classification, there will be some
problems that will limit the performance improvement, specifically as follows.

(1) The transformer performs well at handling sequence data( spectral dimension infor-
mation), but lacks the use of spatial dimension information.

(2) The multi-head self-attention (MSA) of transformer is adept at resolving the global
dependencies of spectral information, but it is usually difficult to capture the relation-
ships for local information.

(3) Existing transformer models usually map the image to linear data to be able to input into
the transformer model. Such an operation would destroy the spatial structure of HSI.

HSI can be regarded as a sequence in the spectral dimension, and the transform
is effective at handling sequence information, so the transformer model is suitable for
HSI classification. The research in this paper is based on tranformer and considers the
above mentioned shortcomings to design a new model, called spectral-swin transformer
(SSWT) with spatial feature extraction enhancement, and apply it in HSI classification.
Inspired by swin-transformer and the characteristics of HSI data which contain a great
deal of information in the spectral dimension, we design a method of dividing and shifting
windows in the spectral dimension. MSA is performed within each window separately,
aiming to improve the disadvantage of transformer to extract local features. We also design
two modules to enhance model’s spatial feature extraction. In summary, the following are
the contributions of this paper.

(1) Based on the characteristics of HSI data, a spectral dimensional shifted window multi-
head self-attention is designed. It enhances the model’s capacity to capture local
information and can achieve multi-scale effect by changing the size of the window.

(2) A spatial feature extraction module based on spatial attention mechanism is designed
to improve the model’s ability to characterize spatial features.

(3) A spatial position encoding is designed before each transformer encoder to deal with
the lack of spatial structure of the data after mapping to linear.
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(4) Three publicly accessible HSI datasets are used to test the proposed model, which is
compared with advanced deep learning models. The proposed model is extremely com-
petitive.

The rest of this paper is organized as follows: Section 2 discusses the related work on
HSI classification using deep learning, which includes transformer. Section 3 describes the
proposed model and the design method for each component. Section 4 presents the three
HSI datasets, as well as the experimental setup, results, corresponding analysis. Section 5
concludes with a summary and outlook of the full paper.

2. Related Work
2.1. Deep-Learning-Based Methods for HSI Classification

Deep learning has developed quickly, more and more researchers are using deep
learning methods(e.g., RNNs, CNNs, GCNs, CapsNet, LSTM) to the classification tasks
of HSI [20,22,23,29–31,33,34]. Mei et al. [51] constructed a network based on bidirectional
long short-term memory (Bi-LSTM) for HSI classification. Zhu et al. [52] proposed an end-
to-end residual spectral–spatial attention network (RSSAN) for HSI classification, which
consists of spectral and spatial attention modules for spectral band and spatial information
adaptive selection. Song et al. [53] created a deep feature fusion network (DFFN) to solve
the negative effects of excessively increasing network depth.

Due to CNN’s excellent capability of taking the local spatial context information and it’s
outstanding capabilities in natural picture processing, many CNN-based HSI classification
models have emerged. For example, Hang et al. [54] proposed two CNN sub-networks based
on the attention mechanism for extracting the spectral and spatial features of HSI, respectively.
Chakraborty et al. [55] designed a wavelet CNN that uses layers of wavelet transforms to
display spectral features. Gong et al. [56] proposed a hybrid model that combines 2D-CNN
and 3D-CNN in order to include more in-depth spatial and spectral features while using
fewer learning samples. Hamida et al. [57] introduced a new 3-D DL method that permits the
processing of both spectral and spatial information simultaneously.

However, each of these deep learning approaches has some respective drawbacks that
can limit the model performance when processing HSI classification tasks. For CNN, it is
good at handling two-dimensional spatial features, but since the data of HSI is stereoscopic
and contains a large amount of information in the spectral dimension. It’s possible that
CNN will have trouble extracting the spectral features. Moreover, although CNNs have
achieved good results by relying on their local feature focus, the inability to deal with
global dependencies limits their performance when processing spectral information in the
form of long sequences. These shortcomings will be addressed in the transformer.

2.2. Vision Transformers for Image Classification

With the increasing use of transformers in computer vision, researchers have begun to
consider images in terms of sequential data, such as ViT [42] and Swin-transformer [43]
etc. Fang et al. [58] proposed MSG-Transformer, which presents a specialized token in
each region as a messenger (MSG). Information can be transmitted flexibly among areas
and computational cost is decreased by manipulating these MSG tokens. Guo et al. [59]
proposed CMT, which combines the advantages of CNN and ViT, a new hybrid transformer-
based network that captures long-range dependencies using transformers and extracts local
information using CNN. Chen et al. [60] designed MobileNet and transformer in parallel,
connected in the middle by a two-way bridge. This structure benefits from MobileNet for
local processing and Transformer for global communication.

An increasing number of researchers are applying transformer to HSI classification
tasks. Hong et al. [44] proposed a model called SpectralFormer (SF) for HSI classifi-
cation, which divides neighboring bands into the same token for learning features and
connects encoder blocks across layers, but the spatial information in HSI was not considered.
Sun et al. [45] proposed the Spectral-Spatial Feature Tokenization Transformer (SSFTT) to
capture high-level semantic information and spectral-spatial features, resulting in a large



Remote Sens. 2023, 15, 2696 4 of 19

performance improvement. Ayas et al. [61] designs a spectal-swin module in front of the
swin transformer, which extracts spatial and spectral features and fuses them with Conv
2-D operation and Conv 3-D operation, respectively. Mei et al. [47] proposed the Group-
Aware Hierarchical Transformer (GAHT) to restrict the MSA to a local spatial-spectral
range by using a new group pixel embedding module, which enables the model to have
improved capability of local feature extraction. Yang et al. [46] proposed a hyperspectral
image transformer (HiT) classification network that captures subtle spectral differences
and conveys local spatial context information by embedding convolutional operations in
the transformer structure, however it is not effective in capturing local spectral features.
Transformer is increasingly used in the field of HSI classification and we believe it has great
potential for the future.

3. Methodology

In this section, we will introduce the proposed spectral-swin transformer (SSWT)
with spatial feature extraction enhancement, which will be described in four aspects: the
overall architecture, spatial feature extraction module(SFE), spatial position encoding(SPE),
and spectral swin-transformer module.

3.1. Overall Architecture

In this paper, we design a new transformer-based method SSWT for the HSI clas-
sification. SSWT consists of two major Components for solving the challenges in HSI
classification, namely, spatial feature extraction module(SFE) and spectral swin(S-Swin)
transformer module. An overview of the proposed SSWT for the HSI classification is
shown in Figure 1. The input to the model is a patch of HSI. the data is first input to SFE
to perform initial spatial feature extraction, the module consists of convolution layers and
spatial attention. In Section 3.2, it is explained in further detail. The data is then flattened
and entered into the s-swin transformer module. A spatial position encoding is added
in front of each s-swin transformer layer to add spatial structure to the data. This part
will be described in Section 3.3. The s-swin transformer module uses the spectral-swin
self attention, which will be introduced in Section 3.4. The final classification results are
obtained by linear layers.

Figure 1. Overall structure of the proposed SSWT model for HSI classification.

3.2. Spatial Feature Extraction Module

Due to transformer’s lack of ability in handling spatial information and local features,
we designed a spatial feature extraction (SFE) module to compensate. It consists of two
parts, the first one consists of convolutional layers to preliminary extraction of spatial
features and batch normalization to prevent overfitting. The second part is a spatial
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attention mechanism, which aims to enable the model to learn the important spatial
locations in the data. The structure of SFE is shown in Figure 1.

For the input HSI patch cube I ∈ RH×W×C, where H ×W is the spatial size and C is
the number of spectral bands. Each pixel space in I consists of C spectral dimensions and
forms a one-hot category vector S = [s1, s2, s3, · · · , sn] ∈ R1×1×n, where n is the number of
ground object classes.

Firstly, the spatial features of HSI are initially extracted by CNN layers, and the
formula is shown as follows:

X = GELU
(

BN
(

Conv
(

I
)))

(1)

where Conv(·) represents the convolution layer. BN(·) represents batch normalization.
GELU(·) denotes the activation function. The formula for the convolution layer is
shown below:

Conv(I) =
J
||

j=0
(I ∗Wr1×r2

j + bj) (2)

where I is the input, J is the number of convolution kernels, Wr1×r2
j is the jth convolution

kernel with the size of r1× r2, and bj is the jth bias. || denotes concatenation, and ∗ is
convolution operation.

Then, the model may learn important places in the data thanks to a spatial attention
mechanism (SA). The structure of SA is shown in Figure 2. For an intermediate feature
map X ∈ RH′×W ′×C(H′ ×W ′ is the spatial size of X), the process of SA is shown in the
following formula:

SM = MaxPooling(X) (3)

SA = AvgPooling(X) (4)

XSA = σ

(
Conv

(
Concat

(
SM, SA

)))
⊗ X (5)

MaxPooling and AvgPooling are global maximum pooling and global average pooling
along the channel direction. Concat denotes concatenation in the channel direction. σ is
activation function. ⊗ denotes the elementwise multiplication.

Figure 2. The structure of the spatial attention in SFE.

3.3. Spatial Position Encoding

The HSI of the input transformer is mapped to linear data, which can damage the
spatial structure of HSI. To describe the relative spatial positions between pixels and to
maintain the rotational invariance of samples, a spatial position encoding (SPE) is added
before each transformer module.

The input to HSI classification is a patch of a region, but only the label of the center
pixel is the target of classification. The surrounding pixels can provide spatial information
for the classification of center pixel, and their importance tends to decrease with the distance
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to the center. SPE is to learn such a center-important position encoding. The pixel positions
of a patch is defined as follows.

pos(xi, yi) = |xi − xc|+ |yi − yc|+ 1 (6)

where (xc, yc) denotes the coordinate of central position of the sample, that is the pixel to be
classified. (xi, yi) denotes the coordinates of other pixels in the sample. The visualization
of SPE when the spatial size of the sample is 7× 7 can be seen in Figure 3. The pixel in
the central position is unique and most important, and the other pixels are given different
position encoding depending on the distance from the center.

To flexibly represent the spatial structure in HSI, the learnable position encoding are
embedded in the data:

Y = X + spe(P) (7)

where X is the HSI data, and P represents the position matrix (like Figure 3) constructed
according to Equation (6). spe(·) is a learnable array that takes the position matrix as a
subscript to get the final spatial position encoding. Finally, the position encoding is added
to the HSI data.

Figure 3. SPE in a sample with the spatial size is 7 × 7.

3.4. Spectral Swin-Transformer Module

The structure of the spectral swin-transformer (S-SwinT) module is shown in Figure 1.
Transformer is good at processing long dependencies and lacks the ability to extract local
features. Inspired by swin-transformer [43], window-based multi-head self-attention (MSA)
is used in our model. Because the input of HSI is a patch which is usually small in spatial
size, it cannot divide the window in space as Swin-T does. Considering the rich data of HSI
in the spectral dimension, a window of spectral shift was designed for MSA, called spectral
window multi-head self-attention (S-W-MSA) and spectral shifted window multi-head
self-attention (S-SW-MSA). MSA within windows can effectively improve local feature
capturing, and window shifting allows information to be exchanged in the neighboring
windows. MSA can be expressed by the following formula:

Z = Attn(Q, K, V) = so f tmax
(

QKT
√

dK

)
V (8)

ψ = Concat(Z1, Z2, · · · , Zh)W (9)

Q, K, V are matrices mapped from the input matrices called queries, keys and values.
dK is the dimension of K. The attention scores are calculated from Q and K. h is the head
number of MSA, W denotes the output mapping matrix., and ψ represents the output
of MSA.

As shown in Figure 4, the size of input is assumed to be H ×W × C, where H ×W is
the space size and C is the number of spectral bands. Given that all windows’ size is set to
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C/4, the window is divided uniformly for the spectral dimension. The size of each window
after division is [C/4, C/4, C/4, C/4]. Then MSA is performed in each window. Next the
window is moved half a window in the spectral direction, The size of each window at this
point is [C/8, C/4, C/4, C/4, C/8]. MSA is again performed in each window. Wherefore,
the process of S-W-MSA with m windows is:

Y(m) =
[
ψ(y(1))⊕ ψ(y(2))⊕, · · · ,⊕ψ(y(m))

]
(10)

where ⊕means concat, y(i) is the data of the i-th window.

(a)

(b)

Figure 4. The structure of (a) S(W)-MSA of SwinT and (b) S-(S)W-MSA of SSWT (ours).

Compared to SwinT, the other components of the S-SwinT module remain the same
except for the design of the window, such as MLP, layer normalization (LN) and residual
connections. Figure 1 describes two nearby S-SwinT modules in each stage, which can be
represented by the following formula.

Ŷl = S-W-MSA(LN(Yl−1)) + Yl−1 (11)

Yl = MLP(LN(Ŷl)) + Ŷl (12)

Ŷl+1 = S-SW-MSA(LN(Yl)) + Yl (13)

Yl+1 = MLP(LN(Ŷl+1)) + Ŷl+1 (14)
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where S-W-MSA and S-SW-MSA denote the spectral window based and spectral shifted
window based MSA, Ŷl and Yl are the outputs of S-(S)W-MSA and MLP in block l.

4. Experiment

In this section, we conducted extensive experiments on three benchmark datasets to
demonstrate the effectiveness of the proposed method, including Pavia University (PU),
Salinas (SA) and Houston2013 (HU).

4.1. Dataset

The three datasets that utilised in the experiments are detailed here.

(1) Pavia University:The Reflective Optics System Imaging Spectrometer (ROSIS) sensor
acquired the PU dataset in 2001. It comprises 115 spectral bands with wavelengths
ranging from 380 to 860 nm. Following the removal of the noise bands, there are
now 103 open bands for investigation. The image measures 610 pixels in height and
340 pixels in width. The collection includes 42,776 labelled samples of 9 different land
cover types.

(2) Salinas: The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor ac-
quired the SA dataset in 1998. The 224 bands in the original image have wavelengths
between 400 and 2500 nm. 204 bands are used for evaluating after the water absorption
bands have been removed. The data has 512 and 217 pixels of height and width, respec-
tively. There are 16 object classes represented in the dataset’s 54,129 marked samples.

(3) Houston2013: The Hyperspectral Image Analysis Group and the NSF-funded Airborne
Laser Mapping Center (NCALM) at the University of Houston in the US provided the
Houston 2013 dataset. The 2013 IEEE GRSS Data Fusion Competition used the dataset
initially for scientific research. It has 144 spectral bands with wavelengths between
0.38 and 1.05 m. This dataset contains 15 classes and measures 349 × 1905 pixels with
a 2.5 m spatial resolution.

We divided the label samples in different ways for each dataset. Tables 1–3 provide
specifics on the number of each class for the three dataset training, validation, and testing
sets. False-color map and ground-truth map of three datasets are shown in Figures 5–7.

(a) (b)

Figure 5. Visualization of PU Datasets. (a) False-color map. (b) Ground-truth map.
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(a) (b)

Figure 6. Visualization of SA Datasets. (a) False-color map. (b) Ground-truth map.

(a)

(b)

Figure 7. Visualization of HU Datasets. (a) False-color map. (b) Ground-truth map.

Table 1. Number of training, validation and testing samples for the PU dataset.

No. Name Train. Val. Test.
1 Asphalt 83 83 6465
2 Meadows 233 233 18,183
3 Gravel 26 26 2047
4 Trees 38 38 2987
5 Painted metal sheets 17 17 1311
6 Bare Soil 63 63 4903
7 Bitumen 17 17 1297
8 Self-Blocking Bricks 46 46 3590
9 Shadows 12 12 923

- Total 535 535 41,706
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Table 2. Number of training, validation and testing samples for the SA dataset.

No. Name Train. Val. Test.
1 Brocoli_green_weeds_1 25 25 1959
2 Brocoli_green_weeds_2 47 47 3633
3 Fallow 25 25 1927
4 Fallow_rough_plow 17 17 1358
5 Fallow_smooth 33 33 2611
6 Stubble 49 49 3860
7 Celery 45 45 3490
8 Grapes_untrained 141 141 10,989
9 Soil_vinyard_develop 78 78 6048
10 Corn_senesced_green_weeds 41 41 3196
11 Lettuce_romaine_4wk 13 13 1041
12 Lettuce_romaine_5wk 24 24 1879
13 Lettuce_romaine_6wk 11 11 893
14 Lettuce_romaine_7wk 13 13 1043
15 Vinyard_untrained 91 91 7086
16 Vinyard_vertical_trellis 23 23 1762

- Total 676 676 52,775

Table 3. Number of training, validation and testing samples for the HU dataset.

No. Name Train. Val. Test.
1 Healthy grass 31 31 1188
2 Stressed grass 31 31 1191
3 Synthetic grass 17 17 662
4 Trees 31 31 1182
5 Soil 31 31 1180
6 Water 8 8 309
7 Residential 32 32 1205
8 Commercial 31 31 1182
9 Road 31 31 1189
10 Highway 31 31 1166
11 Railway 31 31 1173
12 Parking Lot 1 31 31 1171
13 Parking Lot 2 12 12 446
14 Tennis Court 11 11 407
15 Running Track 17 17 627

- Total 376 376 14,278

4.2. Experimental Setting

(1) Evaluation Indicators: To quantitatively analyse the efficacy of the suggested method
and other methods for comparison, four quantitative evaluation indexes are intro-
duced: overall accuracy (OA), average accuracy (AA), kappa coefficient (κ), and the
classification accuracy of each class. A better classification effect is indicated by a
higher value for each indicator.

(2) Configuration: All verification experiments for the proposed technique were per-
formed in the PyTorch environment using a desktop computer with an Intel(R)
Core(TM) i7-10750H CPU, 16GB of RAM, and an NVIDIA Geforce GTX 1660Ti 6-
GB GPU. The learning rate was initially set to 1× 10−3 and the Adam optimizer was
selected as the initial optimizer. The size of each training batch was set to 64. Each
dataset received 500 training epochs.
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4.3. Parameter Analysis
4.3.1. Influence of Patch Size

Patch size is the spatial size of the input patches, which determines the spatial informa-
tion that the model can utilize when classifying HSIs. Therefore, The model’s performance
is influenced by the patch size. A too large patch size will increase the computational
burden of the model. In this section we compare a set of patch sizes {3, 5, 7, 9, 11, 13} to
explore the effect of patch size on the model. The experimental results about patch size on
the three datasets are shown in Figure 8. A similar trend was observed in all three datasets,
OA first increased and then stabilized with increasing patch size. Specifically, the highest
value of OA is achieved when the patch size is 9 in the PU and HU datasets, and the highest
value of OA is achieved when the patch size is 11 in the SA dataset.

The size of patch is positively correlated with the spatial information contained in
the patch. Increasing the patch means that the model can learn more spatial information,
which will be beneficial to improve OA. And when the patch increases to a certain size,
the distance between the pixels in the newly region and the center pixel is too far, and the
spatial information that can be provided is of little value. So the improvement of OA is not
much, and the OA will tend to be stable at this time.

Figure 8. Overall accuracy(%) with different patch sizes on the three datasets. The window numbers
in transformer layers is set to [1, 2, 2, 4].

4.3.2. Influence of Window Number

In proposed S-SW-MSA, the number of windows is a parameter that can be set de-
pending on the characteristics of the dataset. Moreover, the number of windows can be
different for each transformer layer in order to extract multiple scales of features. We set
up six sets of experiments, the model contains four transformer layers in the first four sets,
and five transformer layers in the last two sets. the numbers in [] indicate the number of
windows of S-SW-MSA in each transformer layer. The experimental results on the three
datasets are shown in Table 4. According to the experimental results, the best OA for each
dataset was obtained for different window number settings, and the best OA was obtained
for the PU, SA and HU datasets in the 4th, 2nd and 6th group settings, respectively. We
also found that increasing the number of transformer layers does not necessarily increase
the performance of the model. For example, the best OA is achieved when the number of
transformer layers is 4 for the PU and SA datasets and 5 for the HU dataset. Because the
features of each dataset are different, the parameter settings will change accordingly.
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Table 4. Overall accuracies (%) of proposed model with different number of windows in transformer
layers on SA, PU and HU datasets. The patch size is set to 9.

Windows Size PU SA HU

[1, 1, 2, 2] 97.05 97.56 93.24
[1, 2, 2, 4] 97.86 97.80 93.35
[2, 2, 4, 4] 98.33 96.93 93.31
[2, 2, 4, 8] 98.37 97.70 93.58
[1, 1, 2, 4, 8] 98.20 96.25 93.38
[2, 2, 4, 4, 8] 98.25 96.31 93.69

4.4. Ablation Experiments

To sufficiently demonstrate that proposed method is effective, we conducted ablation
experiments on the Pavia University dataset. With ViT as the baseline, the components of
the model are added separately: S-Swin, SPE and SFE. In total, there are 5 combinations.
The experimental results are shown in the Table 5. The classification overall accuracy of
ViT without any improvement was 84.43%. SPE, SFE and S-Swin are proposed improve-
ments for the ViT backbone network, which can respectively increase classification overall
accuracy of 1.69%, 7.21% and 7.87% after adding into the model. The classification overall
accuracy of applying the two improvements to the model together can reach 93.78%, which
is higher than baseline by 9.35%. It is considered to be a great result for the improved pure
transformer, but it’s a little lower than our final result. After the SFE was added to the
model, the classification overall accuracy improved by 4.59%, eventually reaching 98.37.

Table 5. Ablation experiments in PU.

Method
Module (%) Metric (%)

S-Swin SPE SFE OA(%) AA(%) κ × 100 (%)

ViT(Baseline) % % % 84.43 78.06 78.95
ViT % ! % 86.12 80.18 81.31
ViT % % ! 91.64 90.43 88.97
SSWT(Ours) ! % % 92.30 89.58 89.75
SSWT(Ours) ! ! % 93.78 91.17 91.74
SSWT(Ours) ! ! ! 98.37 97.25 97.84

4.5. Classification Results

The proposed model’s outcomes are compared with those of the advanced deep
learning models: a LSTM based network (Bi-LSTM) [51], a 3-D CNN-based deep learn-
ing network (3D-CNN) [57], a deep feature fusion network (DFFN) [53], a RSSAN [52],
and some transformer based model include a Vit, Swin-transformer (SwinT) [43], a Spec-
tralFormer (SF) [44], a Hit [46] and a SSFTT [45].

Tables 6–8 show the OA, AA, κ and the accuracy of each category for each model’s
classification on the three public datasets. Each result is the average of repeating the
experiment five times. The best results are shown in bold. As the results show, proposed
SSWT performs the best. On the PU dataset, SSWT is 1.02% higher than SSFTT, 3.85%
higher than HiT, 9.01% higher than SwinT and 1.51% higher than RSSAN in terms of OA.
Moreover, SSWT outperforms other models in terms of AA and κ. SSWT achieved the
highest classification accuracy in 7 out of 9 categories. On the SA dataset, the advantage of
SSWT is more prominent. SSWT is 3.22% higher than SSFTT, 3.99% higher than HiT, 7.10%
higher than SwinT, 2.64% higher than RSSAN, and 3.01% higher than DFFN in terms of
OA. The same advantage was achieved for SSWT in AA and κ. SSWT achieved the highest
classification accuracy in 11 out of 16 categories. Similar results can be observed in HU
dataset, where SSWT achieved significant advantages in all three metrics of OA, AA and κ.
SSWT achieved the highest classification accuracy in 6 out of 15 categories.
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Table 6. Classification results of the PU dataset.

Class Bi-LSTM 3D-CNN RSSAN DFFN Vit SwinT SF Hit SSFTT SSWT

1 91.67 ± 0.83 95.16 ± 1.56 97.12 ± 0.57 96.66 ± 0.81 87.96 ± 1.80 93.05 ± 5.32 89.41 ± 2.23 93.72 ± 1.44 97.31 ± 1.12 98.06 ± 0.24
2 96.96 ± 1.60 98.31 ± 0.96 99.46 ± 0.11 99.05 ± 0.51 96.56 ± 3.00 96.98 ± 1.43 97.22 ± 0.76 98.66 ± 0.48 99.37 ± 0.26 99.91 ± 0.08
3 70.65 ± 9.73 36.91 ± 6.18 85.74 ± 5.05 70.37 ± 12.56 53.18 ± 19.35 29.49 ± 23.08 77.28 ± 3.19 80.42 ± 7.56 87.25 ± 5.43 94.59 ± 2.40
4 92.88 ± 2.78 95.52 ± 1.58 96.92 ± 1.32 94.22 ± 3.16 89.76 ± 2.25 92.09 ± 1.41 90.80 ± 1.92 94.74 ± 1.84 97.59 ± 1.15 97.70 ± 1.05
5 99.10 ± 0.60 99.83 ± 0.34 99.86 ± 0.17 99.97 ± 0.06 100.00 ± 0.00 99.16 ± 0.59 100.00 ± 0.00 99.95 ± 0.04 99.95 ± 0.06 99.85 ± 0.27
6 67.03 ± 14.76 49.91 ± 12.17 97.00 ± 1.09 95.07 ± 3.03 51.97 ± 7.05 88.47 ± 5.03 82.13 ± 6.02 95.54 ± 2.05 97.00 ± 1.60 98.37 ± 1.63
7 82.67 ± 3.31 46.74 ± 14.05 84.15 ± 5.66 74.68 ± 7.86 47.59 ± 8.36 45.18 ± 31.47 52.80 ± 6.23 75.17 ± 8.05 91.43 ± 3.70 91.95 ± 5.61
8 83.17 ± 3.25 89.73 ± 3.00 92.49 ± 1.51 87.38 ± 4.34 78.79 ± 8.88 92.76 ± 1.65 81.81 ± 4.44 85.83 ± 4.19 93.81 ± 1.51 95.35 ± 5.61
9 98.94 ± 0.51 98.66 ± 0.62 98.37 ± 0.96 99.57 ± 0.22 96.71 ± 1.00 76.85 ± 12.09 96.32 ± 1.38 97.16 ± 1.29 99.72 ± 0.20 99.48 ± 0.88

OA(%) 89.52 ± 1.91 86.63 ± 1.43 96.86 ± 0.36 94.74 ± 1.40 84.43 ± 1.56 89.36 ± 3.14 90.16 ± 0.89 94.52 ± 1.03 97.35 ± 0.45 98.37 ± 0.24
AA(%) 87.01 ± 1.97 78.97 ± 2.05 94.57 ± 0.84 90.77 ± 2.46 78.06 ± 2.56 79.34 ± 7.46 85.31 ± 1.20 91.24 ± 1.94 95.94 ± 0.73 97.25 ± 0.64
κ × 100 85.94 ± 2.63 81.79 ± 2.04 95.84 ± 0.48 93.00 ± 1.87 78.95 ± 2.03 85.82 ± 4.23 86.87 ± 1.21 92.74 ± 1.37 96.49 ± 0.60 97.84 ± 0.32

Table 7. Classification results of the SA dataset.

Class Bi-LSTM 3D-CNN RSSAN DFFN Vit SwinT SF Hit SSFTT SSWT

1 79.24 ± 39.63 97.09 ± 1.46 99.58 ± 0.48 97.12 ± 0.89 90.19 ± 2.51 72.30 ± 1.87 95.05 ± 1.49 98.69 ± 2.05 99.44 ± 0.90 99.79 ± 0.43
2 98.94 ± 0.55 99.90 ± 0.08 99.36 ± 0.87 99.58 ± 0.14 98.05 ± 1.17 97.24 ± 1.92 99.32 ± 0.18 99.32 ± 0.35 99.80 ± 0.34 99.80 ± 0.17
3 85.20 ± 12.23 88.23 ± 4.35 97.01 ± 1.63 95.01 ± 3.54 87.52 ± 1.83 89.31 ± 2.96 92.89 ± 1.29 95.51 ± 2.29 98.41 ± 1.04 98.48 ± 1.54
4 97.79 ± 1.21 98.22 ± 1.10 98.56 ± 0.70 96.67 ± 1.39 94.11 ± 1.43 96.12 ± 1.50 94.05 ± 2.02 98.82 ± 0.51 99.59 ± 0.56 98.53 ± 1.23
5 96.40 ± 1.22 93.41 ± 2.41 96.06 ± 1.37 96.87 ± 1.04 82.59 ± 2.93 97.68 ± 0.76 93.24 ± 1.83 96.03 ± 2.17 98.28 ± 0.77 98.74 ± 0.80
6 99.46 ± 0.37 99.79 ± 0.32 99.36 ± 1.00 99.84 ± 0.30 99.44 ± 0.64 98.89 ± 1.29 99.68 ± 0.36 99.99 ± 0.02 99.98 ± 0.02 99.96 ± 0.06
7 98.84 ± 0.36 99.47 ± 0.23 99.28 ± 0.40 99.62 ± 0.28 98.05 ± 0.71 97.79 ± 0.92 98.81 ± 0.47 98.88 ± 0.62 99.44 ± 0.46 99.72 ± 0.42
8 83.66 ± 3.85 82.53 ± 2.36 90.93 ± 2.87 89.16 ± 1.74 82.79 ± 1.93 87.64 ± 1.38 85.03 ± 2.46 88.55 ± 1.73 90.08 ± 4.06 95.87 ± 1.47
9 97.84 ± 1.34 98.51 ± 1.11 99.66 ± 0.26 98.88 ± 0.80 96.38 ± 0.57 99.16 ± 0.63 98.05 ± 0.64 99.62 ± 0.37 99.53 ± 0.24 99.92 ± 0.06
10 81.10 ± 8.62 89.40 ± 2.50 95.58 ± 2.48 95.39 ± 1.01 75.44 ± 3.81 89.52 ± 3.74 91.23 ± 2.28 93.74 ± 2.38 95.73 ± 2.58 97.07 ± 1.88
11 83.59 ± 6.83 73.95 ± 4.65 93.37 ± 5.75 92.56 ± 5.81 70.47 ± 15.29 83.99 ± 14.49 89.86 ± 4.74 91.16 ± 6.19 94.66 ± 4.66 95.64 ± 4.52
12 98.84 ± 0.61 99.21 ± 0.56 99.36 ± 0.79 99.97 ± 0.03 98.67 ± 1.31 95.76 ± 0.75 98.45 ± 1.46 99.30 ± 0.64 99.80 ± 0.28 99.78 ± 0.45
13 94.78 ± 2.72 99.66 ± 0.07 98.92 ± 0.99 99.98 ± 0.04 96.28 ± 2.05 94.92 ± 6.31 98.61 ± 0.92 98.99 ± 1.12 99.06 ± 1.66 99.87 ± 0.18
14 90.20 ± 2.51 97.24 ± 1.05 96.63 ± 0.57 98.52 ± 0.76 96.51 ± 1.38 94.47 ± 1.04 95.03 ± 2.32 97.16 ± 0.77 95.61 ± 2.88 99.23 ± 0.55
15 78.87 ± 9.66 73.91 ± 2.47 86.60 ± 3.27 87.97 ± 2.81 72.03 ± 5.50 86.75 ± 6.26 79.87 ± 3.00 81.79 ± 3.34 81.36 ± 6.09 94.10 ± 2.05
16 90.27 ± 9.62 92.36 ± 1.46 96.67 ± 1.27 95.16 ± 2.32 91.57 ± 0.75 92.77 ± 3.30 95.35 ± 0.99 96.79 ± 1.67 97.20 ± 1.02 98.40 ± 1.08

OA(%) 89.66 ± 3.03 90.22 ± 0.70 95.16 ± 0.35 94.79 ± 0.80 87.58 ± 0.37 90.70 ± 2.38 91.81 ± 0.73 93.81 ± 0.56 94.58 ± 0.41 97.80 ± 0.25
AA(%) 90.94 ± 3.31 92.68 ± 0.71 96.68 ± 0.49 96.39 ± 0.57 89.38 ± 0.51 90.02 ± 3.99 94.03 ± 0.48 95.90 ± 0.24 96.75 ± 0.26 98.43 ± 0.35
κ × 100 88.49 ± 3.39 89.11 ± 0.77 94.61 ± 0.39 94.20 ± 0.89 86.17 ± 0.41 89.63 ± 2.67 90.89 ± 0.81 93.10 ± 0.62 93.97 ± 0.46 97.55 ± 0.28

Table 8. Classification results of the HU dataset.

Class Bi-LSTM 3D-CNN RSSAN DFFN Vit SwinT SF Hit SSFTT SSWT

1 84.09 ± 4.77 89.90 ± 6.62 95.05 ± 2.77 94.71 ± 5.79 90.72 ± 6.21 94.56 ± 2.55 95.05 ± 5.10 93.37 ± 4.54 93.96 ± 4.32 95.13 ± 4.45
2 90.60 ± 7.71 81.28 ± 6.08 98.05 ± 1.19 97.75 ± 1.06 83.93 ± 9.70 93.93 ± 5.83 93.53 ± 3.77 97.78 ± 0.87 98.71 ± 1.11 98.77 ± 1.18
3 75.14 ± 17.70 91.81 ± 4.04 98.67 ± 0.81 99.49 ± 0.74 88.01 ± 8.50 96.68 ± 1.98 97.19 ± 2.01 98.64 ± 0.91 99.52 ± 0.89 99.46 ± 0.67
4 90.83 ± 3.70 91.91 ± 0.35 94.06 ± 1.91 91.34 ± 0.74 85.63 ± 3.35 94.42 ± 2.77 89.54 ± 1.79 95.35 ± 1.99 96.65 ± 2.55 95.75 ± 1.55
5 92.86 ± 2.93 95.97 ± 1.83 98.29 ± 0.77 98.44 ± 0.74 95.86 ± 1.75 97.99 ± 0.74 96.97 ± 0.92 98.69 ± 0.98 99.54 ± 0.49 99.93 ± 0.08
6 52.43 ± 31.32 72.69 ± 2.15 80.58 ± 6.70 86.15 ± 6.72 6.93 ± 7.34 71.20 ± 14.20 63.88 ± 5.20 81.49 ± 2.85 90.42 ± 6.32 92.62 ± 5.67
7 72.93 ± 9.32 84.15 ± 2.50 87.09 ± 3.56 84.60 ± 3.98 64.32 ± 11.11 71.84 ± 14.62 74.67 ± 4.06 81.16 ± 5.29 86.22 ± 5.43 88.70 ± 4.61
8 55.74 ± 5.24 55.87 ± 6.14 78.88 ± 3.64 79.10 ± 3.82 66.84 ± 6.80 73.69 ± 9.90 76.31 ± 2.76 78.85 ± 2.03 82.79 ± 2.81 85.08 ± 3.38
9 73.05 ± 5.75 81.90 ± 2.13 81.77 ± 4.72 84.24 ± 4.75 66.24 ± 5.56 73.28 ± 2.75 72.94 ± 6.60 83.62 ± 5.81 89.96 ± 4.24 87.47 ± 3.31
10 39.43 ± 20.49 48.10 ± 12.51 89.76 ± 0.52 90.22 ± 5.12 63.29 ± 5.92 78.56 ± 2.66 81.13 ± 5.79 86.14 ± 5.11 93.60 ± 1.29 96.05 ± 3.71
11 66.55 ± 10.85 60.66 ± 2.63 82.85 ± 4.35 82.46 ± 3.64 58.67 ± 3.08 76.21 ± 0.37 68.80 ± 6.54 79.52 ± 4.94 86.36 ± 2.82 87.55 ± 5.08
12 67.21 ± 9.90 58.29 ± 10.86 92.13 ± 2.73 93.10 ± 2.00 61.69 ± 6.32 87.50 ± 3.52 85.02 ± 4.18 90.96 ± 3.22 88.95 ± 5.90 97.83 ± 1.12
13 19.96 ± 14.65 59.10 ± 10.82 71.21 ± 8.17 92.47 ± 1.57 40.09 ± 16.86 71.60 ± 2.70 50.85 ± 9.67 79.28 ± 2.86 92.33 ± 2.81 90.76 ± 3.15
14 89.93 ± 8.82 93.12 ± 3.76 92.38 ± 3.91 94.74 ± 2.65 77.49 ± 4.47 89.03 ± 7.12 78.28 ± 3.02 93.96 ± 2.88 96.46 ± 2.24 94.55 ± 3.68
15 90.91 ± 8.78 99.39 ± 0.77 95.82 ± 2.62 98.88 ± 0.88 91.48 ± 3.12 96.65 ± 1.75 95.15 ± 2.84 98.47 ± 1.03 98.66 ± 1.13 98.63 ± 1.56

OA(%) 72.60 ± 3.03 76.73 ± 1.69 89.76 ± 0.39 90.62 ± 0.79 72.80 ± 1.54 84.78 ± 2.39 82.97 ± 0.99 89.16 ± 1.03 92.47 ± 0.97 93.69 ± 1.07
AA(%) 70.78 ± 4.49 77.61 ± 1.80 89.11 ± 0.61 91.18 ± 0.86 69.41 ± 0.73 84.48 MSA 1.67 81.29 ± 1.16 89.15 ± 0.88 92.94 ± 1.01 93.89 ± 1.07
κ × 100 70.34 ± 3.29 74.84 ± 1.83 88.93 ± 0.42 89.86 ± 0.85 70.58 ± 1.64 83.55 MSA 2.58 81.58 ± 1.07 88.28 ± 1.11 91.86 ± 1.05 93.18 ± 1.16

We visualized the prediction results of each model on the samples to compare the
performance of the models, and the visualization results of each model on the three datasets
are shown in Figures 9–11 Proposed SSWT has less noise in all three datasets compared to
other models, and the classification result of SSWT are closest to the ground truth. In the
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PU dataset, the blue area in the middle is misclassified by many models, and the SSWT
result in the fewest errors. In the SA dataset, the pink area and the green area on the top
left show a number of errors in the classification results of other models, and the SSWT
classification results are the smoothest. A similar situation is observed in the HU dataset.
The superiority of proposed model is further demonstrated.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Classification maps of different methods in PU dataset. (a) Bi-LSTM. (b) 3D-CNN.
(c) RSSAN. (d) DFFN. (e) Vit. (f) SwinT. (g) SF. (h) Hit. (i) SSFTT. (j) Proposed SSWT.

(a) (b) (c) (d) (e)

Figure 10. Cont.
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(f) (g) (h) (i) (j)

Figure 10. Classification maps of different methods in SA dataset. (a) Bi-LSTM. (b) 3D-CNN.
(c) RSSAN. (d) DFFN. (e) Vit. (f) SwinT. (g) SF. (h) Hit. (i) SSFTT. (j) Proposed SSWT.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 11. Classification maps of different methods in HU dataset. (a) Bi-LSTM. (b) 3D-CNN.
(c) RSSAN. (d) DFFN. (e) Vit. (f) SwinT. (g) SF. (h) Hit. (i) SSFTT. (j) Proposed SSWT.

4.6. Robustness Evaluation

In order to evaluate the robustness of the proposed model, we conducted experiments
with the proposed model and other models under different numbers of training samples.
Figure 12 shows the experimental results on three datasets, we selected 0.5%, 1%, 2%, 4%,
and 8% of the samples in turn as training data for the PU and SA dataset , while 2%, 4%, 6%,
8% and 10% for the HU dataset. It can be observed that the proposed SSWT is performing
best in every situation, especially in the case of few training samples. The robustness
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of proposed SSWT and its superiority in the case of small samples can be demonstrated.
Taking the PU dataset as an example, most of the models achieve high accuracy at 8% of
the training percent, with SSWT having a small advantage. And as the training percent
decreases, SSWT has higher accuracy compared to other models. Similar results were
found on the SA and HU datasets, where SSWT showed excellent performance for all
training percents.

(a)

(b)

(c)

Figure 12. Classification results in different training percent of samples on the three datasets. (a) PU.
(b) SA. (c) HU.
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5. Conclusions

In this paper, we summarize the shortcomings of the existing ViT for HSI classification
tasks. For the lack of ability to capture local contextual features, we use the self-attentive
mechanism of shifted windows. The corresponding design is made for the characteristics
of HSI, i.e., the spectral shifted window self-attention, which effectively improves the local
feature extraction capability. For the insensitivity of ViT to spatial features and structure, we
designed the spatial feature extraction module and spatial position encoding to compensate.
The superiority of the proposed model has been verified by experimental results across
three public HSI datasets.

In future work, we will improve the calculation of S-SW-MSA to reduce its time
complexity. In addition, we will continue our research based on the transformer and try to
achieve higher performance with a model of pure transformer structure.
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