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Abstract: The exchange of energy between the land surface and atmosphere is dependent upon
crucial parameters, including surface roughness, emissivity, bulk transfer coefficients for momentum
(CD) and heat (CH). These parameters are calculated through site observation data and remote sensing
data. The following conclusions are drawn: (1) the aerodynamic roughness of the Gurbantunggut
Desert measures 1.1 × 10−2 m, which is influenced by the varying conditions of the underlying
surface. The roughness decreases as wind speed increases and is seen to be directly proportional to
the growth of vegetation. From April to June, the aerodynamic roughness increases with increasing
vegetation cover, but begins to gradually decrease after July. Spatially, the middle regions show
higher roughness values than the eastern and western areas. In the central part of the desert, the
roughness is between 2.37 × 10−2 m and 2.46 × 10−2 m from April to November. The northwest
and northeast regions measure 1.41 × 10−2 m–2.04 × 10−2 m and 1.53 × 10−2 m–2.39 × 10−2 m,
respectively. (2) The surface emissivity is 0.93, and it varies depending on the snow and vegetation
present in the underlying area. (3) CD and CH exhibit an inverse relationship with wind speed. When
wind speed falls below 6 m/s, the CD declines rapidly as wind speed increases. In contrast, once
wind speed surpasses 6 m/s, the propensity for the CD to decrease with increasing wind speed slows
down and approaches stability.

Keywords: Gurbantunggut Desert; remote sensing retrieval; aerodynamic roughness; surface
emissivity; bulk transfer coefficients for momentum (CD) and heat (CH)

1. Introduction

The Gurbantunggut Desert, the largest semi-fixed desert in China [1,2], boasts a
distinctive climate with remarkable seasonal variations. While winter brings long-term
snow, spring marks the emergence of quick-witted and hardy plants. This unique desert
environment plays a key role in shaping regional climate formation. The climate system
is mainly driven by the exchange of materials and energy between land and air. The key
parameters for energy exchange include surface roughness [3], surface emissivity, and
bulk transfer coefficients for momentum (CD) and heat (CH). Therefore, scrutinizing these
parameters and their influencing factors is crucial for understanding land–air interaction in
desert areas.
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A large number of studies have been carried out on the surface parameters, atmo-
spheric boundary layer, and stability of each underlying surface in the arid and semi-arid
zone [4], and Peng et al. [5] combined machine learning techniques, wind profile equa-
tions, station observations, and MODIS remote sensing data to estimate the daily dynamic
roughness on a global scale. Trepekli et al. [6] used a UAV-mounted lidar system to es-
timate the dynamic roughness of the underlying surface under farmland. Ma et al. [7]
evaluated a variety of thermodynamic roughness schemes, and the results showed that the
C97 scheme had the best effect on the underlying surface in the grassland of eastern Tibet.
Yang et al. [8] found that the thermodynamic roughness changed significantly between day
and night, and the average value did not change significantly with the kinetic roughness,
and compared the kB−1 and specific emissivity calculated by the seven schemes. Yang
Aqiang et al. [9] used MODIS product data to estimate the aerodynamic roughness and
zero-plane displacement height in eastern China and found that they had seasonal variation
characteristics. Wang et al. [10] used the observation data of the SACOL (Semi-Arid Climate
and Environment Observatory of Lanzhou University) station to calculate the dynamic
roughness and overall transmission coefficient of the station and found that the change of
stability significantly affects the momentum and CH and the change of the transmission
coefficient caused by stability in one day can exceed the seasonal change caused by the
change of the underlying surface. Wang et al. [11], based on the Terra-MODIS L3 grade
product MOD11C3, analyzed the temporal and spatial changes of the specific emissivity
of China and concluded that the spatiotemporal distribution of the specific emissivity in
China is related to temperature, and the higher the specific emissivity, the lower the tem-
perature. Wang et al. [12] used the 11 flux observations of the third test of the Qinghai-Tibet
Plateau (TIPEX III) to analyze the land surface parameters and turbulence characteristics of
the Qinghai-Tibet Plateau and its surrounding areas and concluded that, under unstable
conditions, the relationship between the momentum CH and the 10 m wind speed obeys
the power law, and under stable conditions, when the wind speed is less than 5 m/s, the
momentum CH increases with the increase in wind speed. Several researchers used the
wind speed profile method and wind tunnel simulation to study the dynamic roughness of
a flat sandy bed and flat sand [13–16]. Liu et al. [17] calculated multiple surface parameters
in the hinterland of the Taklamakan Desert and found that the dynamic roughness in the
region did not vary seasonally, mainly depending on wind speed. The CH is higher in
winter and lower in summer. Most of the previous studies on land surface parameters
focused on grassland, forest, and arable land and less on desert areas, which are extremely
sensitive to climate change response because of their special environment and directly
affect human activities in oasis areas. The research focuses on the Gurbantunggut Desert
and uses 2017 data from the eddy covariance system. It examines the key parameters of
energy exchange and factors that influence land–air interaction. Additionally, MODIS data
are used to retrieve aerodynamic roughness as a supplement to existing research. This fills
in some gaps and provides a necessary reference for studying land–air material energy
exchange and environmental protection in desert areas.

2. Materials and Methods
2.1. Data and Information
2.1.1. Site Data

The Gurbantunggut Desert is located in the middle of the Junggar Basin in Xinjiang,
China, with a total area of about 4.88 × 104 km2, accounting for about 6.8% of the desert
area of the country. It is the second largest desert in China. The average annual precip-
itation is less than 150 mm, rainfall is mainly concentrated in spring, and the surface is
usually covered with stable snow about 15 cm depth in winter. The spring snow melt
and precipitation is more, and the soil moisture content of sand dunes reaches the highest
throughout the year, which creates good conditions for the growth and development of
short-lived vegetation. In this paper, the surface parameters and characteristics of the
Gurbantunggut Desert analyzed by 2017 observation data from the Land-Atmospheric
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Interaction Observation Station in the Ke La Mei Li area (hereinafter referred to as KLML
Station) of the hinterland of the Gurbantunggut Desert, which was established by the
Institute of Desert Meteorological, China Meteorological Administration, Urumqi in 2012.

The KLML station (45.914′08.19”N, 87.935′23.79”E, 531 m above sea level) is located
in the middle of the Gurbantunggut Desert, and its administrative boundaries belong to
the Ke La Mei Li area of Kalamagay Township, Fuhai County, Altay Region, Xinjiang,
China. The terrain around the site is flat and open, and the height of the dunes is
generally below 50 m. The data used in this paper are from the eddy covariance system,
which uses an open-path infrared gas analyzer (Model Li7500A, Licor, Lincoln, NE, USA)
and a 3Dsonic anemometer (Model Gill Wind Master Pro, GILL Instruments Ltd., LMT,
Coventry, UK) with an installation height of 10 m. Before calculating the parameters, the
eddy data was strictly controlled using the EddyPro 7.0.6 software launched by LI-COR
in the United States.

2.1.2. Remote Sensing Data

The satellite data comes from MODIS, which is an important sensor in the satellites
TERRA and AQUA launched by the US Earth Observation System (EARTH) program. The
band of the MODIS sensor covers the full spectrum from visible light to thermal infrared,
which can detect surface and atmospheric conditions such as surface temperature, surface
vegetation cover, and atmospheric precipitation, with a maximum spatial resolution of
250 m. The normalized vegetation index obtained by MODIS detection is from MODIS’s
MOD13Q1 product, which provides a global image with a spatial resolution of 250 m every
16 days; 2017 data from the Gurbantunggut Desert was selected.

2.2. Site Parameter Calculation
2.2.1. Aerodynamic Roughness

Aerodynamic roughness is the roughness of the ground [18], which is the height at
which the wind speed is zero on the logarithmic wind profile near the ground. In this paper,
using the measured data of the KLML station, according to the Monin–Obukhov similarity
theory, the aerodynamic roughness is calculated as follows:

ln zom = ln zm − ϕm − kU/u∗ (1)

u∗ =
[(

u′w′
)2

+
(

v′w′
)2

] 1
4

(2)

where the Kármán constant k = 0.4, the gravitational constant g = 9.8 m·s−2, and zm is the
installation height of the eddy covariance system—in this paper, zm = 10; U and u∗ are the
horizontal wind speed and frictional wind speed at zm height—the former is observed by
the anemometer, and the latter is calculated by the three-dimensional wind speed observed
by the anemometer, both in m/s. The atmospheric stability conditions are judged by
(z–d)/L, d is the zero-plane displacement height, and ϕm is the dimensionless function of
atmospheric stability, which is zero under neutral atmospheric stability conditions and
is calculated by Equations (3) and (4) under unstable atmospheric conditions and stable
conditions, respectively:

ϕm

( zm

L

)
= ln

(
1 + x2

2

)
+ 2 ln

(
1− x

2

)
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π
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L =
Tau∗2

kgT∗
(5)
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T∗ = −H/
(
ρcpu∗

)
(6)

where x = [1–19zm/L]1/4; L(m) and T∗(K), respectively, are the Monin–Obukhov rough
length and friction temperature, which can be calculated from Equations (5) and (6). The
screening wind speed is greater than 1 m/s; the friction speed is greater than 0.01 m/s;
the sensible heat flux is greater than 10 W/m2; no rain; the acquisition time is daytime
flux data.

Thermodynamic roughness is usually described using heat-transfer additional damp-
ing kB−1 as follows [8]:

kB−1 = ln(zom/zoh) (7)

zoh = (70v/u∗)· exp
(
−βu∗0.5|T∗|0.25

)
(8)

In the formula, the v-air flow adhesion coefficient is 1.5 × 10−5m2·s−1;
β = 7.2 m−0.5·s0.5·K−0.25.

2.2.2. Surface Emissivity

Surface emissivity refers to the ratio of the radiation capacity of an object to the
radiation capacity of a black body at the same temperature. In this paper, the sur-
face emissivity is calculated according to the physics-based semi-empirical method of
Yang et al. [8], and the formula is as follows:

R↑lw = (1− εs)R↓lw + εsσT4
g (9)

Hs f c = ρcp
[
θg(εs)− θa

]
rh (10)

where σ = 5.67× 10−8 W·m−2·K−4, Tg is the surface temperature, and R↑lw and R↓lw are
upward longwave radiation and downward longwave radiation, respectively. The cp is the
specific heat capacity of the air at constant pressure. According to the theory of heat transfer,
the sensible heat flux (positive upward) must be consistent with the difference between
ground temperature and air temperature. Under neutral conditions, if the emissivity is
overestimated or underestimated, there is a difference between the estimated sensible heat
flux and the observed sensible heat flux. Therefore, the surface emissivity of the KLML
station is determined by minimizing the root-mean square difference (RMS) between the
sensed heat flux estimate and the observed value.

2.2.3. Bulk Transfer Coefficients for Momentum (CD) and Heat (CH)

The bulk transfer coefficients for momentum (CD) and heat (CH) characterize the
dynamic and thermal effects of turbulence, respectively, and are physical quantities that
measure the strength of turbulence. Near-surface fluxes and heat fluxes can generally be
expressed as follows:

τ = ρu∗2 = ρcdu2 (11)

H = ρcpW ′T′ = ρcpch(θs − θa)u (12)

where ρ is air density (kg/m3), u is horizontal wind speed (m/s), u∗ is friction velocity
(m/s), W′ and T′ are the pulsation values of vertical wind speed and air temperature, cp
is the constant pressure specific heat capacity of air (J/K·kg), H is the sensible heat flux
(W/m2), and θs and θa, respectively, are air temperature and surface temperature (K). In
this paper, the data of eddy-related systematic observation are calculated by the following
two formulas for CD and CH:

cd = (u∗/u)2 (13)
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ch =
H

ρcp(θs − θa)u
(14)

Among them, the air temperature and surface temperature can be calculated from
conventional data and long-wave radiation data, respectively.

2.3. Remote Sensing Retrieval Aerodynamic Roughness

In this paper, the Massman model is used to invert the aerodynamic roughness of the
surface in the Gurbantunggut Desert area. The calculation formula is as follows [19]:

u∗
u

= C1 − C2e−C3Cd LAI (15)

n =
CdLAI

2(u∗/u)2 (16)

d
z
= 1− 1

2n(1− e−2n)
(17)

zom = h
(

1− d
z

)
e−ku/u∗ × fa + (a ln(EVI) + b)h× (1− fa) (18)

where C1, C2, and C3 are 0.32, 0.264, and 15.1, respectively, and Cd = 0.2 is the drag
coefficient of vegetation. LAI is calculated from the NDVI of MODIS. n is the extinction
coefficient of the wind velocity profile in the canopy; a = 0.104, b = 0.31, and h is the
vegetation height.

3. Results
3.1. Surface Roughness
3.1.1. Aerodynamic Roughness

Based on the measured data of the KLML station, the ln zom dataset is generated.
Due to the observation error in the input measured data or the meteorological conditions
that do not meet similar theories, the calculated ln zom data are not a single value, but
correspond to a value every half hour. Therefore, the optimal value of the zom will
correspond to the peak in the ln zom frequency histogram, i.e., the most frequent ln zom
can be used to calculate the zom at which the kinetic roughness is the optimal value
for that period. For example, Figure 1a shows the frequency distribution of the KLML
station ln zom with a box width of 0.2; ln zom = −4.5 has the maximum frequency in
the smooth curve, so the optimal value of zom is 1.11 × 10−2 m. The morphological
distribution and spatial distribution density of the underlying rough element are the
main factors affecting aerodynamic roughness [20], and the roughness of the underlying
surface with vegetation will vary significantly because of the change of plant height
and cover density of different vegetation types; that is, it is proportional to the height
of the vegetation canopy.

As shown in Figure 2b, the roughness of the KLML station has increased rapidly since
the short-lived vegetation began to grow in April; from March to June it was 4 × 10−3 m,
1.3 × 10−2 m, 1.6 × 10−2 m, and 2 × 10−2 m, and June was also the maximum roughness
of the year.

The annual aerodynamic roughness of the KLML station was 1.1× 10−2 m, which was
higher than that obtained by Liu et al. [17] in the hinterland of the Taklimakan Desert of
3.1 × 10−3 m. He Qing et al. [21] calculated the average roughness of Xiaotang Station to be
6.05 × 10−5 m, Chen et al. [22] calculated the aerodynamic roughness of Gansu Jinta Oasis
Desert Station to be 2.8 × 10−2 m, and Yang Xinhua et al. [23] calculated the roughness of
Hade Station in the northern edge of the Taklimakan Desert to be 2.70 × 10−5 m, which is
lower than that of Zhao et al. [24]. The overall dynamic roughness of Shiquanhe Station
on the Qinghai-Tibet Plateau is 5.8 × 10−2 m. Wang et al. [12] calculated and compared
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the dynamic roughness of different types of underlying surfaces in different regions of the
Qinghai-Tibet Plateau and found that they were related to the vegetation, topography, soil
state, and seasonal differences of the underlying surface.
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Because the short-lived vegetation in June was withered, and the shrub growth in-
creased the surface roughness, then the surface roughness reached the maximum of the
year [25], which was much greater than other periods, and the difference could reach an
order of magnitude.

For example, the difference between June and March is 1.6 × 10−2 m, which indicates
that the height and density of vegetation have an important influence on aerodynamic
roughness and determine its magnitude. The Gurbantunggut Desert has a stable snow
cover in winter, while the snow roughness is small, so the winter dynamic roughness is
lowest throughout the year. In the process of vegetation growth to wilt from March to
August, its change is affected by the flexibility of vegetation roughness elements; these
elements are sensitive to wind speed. For all surfaces, the roughness under weak wind is
larger, and the roughness under strong wind is small. As shown in Figure 3, the relationship
between roughness and wind speed is that from April to September, as the wind speed
increases from 1 m/s to 5 m/s, the roughness gradually decreases and tends to stabilize.
Xia et al. [26] found through wind tunnel experiments that dynamic roughness is inversely
proportional to wind speed regardless of vegetation cover on the underlying surface.
Lu et al. in a Xiaotangshan experiment found that the dynamic roughness is related to
the source region because of the heterogeneity of the roughness element size and spatial
distribution in the source zone of different winds [27].
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3.1.2. Thermal Roughness Length

In this paper, kB−1 [=ln(zom/zoh)] is used to represent the thermal roughness change [14],
and it can be seen in Figure 4 that the average daily change of kB−1 January in all months
has a significant daily variation, and the trend of change is similar to a parabola. kB−1

gradually increases from about 7 a.m. to peak at noon, with peaks in April, May, and
June occurring at 1 p.m., while peaks in July and August are at 3 p.m. In general, rough
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surfaces have a higher kB−1 than smooth surfaces because surface roughness affects kinetic
roughness more than thermodynamic roughness. The trend of kB−1 is similar to kinetic
roughness, and the vegetation growth at the site in May and June is coarser than that in July
and August, when the vegetation withers, so kB−1 is higher than that in July and August.
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3.2. Surface Emissivity

By calculating the RMS difference between the directly observed sensible heat flux and
the parameterized sensible heat flux at the KLML station, the given ratio of net radiation is
determined at the time with the minimum RMS difference. As shown in Figure 5a, the ratio
of net radiation is 0.93 when the RMS is the smallest. Figure 5b shows the monthly variation
of the ratio of net radiation, with the highest value of 0.95–0.96 occurring during the winter
when the surface is covered with snow and increasing with vegetation growth from April
to May before decreasing with the withering of the vegetation. The ratio decreases to 0.91
in March–April and increases to 0.92 in June because of the strong growth of shrubs. After
July, the ratio decreases again with the withering of vegetation. The ratio of net radiation
increases with the increase in snow in the winter. Wang et al. [11] used NASA satellite data
to analyze the spatial and temporal distribution characteristics of China’s surface emissivity,
and compared with the whole country, the Xinjiang desert area belongs to the region with
the smallest specific emissivity (0.6163~0.9638); the results obtained in this article confirm
this conclusion.
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3.3. Bulk Transfer Coefficients for Momentum (CD) and Heat (CH)

For unstable atmospheric conditions, when wind speeds are low, the main atmo-
spheric turbulence is thermal turbulence, causing the upper part of the near-surface
layer to be in a locally free convective state. This situation usually results in higher
bulk transfer coefficients for momentum (CD) and heat (CH), as shown in Figure 6a,b.
The values for both CD and CH are high in low wind speeds. As wind speed increases,
turbulence shear is generated, and CD rapidly decreases with wind speed. When wind
speed exceeds 6 m/s, the variation of CD decreases with wind speed. Figure 6c,d show
that the CH also decreases with increasing wind speed, but the decrease is less than that
for CD. In this study, when z/L is greater than 0, the CD is greater than the CH, with
most of the CD ranging from 1 × 10−1 to 1 × 10−3, while the CH is less than 1 × 10−3

when wind speed is greater than 5 m/s.
For stable atmospheric conditions, both CD and CH decrease with increasing wind speed

at low wind speeds. As wind speed increases, the near-surface layer becomes closer to neutral
conditions, and the increase in wind shear enhances mechanical turbulence, weakening
the temperature inversion. The CD and CH remain relatively stable. Figure 7e–h show the
relationship between bulk transfer coefficients and stability. It can be clearly seen that when
stability is less than 0, the values of both CD and CH are significantly higher than when
stability is greater than 0. CD are all above 3× 10−3, and CH are above 1× 10−3. While the CD
decreases with unstable conditions changing from unstable to stable, it does not significantly
change with the increase in unstable conditions from weakly unstable to strongly unstable.
The relationship between CH and stability is similar, but the variation range is larger. When
stability is less than 0, its value is mostly above 1 × 10−3, but when stability is greater than
0, the CH is concentrated between 1 × 10−4 and 1.6 × 10−3. Furthermore, the CH increases
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with increasing instability, but under stable conditions, the change in CH with stability is
not significant. Yue [28] concluded that the momentum transport coefficient is greater than
the heat transport coefficient under all stable conditions, which may be due to the different
underlying vegetation conditions during the observation data period.
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Figures 7 and 8 give the monthly average daily change in CD and CH of KLML station
from April to September. Whether it is CD or CH, the daily average daily difference of
monthly change is relatively large. The monthly average daily change trend of CD is high
at noon, low in the morning and evening, starting to increase at about 6 a.m., reaching a
maximum at 3 p.m., and dropping to a lower value at 8 p.m. The difference is that the CD
will increase slightly after 8 p.m. in April and May. June–September is in a stable state
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after 8 p.m. Overall, the June momentum transmission coefficient is the highest, when the
peak is 2.02 × 10−2. The September CD is the lowest, when the peak is 1.35 × 10−2. The
April–June value is higher than July–September.
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The monthly average daily variation of the CH is very different from the monthly
average daily change of the CD; first of all, the change amplitude of the CH is much higher
than that of the CD. Second, the seasonal variation of CH is also obvious, which is obviously
high from May to July, followed by August to September, and lowest in April, and the time
difference between seasons caused by the annual and seasonal changes of solar radiation
is also more obvious. The CH changes very drastically before and after sunrise, when the
atmosphere transitions from stable to unstable (7 a.m. to 11 a.m.), which is in sharp contrast
to the gentle change of the CD during this period, and its CH reaches its maximum in April
and May early, and August and September at the latest. After reaching the maximum
value, the CH decreases rapidly; around 9 p.m., all months drop to the lowest. When the
atmosphere stabilizes the stratum from 0:00 to 7:00 a.m., the difference in CH from April to
September is not large, and it begins to increase at 6 a.m. Wang et al. [12] and Yang et al. [29]
calculated the overall transport coefficient of multiple stations on the Qinghai-Tibet Plateau
and found that the overall transport coefficient was greatly related to the observation period
and the type of underlying surface. The momentum transport coefficient is high in summer
and low in winter, and the average daily variation of each month is low at night and high
during the day, and Zheng et al. [30] also reached the same conclusion in the Badain Jaran
Desert study.

3.4. Remote Sensing Retrieval Aerodynamic Roughness

Figure 9 shows the aerodynamic roughness of remote sensing retrieval in the Gurban-
tunggut Desert area, which was 2.37 × 10−2–2.46× 10−2 m in the central desert from April to
November, 1.41 × 10−2–2.04 × 10−2 m in the northwest, and 1.53 × 10−2–2.39 × 10−2 m in
the east. The aerodynamic roughness of the Gurbantunggut Desert is higher in the middle
than in the northwest and east because the northwest and east are mostly semi-fixed sand
and semi-fixed flat sand, and vegetation is very rare. In March, the temperature of snow
melt warms up, and in April–May, moisture is more abundant, short-lived vegetation
growth accelerates, and roughness increases. May is the most vigorous period of short-
lived vegetation, and roughness reaches the maximum of the year. Although short-lived
plants withered in June, shrubs grew vigorously and roughness was still at a high value,
and then the lack of water in July and November was no longer suitable for vegetation
growth compared with April–May. The contribution of vegetation to roughness weakened,
the height and coverage of surface vegetation gradually decreased, and then, the snow
cover increased in winter, the roughness decreased, and the range of large value areas also
decreased. Xing et al. [31] compared the relationship between different vegetation indices
and aerodynamic roughness and found that NDVI is a sensitive indicator of grassland
aerodynamic roughness. Abbas et al. [32] obtained the best final mathematical model
describing the relationship between NDVI and aerodynamic roughness for plotting the
length of roughness throughout Iraq. Cho et al. [33] used the ratio of LAI to canopy height
to characterize the complexity of canopy structure to examine the relationship between
aerodynamic roughness and albedo. Sun et al. [34] used the empirical model and LAI data
developed by predecessors to study the spatial distribution of aerodynamic roughness
at small spatial scales in the northern Qinghai-Tibet Plateau. Liu [35] et al. used turbu-
lent transport models to identify canopy morphological characteristics related to LAI and
plant functional types. LAI quantifies the leafy area of terrestrial vegetation, which is a
fundamental attribute of vegetation canopy structure and function [36]. Surface dynamic
roughness not only changes with time scale but also with spatial scale, and the central and
eastern deserts were at high values of 2.48 × 10−2 m and 2.42 × 10−2 m, respectively. The
roughness value in the northwest is low, 2.04 × 10−2 m, and the remaining months show a
trend of high in the middle and low in the east.
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4. Discussion

In this paper, the key parameters of energy exchange (surface roughness, specific
emissivity, and overall transport coefficient) in the land–air interaction are calculated by
taking the hinterland of the Gurbantunggut Desert as the research object and comparing
it with the research results of many scholars at home and abroad. The changes of surface
parameters and their influencing factors in the underlying desert with short-term vegetation
cover are discussed, which is helpful to deeply understand and recognize the land–air
interaction law of the underlying surface of this type and the design of the atmospheric
model parameterization scheme. The results of the study mainly reveal the following.

Due to the large roughness of the surface during the period of short-lived vege-
tation, the kinetic roughness of the KLML station from April to June was the highest
throughout the year, and its change trend was related to the growth trend of vegetation;
the vegetation tended to be vigorous and the kinetic roughness increased. Although
the vegetation withered in June, its withered body was still left on the surface, and the
surface roughness increased instead of decreased. The overall decrease in aerodynamic
roughness decreases with the increase in wind speed and eventually stabilizes, which is
the same as the conclusion obtained by Yu Mingzhao et al. [37] in the Heihe and Haihe
River basins. Zhang et al. [38] also obtained the same result by comparing the changes
of roughness of forests, farmland, and grasslands. The remote sensing retrieval results
are different from the station calculation results, and the annual peak of the entire desert
area macroscopically occurs in May, and the change trend is the same as the station
results, which changes with the melting of snow, the amount of moisture, and the growth
and wilting of vegetation, which is similar to the results obtained by Liu et al. in the
Nagqu area of the northern Tibetan plateau. A large number of studies have shown
that aerodynamic roughness is related to vegetation canopy structural parameters, so
LAI has a stronger correlation than NDVI to some extent when inverting aerodynamic
roughness, and zero-plane displacement height and aerodynamic roughness are strong
functions of LAI [33,34,39]. In terms of spatial distribution, the aerodynamic roughness
of the Gurbantunggut Desert was generally high in the middle and low in the east and
west, and the change trend in time was the same as that calculated by the station, which
increased from April to June and gradually decreased after July. The change trend of
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kB−1 is similar to kinetic roughness and has a clear diurnal trend, high at noon, low in
the morning and evening, which is consistent with the conclusion of Wang et al. [12]. The
maximum value of kB−1 occurs at 1 p.m. in April–June, and at 3 p.m. in July–August.

The surface reflectivity changes with the change of land cover type and is closely
related to the ratio of underlying vegetation to soil [40–42]. Ice and snow surfaces generally
have a high specific emissivity. When the KLML station is covered with snow in winter,
the specific emissivity is 0.95; the snow and ice begin to melt in spring, and the vegetation
begins to grow, but the surface exposure ratio is still high, resulting in a decrease in the
specific emissivity in March and April. By June, as the vegetation grows to its most
vigorous, the specific emissivity increases, and after June, because of a lack of water, the
vegetation gradually withers, and the specific emissivity decreases. Liu et al. [43] found
that the surface reflectivity of the Taklimakan Desert was most affected by soil moisture,
and the reflectivity was as high as 0.93 in the poplar forest area near the oasis, and the
reflectivity in the arid desert center area was 0.90~0.91. Zhai et al. [44] found by analyzing
the spatiotemporal situation of the specific emissivity of the land surface in China from 2000
to 2011 that the specific emissivity of bare soil is often lower than that of green vegetation,
which is the reason why the specific emissivity of the KLML station from June to August is
lower than that of May.

The CD and CH are inversely proportional to the wind speed, and the overall mo-
mentum transport coefficient is mainly concentrated in low wind speed because low wind
speed is conducive to the development of unstable convection. When the wind speed is
low, thermal turbulence is the main atmospheric turbulence movement, so that the upper
part of the near formation is in a local free convection state, resulting in a large momentum
and CH and turbulent shear. With the increase in wind speed, the transmission coefficient
decreases rapidly, and gradually tends to neutral, which is the same as the research con-
clusion determined by Sun Jun et al. [25] in the Heihe River Basin. When the wind speed
exceeds 6 m/s, the trend of momentum transmission coefficient decreases with the increase
in wind speed and slows down and tends to be stable. When the stability is less than 0,
the CD and CH are higher than the values when the stability is greater than 0, and the CD
decreases with the increase in stability but does not change significantly with the increase
in instability from weak instability to strong instability, which is consistent with the results
of previous studies [12,17,25].

Compared with the existing research results, this paper uses the measured data of the
vortex correlation system of the observation station, which is more accurate than the remote
sensing data products, and the data interval is half an hour, which is more conducive to
analyzing the daily changes of various parameters. However, the measured data will have
poor quality or even lack some data because of unexpected situations such as power failures,
and this kind of data can be excluded after screening, resulting in incomplete observation
time series, which affects the calculation results to a certain extent. The advantage of remote
sensing data inversion results is that it can obtain data quickly over a wide range, which is
suitable for large-scale and long-term series research, and is more compatible with various
pattern grids.

5. Conclusions

This article calculates key parameters in land–atmosphere interaction based on data
from the KLML station and satellite data and analyzes the results. The following conclu-
sions are drawn.

The aerodynamic roughness of the KLML station is 1.1 × 10−2 m, which is affected
by the change of the underlying surface, which increases from April to June, and then
gradually decreases, changes with the growth trend of vegetation, decreases overall with
the increase in wind speed, and tends to be stable. The annual trend of kB−1 is similar to
the kinetic roughness, with daily changes of midday high, morning and evening low,
and the maximum value from 13:00 to 15:00. The aerodynamic roughness of the Gur-
bantunggut Desert was obtained by retrieval of MODIS data, and its temporal variation
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trend was the same as that of the station results, which increased from April to June and
gradually decreased after July because of the influence of snow melting and moisture
and vegetation growth and wilt. The spatial distribution was positively correlated with
vegetation cover, high in the central part and low in the eastern and western parts,
and the aerodynamic roughness in the central part was 2.37 × 10−2–2.46 × 10−2 m from
April to November, and 1.53 × 10−2–2.39 × 10−2 m and 1.41 × 10−2–2.04 × 10−2 m in
the east–west part, respectively.

The annual specific emissivity is 0.93; the specific emissivity changes with the change
of snow and vegetation in the underlying area. In winter, because of the high specific
emissivity of snow cover, the specific emissivity in January is 0.95. In the spring, ice and
snow melt, the surface exposure ratio increases, the specific emissivity decreases, the shrub
grows vigorously in June, the specific emissivity increases, and after June, because of a lack
of water, vegetation gradually withers. The specific emissivity in July and August is lower
than in June.

The CD and CH are inversely proportional to the wind speed. When the wind speed
is lower than 6 m/s, the transmission coefficient decreases rapidly with the increase in
wind speed, and when the wind speed exceeds 6 m/s, the trend of CD decreasing with the
increase in wind speed slows down and tends to be stable. When the stability is less than
0, the CD and CH are higher than the values when the stability is greater than 0. The CD
decreases with the increase in stability, high in summer and low in winter, and the average
daily variation of each month is low at night and high during the day. The magnitude
of the CH is higher than that of the CD, and the change from 7 to 11 is very sharp, which
is different from the gentle change of the CD during this period, followed by the CH in
May–July being higher than that in August–September.
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