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Abstract: This study addresses the knowledge gap regarding the spatiotemporal evolution of Chinese
urban agglomerations using long time series of luminescence remote sensing data. The evolution
of urban agglomerations is of great significance for the future development and planning of cities.
Nighttime light data provide a window for observing urban agglomerations’ characteristics on a
large spatial scale, but they are affected by temporal discontinuity. To solve this problem, this study
proposes a ridge-sampling regression-based Hadamard matrix correction method and constructs
consistent long-term nighttime light sequences for China’s four major urban agglomerations from
1992 to 2018. Using the Getis-Ord Gi* hot-cold spot, standard deviation ellipse method, and Baidu
search index, we comprehensively analyze the directional evolution of urban agglomerations and
the correlations between cities. The results show that, after correction, the correlation coefficient
between nighttime light intensity and gross domestic product increased from 0.30 to 0.43. Further-
more, this study identifies unique features of each urban agglomeration. The Yangtze River Delta
urban agglomeration achieved balanced development by shifting from coastal to inland areas. The
Guangdong-Hong Kong-Macao urban agglomeration developed earlier and grew more slowly in
the north due to topographical barriers. The Beijing-Tianjin-Hebei urban agglomeration in the north
has Beijing and Tianjin as its core, and the southeastern region has developed rapidly, showing an
obvious imbalance in development. The Chengdu-Chongqing urban agglomeration in the inland
area has Chengdu and Chongqing as its dual core, and its development has been significantly slower
than that of the other three agglomerations due to the influence of topography, but it has great
potential. Overall, this study provides a research framework for urban agglomerations based on
four major urban agglomerations to explore their spatiotemporal characteristics and offers insights
for government urban planning.

Keywords: remote sensing; long-term night-time light; spatiotemporal patterns; urban agglomerations

1. Introduction

Urban agglomerations (UAs) are highly developed forms of spatial organization, in
which developmental connections exist between cities of different types and scales, and
one or more metropolis(es) serve(s) as the local economic core [1]. The rise of UAs is
an important sign of economic development, with a strong driving effect on economic
development [2]. Over the past several decades, the urban proportion of the world’s
population has grown from 30 percent in 1950 to 55 percent in 2018 and is expected to
reach 68% in 2050, with particularly large increases in Asia and Africa [3]. This process has
caused a series of issues [4], such as ecological degradation [5], heat islands [6], and air
pollution [7], particularly in developing countries.

China, as the world’s largest developing country, experienced rapid economic growth
after the 1992 Southern Tour, overtaking Japan as the second-largest economy [8], and it has
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since undergone intensive urbanization since. To promote the country’s economic develop-
ment, the National Development and Reform Commission approved the development of
seven UAs in 2018 [9], including the Yangtze River Delta Urban Agglomeration (YRDUA),
Beijing–Tianjin–Hebei Urban Agglomeration (BTHUA), Greater Bay Area Urban Agglom-
eration (GBAUA), and Chengdu-Chongqing Urban Agglomeration (CCUA). These four
major UAs encompass six provinces, four municipalities, and two special administrative
regions, including Beijing, Shanghai, and Hong Kong, with a total area of 671,000 km2

and a population of 420 million [10,11]. These values account for 30.0% of China’s total
population and 7.0% of the national land area, while the gross domestic product (GDP) of
the region has reached 43.0 trillion yuan, thus accounting for 46.7% of the country’s share
and greatly contributing to China’s economic development [12].

Research on the spatial and temporal expansion of UAs is beneficial for improving the
accuracy of regional policies, constructing new development patterns, promoting the coor-
dinated development of regional economies, and comprehensively promoting the further
development of Chinese cities, the last of which is of great significance. Traditional methods
generally use statistical data to quantitatively analyze UA expansion [13,14], but these data
lack detailed spatial information. Remote sensing technology has been applied for UA
detection due to its broad observation range, regular acquisition, and low cost [15,16], and
Landsat data are widely used for urban extraction because of their high resolution and
long-term continuity [17,18]. However, image preprocessing and classification extraction
are time-consuming and labor-intensive, thus rendering them unsuitable for investigating
the spatiotemporal evolution of large-scale UAs [19]. Luminous remote sensing, which de-
tects night lights and thus reflects information about human activities, has been applied by
many scholars to the study of spatial pattern changes in UAs [20,21]. Zhao et al. proposed
a sigmoid function between the Defense Meteorological Satellite Program and processed
Visible Infrared Imaging Radiometer Suite data to characterize their relationship [22]. Li
et al. used the sigmoid function to transform VIIRS observations into data similar to DMSP,
generating consistent global DMSP NTL time series data from 1992 to 2018 [23]. Their
harmonization of DMSP and VIIRS nighttime light data from 1992 to 2021 at the global
scale, which they published, has great potential application in monitoring urbanization
changes and in studying light pollution and energy consumption [24].Due to the significant
differences between the Defense Meteorological Satellite Program-Operational Linescan
System (DMSP-OLS) data and the National Polar-orbiting Partnership Visible Infrared
Imaging Radiometer Suite (NPP-VIIRS) data, the question of how to generate a set of night
light remote sensing images over a longer time span is one of the key issues currently faced
by researchers.

To solve this problem, we preprocessed DMSP-OLS data based on the Ridgeline Sam-
pling Regression (RSR) algorithm and proposed a Hadamard matrix correction method,
thus generating a luminous time series for 1992–2018. Population growth and digital
elevation model (DEM) data were introduced to explore their connections with luminous
growth. The hot–cold spot and standard deviation ellipsoid (SDE) methods were used to
detect the built-up area expansion and directional evolution process of UAs, respectively.
We also combined Internet big data and used the Baidu search index to study the connec-
tion between cities within UAs. This study explored the development trends of UAs by
comparing the characteristics of the Four Major Urban Agglomerations (FMUAs), which
could be meaningful for promoting rational planning of future UAs.

2. Materials and Methods
2.1. Study Area

This study focused on the FMUAs in China, which are relatively developed: the
YRDUA, GBAUA, BTHUA, and CCUA, as shown in Figure 1. YRDUA and GBAUA are
located on the southeast coast. The YRDUA is dominated by plains and hills, with a dense
network of rivers, and it is located in the geographical center of East Asia, where it is the
key to the East Asian route of the Western Pacific [25]. Backed by the interior and separated
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by high terrain elevations in the north, the GBAUA is one of the most dynamic economic
regions in the Asia-Pacific region [26]. The BTHUA is located in northern China and covers
Beijing, the capital of China, and it is one of the largest and most developed UAs [27]. The
CCUA is in southwest China, dominated by mountainous and basins, with a DEM greater
than 1000 m in most areas, and it is the only inland urban cluster of the FMUAs [28].
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Figure 1. A night light view of the location and range of the study area. All population, GDP, area, and
urbanization data in the figure are based on the 2018 statistics released by the local statistical bureaus.

2.2. Datasets
2.2.1. Night-Time Light

DMSP-OLS and NPP-VIIRS data were used as luminous remote sensing data in this
study. Owing to its excellent photoelectric amplification, DMSP-OLS data can capture
night-time near-infrared radiation from the earth’s surface, including faint reflected light,
and they were the only free and open-source type of night-time remote sensing data with
worldwide coverage until 2012 [29,30]. After 2012, NPP-VIIRS inherited and enhanced
the night light detection capability of DMSP-OLS. The spectral resolution of NPP-VIIRS is
increased from 6 bits to 14 bits, and the spatial resolution is increased from 800 m to 500 m;
therefore, this type of data gradually replaced the DMSP-OLS as new experimental data
for researchers [31]. To maintain consistency between the two datasets, we selected annual
raster image data from DMSP-OLS from 1992 to 2013, monthly NPP-VIIRS nocturnal data
from 2012 to 2013, and monthly NPP-VIIRS nocturnal data from 2012 to 2013. The annual
data of NPP-VIIRS were chosen for the luminous images after 2012.

2.2.2. Baidu Search Index

The Baidu search index reflects the search scale and frequency of a certain keyword
regarding local Internet users (e.g., Beijing, Shanghai, etc.) within a given period of time [32].
The more frequently that one city is searched for as a keyword in another city, the more
that this searching indicates the relevance of the former city, also reflecting the strength of
the connection between the two. At the same time, it is assumed that the closer that the
distance between the two cities is, the more convenient that the transportation is, the better
that the economic mobility is, and the stronger that the connection between these two cities
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will be [33]. We used high-performance web spider programs to automatically obtain this
index and combine it with city distances to present correlations between cities.

2.3. Methodology

As shown in Figure 2, DMSP-OLS corrected with NPP-VIIRS was constructed as a
consistent night light long time series from 1992 to 2018. Hot–cold spot analysis, SDE, and
the Baidu search index were used to study the spatiotemporal evolution characteristics
of FMUAs.
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2.3.1. Night Light Data Correction

• Ridgeline sampling regression

NPP-VIIRS has a higher spatial resolution than DMSP-OLS but is affected by problems,
such as transient light source interference, negative values, and extreme values. Therefore,
in this study, the annual NPP-VIIRS data were synthesized using the average value method
and resampled to 0.5 km × 0.5 km for subsequent calibration. As a result, the resolution of
the NPP-VIIRS data decreased and became the same as the DMSP-OLS data. At the same
time, there were negative values affected by sensor sensitivity in the synthesized image;
thus, the image had to be de-negatived. One resamples the original synthesized image at
the grid level and sets the DN value of negative pixels to 0. For transient light sources,
such as fishing boats and fire lights, which are still contained in the NPP image, the official
released cloudless noise removal annual composite image data from 2015 and 2016 can be
used to create masks to remove them.

In comparison to the NPP-VIIRS problem, DMSP-OLS is also affected by differences
between different generations of sensors, resulting in inconsistent data. To study multi-
temporal satellite images, the differences between the satellites and the sensors must be
minimized beforehand. There are many methods for correcting multi-temporal satellite im-
ages, such as histogram matching [34], pseudo-invariant feature recognition methods [35],
and methods based on auxiliary data [36,37]. In multi-temporal image calibration, pseudo-
invariant features must be identified, and then a calibration equation must be established
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for the images to accurately represent the existing system bias. If performed manually,
human errors or errors caused by different subjective interpretations can easily arise; there-
fore, automatic or semi-automatic methods, such as the ridge regression method, constitute
a good solution [38]. RSR has the characteristics of high reliability in pseudo-invariant pixel
recognition, high efficiency in mutual calibration, the potential for generalization of the
experimental range beyond the calibration method used, and the minimization of bias in
the calibration results [39].

To obtain a consistent long-term sequence image from DMSP-OLS night light images,
we used RSR for calibration based on the average method and negative value removal.
For different night light images, night light density maps are generated on the coordinate
axis. The densest night light values remain relatively stable in the image, forming ridges,
while the changes are concentrated beyond the ridges. The ridges reflect the relationships
between different images, and a model is established for all the images.

To minimize the time interval and keep most of the pixels stable, we selected the
F152000 data from the middle of the time series as the reference image and matched all the
images to a uniform level. By utilizing the ridge relationship between the reference image
and the target image density map and considering the systematic bias of night light values
with uniformly distributed data points, a linear regression model was established:

DMSPy = aDMSPx + bDMSPx
2 + c, (1)

where DMSPx and DMSPy represent the images before and after correction, respectively
and a, b, and c are the coefficients of least squares. Only 64 pairs of data points along the
ridges were used to prevent overcorrection.

• Improved data correction combined with the Hadamard matrix

In imaging, there is non-uniformity between DMSP-OLS and NPP-VIIRS due to the
influence of the sensor. Therefore, we propose a Hadamard matrix method to calibrate
the consistency of these two sets of luminous data with different standards. First, the
nocturnal values less than 0 in DMSP-OLS, which were processed by RSR, were excluded.
Then, the 2012–2013 monthly night-time data of the two datasets were intercepted, and
monthly ratios were calculated because of the temporal crossover of the data. The largest
and smallest values of the 19 pairs of monthly ratio data were removed, and the final ratio
image was obtained by averaging, with the results noted as FRI. The DMSP-OLS data were
processed using the Hadamard matrix with the following equation:

CDSi = FRI � RCDSi, (2)

where RCDS is the DMSP-OLS result processed by RSR, and � is defined as:

Am∗n � Bm∗n =

 a11b11 · · · a1nb1n
...

. . .
...

am1bm1 · · · amnbmn

, (3)

2.3.2. Methods of Urban Spatial Expansion Analysis

• Hot and cold spot extraction for built-up areas based on Getis–Ord Gi*

Getis–Ord Gi* identifies high values (hot spots) and low values (cold spots) of spatial
clusters and has been widely used to analyze biological habitats, epidemic diseases, areas
of crime, etc. [40,41]. The specific calculation formula is as follows:

Gii ∗ (Z) =

n
∑

j=1
wi,jxj − X

n
∑

j=1
wi,j

S

√√√√ [
n

n
∑

j=1
w2

i,j−(
n
∑

j=1
wi,j)2

]
n−1

, (4)
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wi,j =

{
1, distance to xj < 100km
0, distance to xj > 100km

, (5)


X =

n
∑

j=1
xj/n

S =

√
n
∑

j=1
xj

2/n− (X)
2

, (6)

where Gij ∗ (Z) is the Getis–Ord Gi* statistical z-score of the administrative city, which
describes the spatial dependence of the city j on the surrounding administrative city. xj

represents the trend of the agglomeration area of city j, and X represents the average area
of urban agglomeration. wi,j denotes the spatial weight of these two cities, and n is the total
number of pixels.

• Analysis of Built-up Area Expansion Index

To further investigate the expansion trend of built-up areas, expansion speed and
expansion amplitude indices are introduced to effectively illustrate the changes in the
cluster during the research time span. The specific calculation formula is as follows:

ES =
ESI − ESi

n
, (7)

EI =
EII − EIi

EIi
, (8)

where ES represents the expansion speed of built-up areas, and EI represents the expansion
amplitude. I and i respectively represent the size of built-up areas in the Ith and ith
years, respectively.

• Directional evolution of UAs using SDE

To study the directionality of the UAs’ spatial distribution, we introduced SDE, which
is a classic method for analyzing the directional characteristics of spatial distributions [42].
Combining the night-time lighting coordinates, lighting scale, and development gravity
of individual cities, we used SDE to study the spatial pattern of UAs in different periods,
a method that can effectively illustrate the directional shift of urban spatial distribution.
Based on SDE, it is possible to explore the centrality, extension, orientation, and spatial
pattern of urbanization spatial distributions from a global spatial perspective. The formula
is as follows:

SDEx =
√

∑n
i=1 (Ixi − Ix)/n, (9)

SDEy =
√

∑n
i=1 (Iyi − Iy)/n, (10)

where Ixi and Iyi are the pixel space center coordinates, and Ix, Iy are the mean center
coordinates. The azimuth angle is calculated as follows:

tan θ = (la + lb)/lc, (11)

la = (∑n
i=1 xi

2 −∑n
i=1 yi

2), (12)

lb =

√
(∑n

i=1 xi
2 −∑n

i=1 yi
2
)

2
+ 4(∑n

i=1 xiyi)
2
, (13)

lc = ∑n
i=1 xiyi, (14)
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where xi and yi are the differences between the mean center and the coordinate axis,
respectively. The equations for the long axis and short axis are as follows:

σx =
√

2

√
∑n

i=1 (xi cos θ − yi sin θ)2

n
, (15)

σy =
√

2

√
∑n

i=1 (xi sin θ + yi cos θ)2

n
. (16)

• Center of gravity index

The movement path of the development gravity center of a single city is defined by
the movement of the luminous gravity center to highlight the urbanization development
trajectory of each city in the UA [43], and the equation is defined as:

Latkt =
∑Mk

i=1 latili

∑Mk
i=1 li

, Lonkt =
∑Mk

i=1 lonili

∑Mk
i=1 li

, (17)

where Latkt and Lonkt are the longitude and latitude coordinates of the center of gravity of
the night-time lights in region k in year t, respectively. li is the light value of the ith pixel.
Mk is the total number of pixels in region k. lati and loni are the latitude and longitude
coordinates of the ith pixel point, respectively.

2.3.3. City Connection Based on the Baidu Search Index

We used big data to obtain the Baidu search index between two cities and then
combined this index with the distance between them to calculate the city connection index.
The model formula is as follows:

UER∆tij =
NBSI∆tijNBSI∆tji

NDBCijNDBCji
, (18)

where UER is the urban economic relation. ∆tij represents the collection time interval for
city i and city j. NBSI is the normalized Baidu search index, and NDBC is the normalized
distance between cities, which is defined as:

NBSI∆tij =
BSI∆tij

max(BSI∆t)
, NDBC =

DBCij

max(DBC)
. (19)

where BSI is Baidu search index, and DBC is distance between cities. max(BSI∆t) represents
the maximum search index value between a city and other cities, while max(DBC) represents
the maximum distance value between a city and other cities.

3. Results
3.1. Results of Night Light Data Correction

As shown in Figure 3a, the DMSP-OLS data of FMUAs in 2011 were subjected to ridge
regression and Hadamard matrix correction, respectively, resulting in Figure 3b,c. It can be
seen from a comparison of the figures that the image noise and quality were poor before
correction and were effectively resolved after correction.
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Figure 3. Results of DMSP-OLS correction processing. (a–c) The results of the images before DMSO-OLS
processing, the images processed with RSR, and the results processed using Hadamard, respectively.

The DMSP-OLS data from 1992 to 2013 were corrected using RSR and constructed as a
time series of total night-time light (TNL). Comparing Figure 4a with Figure 4b, it can be
seen that the increase in TNL is smoother after the correction. TNL tends to have a strong
correlation with economic activity; therefore, the GDP of the 52 cities in the study region
was used to verify the accuracy of the corrected DMSP-OLS data by RSR. Compared with
the original data, the corrected values have stronger correlations with the economy, with the
correlation coefficient increasing from 0.3067 to 0.4309, indicating that the accuracy of the
data improved after processing by RSR, as shown in Figure 4c,d. To verify the accuracy of
the corrected data, this study conducted pixel-level validation of the DMSP-OLS corrected
data, using Sentinel-2, a high-resolution satellite image with a resolution of 20 m, and
manually extracted a built-up area as a pixel-level reference. The mean square error, peak
signal-to-noise ratio, structural similarity index, and normalized cross-correlation were
evaluated by comparing the two remote sensing images. The mean square error was used
to compare the overall differences between the two images. The calculation method of the
mean square error was to calculate the average of the square difference between pixels in
the two images. The peak signal-to-noise ratio measures the ratio between the maximum
possible power of the signal and the noise power that affects the fidelity of the signal. The
structural similarity index evaluates the similarity of the structural information between
two images. The normalized cross-correlation measures their similarity by calculating the
cross-correlation between two images. The smaller that the mean square error is, and the
higher that the peak signal-to-noise ratio is, the more similar that the images are. The range
of the structural similarity index and normalized cross-correlation ranges from −1 to 1,
with a value of 1 indicating complete similarity. The experimental results show that the
mean square error is 6.2468, the peak signal-to-noise ratio is 40.1742, the structural similarity
index is 0.7893, and the normalized cross-correlation is 0.7084. Based on these data, it can
be concluded that the pixel-level accuracy of the corrected data is relatively high. On this
basis, these DMSP-OLS corrected data were processed using the Hadamard matrix and
constructed into a time series with the NPP-VIIRS data, as shown in Figure 4e. Greater
connectivity between the two datasets was observed after processing, and there was no
cliff drop, as with the original data. In particular, there was abnormally high TNL for
NPP/VIIRS in 2014 and DMSP-OLS in 2010, a phenomenon not consistent with the actual
TNL growth pattern that may have been generated due to unavoidable errors, such as haze
and snow. However, these errors do not affect the overall correlation analysis. Thus, we
conducted further studies on the UAs’ evolution using the corrected images.
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The world GDP data was obtained from the World Bank.

3.2. Urban Evolution of FMUAs under Night Light

The above method was used to construct a long time series of FMUAs, and some of
the image results are shown in Figure 5. The results show that the TNL of the FMUAs
exhibited rapid growth. For a more precise analysis, the luminous mean and TNL were
calculated for the YRDUA, BTHUA, GBAUA, and CCUA, respectively. Here, the TNL is
totaled for all the luminous pixels in the study region and is used to describe the overall
change in size of the UAs. The TNL is affected by the area and cannot be used to compare
the development of each urban agglomeration; thus, it is necessary to average the TNL to
obtain the mean value of night light.
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Figure 5. Night-time lighting images of FMUAs in 1995, 2015, and 2018.

The experimental results show that, from 1992 to 2018, the night lights of the FMUAs
experienced rapid growth, and the UAs were further developed, as shown in Figure 6. The
GBAUA has taken the lead in terms of its luminosity averages, but because of its smaller
urban agglomeration area and earlier development, it has developed more slowly than
the other UAs. In terms of TNL, the YRDUA has always been in the leading position, its
luminous average being second only to the GBAUA. The BTHUA and CCUA are weaker
than the former two UAs, especially the CCUA. The lighting distribution of these two UAs
is also uneven. The BTHUA is concentrated in the southeast, especially Beijing and Tianjin,
and the CCUA is mainly concentrated in Chengdu and Chongqing.
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4. Discussion
4.1. Relationship between Population, DEM, and Luminous Growth

The growth of night light in UAs is often related to factors such as population flow
and topography in cities [44].

The population data of each city were collected from 2002 to 2018, and the correlation
coefficient for the night light reached 0.71, indicating a strong correlation between the
population and night light. As shown in Figure 7, the population growth of the YRDUA
is concentrated in the metropolises of Shanghai, Suzhou, Hangzhou, and Nanjing, while
population outflow occurs in northern Jiangsu and southern Anhui. It is notable that there
is significant population growth in Hefei in the west, which is also a rapidly growing
region of night-time light in the western YRDUA. Population growth is most apparent in
Guangzhou, Shenzhen, and Foshan in the GBAUA, with an annual net inflow of more than
400,000 people in recent years, while Hong Kong developed earlier, and its population
growth is slow. The population increase in the BTHUA is mainly concentrated in Beijing
and Tianjin, while the other cities are clearly growing slowly. Chengdu and Chongqing
are the dual cores of the CCUA, with population growth concentrated in Chengdu. Corre-
spondingly, Chongqing shows negative growth, in line with Chongqing’s expansion from
the core to the exterior.

Population and luminosity show some similarities, and there is also a strong con-
nection between the development patterns of the UAs and their topography [45]. We
extracted regional elevation maps of the FMUAs and applied elevation gradation to the
DEM. Considering the DEM results together with the luminous growth model map, the
results are shown in Figure 8 and Table 1.

In the YRDUA, GBAUA, and BTHUA, most of the night-time light is gathered in an
area with a DEM of 0–200 m, and more than 90% of the plain area, with a DEM of 0–100 m,
forms the night light growth region. The YRDUA is located on a low and flat terrain
with a long coastline. Shanghai, Suzhou, and Nanjing, which are located on the plain, are
developing rapidly. This plain extends all the way westward to Hefei, accelerating the
development of inland areas such as Hefei and allowing for the balanced development
of this urban agglomeration. However, Xuancheng, Jinhua, and Anqing are not coastal
cities and are situated on higher terrain, limiting their development. The northwest and
northeast parts of the GBAUA are isolated by high mountains and thus have insufficient
space for outward expansion. Therefore, the entire GBAUA is naturally developing inward
in a “fusion” pattern, and because of its small area, this growth is more concentrated in
the center. The BTHUA is close to the Yanshan Mountains in the north, while the south is
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flat, and its luminous growth is more evident. The night light is gathered in Beijing and
Tianjin, while Zhangjiakou and Chengde have little night light growth due to the higher
terrain, meaning that the UA’s development is concentrated in the southeast. The CCUA is
dominated by mountains and basins, making it significantly different from the other three
UAs, and the terrain is largely above 100–1000 m. Chengdu is located in the Sichuan basin,
known as the “Land of Heaven” [46], and Chongqing is situated in a mountainous area
at the confluence of two rivers. The CCUA is concentrated in Chengdu and Chongqing,
with Chengdu tending to contract inward, while Chongqing is expanding outward. Unlike
Chengdu, Chongqing is not located in the basin. Its development is not as apparent as
that of Chengdu, and the luminous growth of the flatter areas between these two places is
also weaker.
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YRDUA, GBAUA, BTHYA, and CCUA from 1992 to 2018.

4.2. Evolution of Built-Up Area Expansion in UAs

Night lights are rapidly increasing in number in the plain and population inflow
areas of the FMUAs, reflecting the development of the UAs, especially changes in the
built-up regions. A built-up region is an area that has been planned and developed by the
government through infrastructure. It was discovered that it is not easy to identify a single
optimal threshold for accurately extracting different cities simultaneously [47]. Thus, we
use the dichotomous iterative method to set different thresholds for the nighttime light
data of different UAs. For the same city in different years, the same threshold is used.
The resulting cluster area is compared with the results of the China Urban Construction
Statistical Yearbook until the error between the two is small. At this point, the range is
considered the cluster area of the FMUAs.

As shown in Table 2, considering the 2010 data results as an example, different UAs use
different thresholds to bring them closer to the aggregation range of statistical data. At this
time, the error of the FMUAs is within 5%. As shown in Table 3, taking the BTHUA as an
example, the annual verification results of the built areas from 1992 to 2018 are listed. The
average annual error of the FMUAs from 2008 to 2018 was within 2%. The years 1992, 2000,
2005, 2010, and 2018 were used as dividing years to obtain the range of built-up areas for
each year, and overlay analysis was performed to obtain the areas of the FMUAs presenting
significant expansion, as shown in Figure 9. Here, the expansion range and speed were
introduced to quantify the evolutionary characteristics. The expansion speed reflects the
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growth rate of the built-up area of urban agglomerations in units of time, and the expansion
amplitude reflects the growth amount of the built-up area of urban agglomerations over a
period of time.

Table 2. Accuracy of the range of built-up areas in FMUAs in 2010.

YRDUA GBAUA BTHYA CCUA

Threshold 19 12 12 11
Statistical values 7225.92 4536.63 3564.53 2367.67
Extracted values 7408.57 4626.38 3429.45 2271.75

Error −2.53% −1.98% 3.78% 4.05%

Table 3. Extracted agglomeration area accuracy for BTHUA from 1992 to 2018 (square kilometers).

Year Threshold Statistical Values Extracted Values Error

1992 12 1510.83 1427.10 5.54%
1993 12 1607.75 1485.80 7.58%
1994 12 1664.54 1719.28 −3.29%
1995 12 1728.21 1790.62 −3.61%
1996 12 1755.34 1802.60 −2.69%
1997 12 1786.24 1798.09 −0.66%
1998 12 1787.06 1918.88 −7.38%
1999 12 1908.07 2072.96 −8.64%
2000 12 2336.87 2532.73 −8.38%
2001 12 2393.91 2488.83 −3.96%
2002 12 2570.63 2695.59 −4.86%
2003 12 2838.57 2585.71 8.91%
2004 12 2930.39 2927.91 0.08%
2005 12 3046.38 3269.71 −7.33%
2006 12 3211.18 3275.26 −2.00%
2007 12 3334.85 3368.78 −1.02%
2008 12 3479.79 3596.60 −3.36%
2009 12 3520.08 3598.72 −2.23%
2010 12 3564.53 3429.45 3.79%
2011 12 3626.90 3809.62 −5.04%
2012 12 3722.25 3904.53 −4.90%
2013 12 3840.71 3911.39 −1.84%
2014 12 4015.68 3925.37 2.25%
2015 12 4230.44 4516.27 −6.76%
2016 12 4483.57 4522.99 −0.88%
2017 12 4607.23 4540.50 1.45%
2018 12 4709.88 4752.82 −0.91%

In analyzing the changes in the urban built-up areas, the results of analysis with
different time scales all have their unique reference values and need to be comprehensively
analyzed in conjunction with actual situations. Analyzing changes in the built-up area
using different intervals of years can capture some important short-term changes, such
as sudden events or policy changes, but it requires careful manual adjustment to capture
significant changes on the ground and may be subject to random events that can lead to
some trends being misunderstood. Using equal time intervals to present the indicators will
render the data more regular, easier to compare and analyze, and beneficial for observing
the long-term trends of the built-up areas. At the same time, the selection of equal intervals
of different time scales can also have a significant impact on the analysis results. For
instance, a 3-year interval can reveal rapid changes in urban construction, while a 7-year
interval can provide a rough understanding of changes in urban construction, which is
useful for long-term planning and decision-making. This paper uses a 5-year equal interval
to study the mid-term changes in the built-up areas, which may have a certain reference
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value for timely adjusting of urban planning and controlling urban of expansion, as shown
in Figure 10.
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Figure 9. Expansion trends of FMUAs after threshold processing. By setting different thresholds, the
built-up areas of FMUAs were extracted at different time periods.
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Figure 10. The expansion range and speed of FMUAs. (a) Analysis of the expansion range of FMUAs
from 1995 to 2015. (b) Analysis of the expansion speed of FMUAs from 1995 to 2015.

Considering the expansion range, the FMUAs show a “U”-shaped pattern, which is
consistent with urban development theory [48]. The expansion range of all four UAs de-
clined in 2000–2010, while they reached extremely high levels in 1995–2000 and 2010–2015.
The expansion speed reached its high points in 2000–2005 and 2010–2015. Similar to the
expansion range, the expansion speed decreased in 2005–2010. During the previous expan-
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sion period, the built-up area expanded faster than the rate of population urbanization,
causing the construction of built-up areas to undergo a high-growth phase. The govern-
ment’s macro-control of land development led to a reduction in, or even contraction of,
construction investment in built-up areas, which expanded at a high rate after it became
more reasonable.

The expansion speed of the YRDUA was the fastest from 1995 to 2015, reaching an
average of 335.4 km2/year. However, in terms of the expansion range of the agglomerations,
the CCUA had the most remarkable index, reaching about six times the range of the
previous area after expansion by 2015. In 1995, Chengdu and Chongqing in the CCUA
were still relatively backward in terms of development, with small built-up areas. When
the speed of expansion slightly accelerated, there was a large increase in the expansion
range of the CCUA. The overall development of the BTHUA and GBAUA was relatively
slow. The GBAUA, which developed earlier, was affected by the terrain and the area, and
its values were the lowest in terms of both the expansion speed and range.

Using Getis–Ord Gi* statistics, we selected a distance of 100 km and classified hot
spots and cold spots above the 90% confidence level based on long-term trends in regional
coverage. Dividing the time span into 1992–2005 and 2005–2018 can provide a long-term
perspective, revealing changes in urbanization and land use patterns over a longer period,
which is highly effective for studying urban cluster trends and identifying significant
changes. Hot and cold spots were calculated based on the extracted built-up area ranges
shown in Figure 11. The FMUAs were much more active in terms of expansion from 2005
to 2018 than from 1992 to 2005, indicating a time interval of high expansion.

The periods of 1992–2005 and 2005–2018 were analyzed as the first and second stages,
respectively. In the first phase, YRDUA coastal areas, such as Shanghai, Suzhou, Ningbo,
Wuxi, and Hangzhou, underwent rapid development, while the cities in Anhui located
far from the coast, such as Chuzhou, Chizhou, Xuancheng, etc., developed at a slower
speed. In the second stage, Shanghai and Suzhou in the coastal area still maintained
high growth rates, and the development speed of inland cities in Anhui, such as Hefei,
also increased rapidly. In both stages, the hot spots were concentrated in Shanghai and
the surrounding regions and gradually transferred from the coast inland, thus achieving
balanced development. The cold spots were concentrated in Xuancheng and Chizhou in
southern Anhui, which could be related to the undulating terrain and population loss in
these regions. Beijing and Tianjin were the main areas in both stages for the BTHUA, with
Zhangjiakou and Chengde developing more slowly. Langfang, which is between Beijing
and Tianjin, had clear regional advantages and became a hot spot at the same time as
Beijing and Tianjin in the second phase. The development of the GBAUA in the first stage
was concentrated in the middle areas, such as Dongguan, Guangzhou, Foshan, Shenzhen
and Zhongshan, with hot spots in Guangzhou and cold spots in Zhuhai. In the second
stage, the development expanded to the eastern regions such as Huizhou and Zhuhai,
and the hot spots transferred to Huizhou. The development of built-up areas in Hong
Kong and Macau was slow in both stages, which may be related to their smaller regional
areas and mature development before 1992. The CCUA’s development mainly focused on
Guanan, Chengdu, and Chongqing, among which Guangan had a small volume in 1992.
However, by 2000, the built-up area had expanded to reach four times the level observed
in 1992. In the second stage, Chengdu and Chongqing developed rapidly, while Guangan
stabilized. The hot spot areas were concentrated in Chongqing and its surrounding areas.
However, Chengdu, which showed high expansion development, did not become a hot
spot area in either phase, which may be related to its surrounding cities not undergoing
high expansion development.
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Figure 11. Distribution of hot and cold spots in FMUAs. The period 1992–2018 was divided into
two time periods around 2005, where the diverging color scale in columns 1 and 3 represents the
development speed of built-up areas, with blue to red indicating slower to faster development. The
red areas in the second and fourth columns of the image are hot spots, while the blue areas are
cold spots.

4.3. SDE Directional Evolution of UAs

One cannot explore the developmental characteristics of UAs without studying the
directional trend of urban development. To explore the future development trends of the
UAs, we analyzed the directional evolution characteristics of their urban spatial distribution
using the SDE and gravity centers of individual cities. Using 1992, 2000, 2008, 2015, and
2018 as boundary years provided a more comprehensive understanding of the changes in
the built-up area over time. As shown in Figure 12, the ellipses of the YRDUA and GBAUA
show less significant changes, while the ellipses of Chengdu-Chongqing and the two major
urban agglomerations of Guangdong, Hong Kong, and Macao show larger changes. The
elliptical direction of the CCUA gradually transfers from east–west to north–south, and the
ellipse undergoes a change, first shrinking and then expanding. The gravity center of the
CCUA also shifts in the intermediate area of Chengdu-Chongqing. There is no significant
movement in the gravity center of the GBAUA, but its elliptical spatial variation also shows
a trend of first shrinking and then expanding.
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As shown in Table 4, the gravity center of the YRDUA is in the Taihu region, with the
long axis increasing from 0.8224 to 1.0989 and the short axis decreasing from 1.5508 to 1.2357.
This finding indicates that the YRDUA has shown a weak spreading trend in the east–west
direction while shrinking in the north–south direction. This east–west expansion indicates
a transfer of regional development from the coast to the interior, consistent with the results
for the hot–cold spots. The azimuth of the GBAUA changed little from 1992 to 2008 but
decreased sharply from 2008 to 2015, and the direction of development changed from
northwest–southeast to northeast–southwest. The ellipse continued to expand after a rapid
decrease in size in 2000, indicating that the surrounding small cities grew rapidly after 2000.
The azimuth and long and short axes of the BTHUA did not change significantly, and its
elliptical gravity center moved in small steps in the north–south direction while constantly
changing among the three cities of Beijing–Tianjin–Baoding. The SDE area of the CCUA
showed large fluctuations and decreased from 1992 to 2000, indicating a trend toward
continuous concentration in its urban cluster development during this period. The ellipse
area continued to increase from 2000 to 2018, and the concentration of the surrounding
cities continued to weaken. The SDE results show a trend of clockwise rotation, and the
development gradually changed from an east–west direction to a north–south spatial
distribution pattern.
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Table 4. Parameter characteristic values of SDE curves.

UAs Parameter 1992 2000 2008 2015 2018

YRDUA

Azimuth −4.0268 −19.0200 −22.7213 −40.8104 −51.1588
Longitude 120.3087 120.3296 120.2753 120.1984 120.1770
Latitude 31.2796 31.1425 31.1539 31.1899 31.1845

Long axis 0.8224 0.8602 0.8588 0.9942 1.0989
Short axis 1.5508 1.2599 1.2434 1.2315 1.2357

GBAUA

Azimuth −1.1683 1.3552 1.9412 −18.1176 −2.1185
Longitude 113.6484 113.5987 113.5802 113.5653 113.6160
Latitude 22.7886 22.8238 22.8428 22.8435 22.8337

Long axis 0.5241 0.0778 0.1610 0.4346 0.5276
Short axis 0.5878 0.0913 0.1915 0.4591 0.5981

BTHUA

Azimuth 34.0014 25.9257 33.4617 37.1724 35.4692
Longitude 116.4852 116.4326 116.5050 116.5219 116.5461
Latitude 39.1014 39.0520 39.1301 39.2800 39.2506

Long axis 0.8385 0.8402 0.8346 0.7848 0.7513
Short axis 1.0332 1.0526 1.1097 1.1073 1.0455

CCUA

Azimuth 0.2717 0.7145 3.0877 72.3169 −21.7125
Longitude 105.0918 104.9962 105.1147 105.3669 105.2393
Latitude 30.2869 30.3036 30.2734 30.2441 30.1756

Long axis 0.4346 0.1380 0.3821 0.4329 0.7726
Short axis 0.8043 0.2680 0.7715 0.6872 1.2974

As shown in Figure 13, to explore the development of cities within the FMUAs more
precisely, we examined changes in the gravity center of each city to reveal the directional
transformation of urban development. Analyzing the changes in the center of gravity
of UAs every year is very useful for identifying areas undergoing rapid changes due
to urbanization or other factors. The gravity center of the YRDUA shifted westward to
the south from 1992 to 2002 and then northward until 2012, after which it finally shifted
southward to the west. It can be noted that the gravity center gradually moved to the
southwest and north because of the high degree of development of cities in the southeast
of the Yangtze River Delta, such as Shanghai, followed by the rapid rise of Hangzhou,
Nanjing, and Hefei. The gravity center of the GBAUA is located at the junction of Dongguan,
Shenzhen, and Guangzhou. At the time in question, Hong Kong and Macau were more
economically developed, but due to the rapid development of Guangzhou, the overall
gravity center tended to develop in a northwest direction toward Guangzhou. It can be
seen from the trend of the gravity center of each city that Foshan gradually shifted closer to
Zhaoqing, and Shenzhen gradually shifted in the direction of Huizhou in the northeast,
with general clustering in the middle. The gravity centers of Shijiazhuang, Xingtai, and
Qinhuangdao in the BTHUA slowly moved towards Beijing, while Beijing and Tianjin
gradually moved toward the northeast and were not close to the abovementioned areas.
The BTHUA is still centered on Beijing, supplemented by Tianjin and Baoding, while
Xiongan developed to take over the non-capital functions of Beijing. As the only inland city
cluster among the FMUAs, the gravity center is located between Chengdu and Chongqing
and has been hovering between the two for the last 27 years. These results show that
the gravity centers of Chengdu and Chongqing have both moved in the direction of the
northeast–southwest axis, while Mianyang and Leshan have gradually moved closer to
Chengdu. Eventually, the CCUA will become a new, world-class city cluster with a unique
dual-core development pattern.

The expansion of built-up areas and the evolution of the SDE both indicate that the
FMUAs showed an expansion trend from 1992 to 2018, with the YRDUA, GBAUA, and
BTHUA on the coast developing significantly more than the CCUA in the inland region.
The YRDUA adopted Shanghai as its center and has gradually extended from the coast to
Hefei inland, thus achieving a balanced development. The GBAUA has developed more
slowly because of its earlier development. Although the BTHUA is developing rapidly, its
development has been concentrated in the southeast coastal area, with Beijing and Tianjin
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as the core and with serious regional imbalances. The CCUA is centered on Chengdu and
Chongqing, which are in inland areas, and it is weaker in terms of development than the
other three UAs.
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The characteristics of the FMUAs coincide with the development of China’s economy
today. The eastern region, especially the southeastern coastal region, has a developed
economy and fast-growing urban agglomerations. While western China still has untapped
development potential, the development of its UAs has been slow due to its geographi-
cal characteristics [49].

4.4. Development Planning of UAs Using the Luminous Correlation Model

The built-up area evolution and the SED results reveal the changing trends of the UAs,
proving that night-time lights can better reflect the development of UAs as a whole. To
specifically explore the connections between the respective cities, we used the Baidu search
index to construct a correlation model of the FMUAs in 2018, as shown in Figure 14.
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The total correlations of the YRDUA, GBAUA, BTHUA, and CCUA were calculated
to be 391.46, 121.05, 67.48, and 40.65, respectively. The YRDUA has the highest degree of
inter-city communication and the strongest overall degree of connection, while the CCUA
is the weakest. In the YRDUA, Shanghai, Hangzhou, Suzhou, Nanjing, and Ningbo are
the main cities with associations, of which Suzhou, as a high-GDP city, is also known as
the “back garden of Shanghai”, sharing a close connection with Shanghai. Nanjing, as the
capital of Jiangsu Province, has close connections with Yangzhou, Zhenjiang, Maanshan,
and Chuzhou. It can be noted that, as Anhui cities, Maanshan and Chuzhou are very
close to Nanjing, which also shows that the development of the YRDUA is continuing
to transfer inland. In general, several major metropolitan areas in the YRDUA are de-
veloping as a group. The GBAUA is dominated by Guangzhou–Foshan–Dongguan and
Dongguan–Huizhou–Shenzhen, showing a double-triangle pattern. Shenzhen and Hong
Kong, as two of the world’s financial centers, have different political systems, but their
close geographical locations mean that they have remained closely connected. Through
“Hong Kong–Shenzhen cooperation” and the “Shenzhen–Shenzhen metropolis”, these two
connections could become deeper. In addition, Shenzhen also has a strong radiation effect
on its surrounding cities and also has strong correlations with Huizhou and Dongguan.
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Beijing, in the BTHUA, has a strong radiating effect on its surrounding cities and gener-
ates greater attraction from outside. Beijing–Tianjin–Baoding–Cangzhou show a square
correlation trend, in which Langfang is located in the middle of the four cities and has
close connections with all of them. Chengdu maintains a high degree of correlation with its
surrounding cities in the CCUA. However, Chongqing, as a municipality directly under
the control of the Central Government, is less connected to its neighboring cities, as it has a
degree of independence.

The results regarding the changes in the UAs observed by night light and investigated
using the city correlation model with the Baidu index are also consistent with the plans
released by the government, as shown in Figure 15. The YRDUA forms a metropolitan area
with Nanjing, Suzhou, Hangzhou, Ningbo, and Hefei as the major cities, and it radiates to
the surrounding areas. Shanghai, as the key city, strengthens the economic link between
Suzhou and Jiaxing and acts as the engine of the YRDUA to drive the development of the
whole city cluster. The GBAUA takes Guangzhou, Shenzhen, Hong Kong, and Macau
as its four core cities, constituting the main axis that supports interconnection within the
city cluster. This situation will transform the “Guangzhou–Shenzhen–Hong Kong” tripod
into an outward-oriented development model and create two mature metropolitan areas:
“Guangzhou–Foshan” and “Shenzhen–Dongguan–Huizhou”. This change will promote
the reorganization of the city cluster pattern and create a “multi-core, strongly connected”
world-class urban agglomeration. With Beijing as the core, the BTHUA will focus on
strengthening connections with cities in the southeast. The CCUA will gradually move
from a “double-core” model to a process of integrated development with the surrounding
cities, centered on Chengdu and Chongqing. A trend will appear whereby Chengdu
accelerates eastward, while Chongqing accelerates westward in its development. The
CCUA will change from a “backward development” to “mutual development” pattern
regarding the two cores and further capitalize on its dual-core driving ability to form two
urban development economic zones. The future planning and development of the FMUAs
are basically consistent with the experimental results, d the luminous remote sensing results
have significance for the future planning and construction of UAs.
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documents released by the National Development and Reform Commission of the People’s Republic
of China and various provincial governments.

5. Conclusions

We constructed a long-term luminosity series spanning 1992 to 2018 for the FMUAs
of the YRDUA, GBAUA, BTHUA, and CCUA. We found that population and topography
have important influences on the expansion of UAs. The population is highly correlated
with nocturnal growth, with a correlation coefficient as high as 0.71. Changes in topo-
graphic elevation limit the speed and direction of urban development and have especially
decelerated the development of the CCUA, which is situated at a higher elevation.

When analyzing changes in urban built-up areas, different time scales have their
unique reference values. A uniform time interval sequence will make the data more regular
and easier to compare and analyze, which is conducive to observing the long-term trends
of built-up areas but may not capture major changes that occur outside the set time interval.
Non-uniform time interval sequences can better understand the phased development of
UAs, but sudden events or policy changes require manual adjustments to capture significant
changes on the ground, which is subjective. At the same time, the results obtained using
different data points are inconsistent, making them difficult to compare and analyze. In
this study, to ensure the robustness of the analysis, we comprehensively considered the
advantages and disadvantages of different time scales for analysis and constructed a
research framework for the evolution of built-up areas, providing valuable insights for the
growth and development of UAs. The range of built-up areas was extracted from luminous
images, and the expansion range and speed were used to measure the development of the
FMUAs. The results show that the FMUAs conform to the “U” pattern, with the YRDUA
and GBAUA on the southeast coast showing significantly greater development than the
BTHUA and CCUA. Hot–cold spots were constructed based on Getis–Ord Gi* statistics,
and directional evolution was determined using SDE. To study the inter-city correlations, a
luminosity correlation model was constructed based on the Baidu search index. The study
results indicate that the YRDUA, with Shanghai as the center, is continuing to develop
inland and strengthen its associations with the inland cities, such as Hefei. The GBAUA
developed earlier and shows less variability between cities but will continue to develop
inwardly due to topographical constraints in the north and its small area. The BTHUA has
always centered on Beijing and Tianjin, with uneven development. The CCUA, located
in the western part of the interior, is developing more slowly. The cities around Chengdu
continue to move closer to the center, while Chongqing continues to expand outward.
With these two cities as the core, the rest of the regional cities form small metropolitan
areas, developing together. These experimental results are consistent with governmental
planning, and this research has important reference value for future urban cluster planning.

In summary, this study constructed consistent, long-term nighttime light remote
sensing data and analyzed the directional evolution of urban agglomerations from multiple
dimensions. The experimental results are consistent with government planning, and this
research provides valuable references for the future planning of urban agglomerations. The
directional evolution framework of urban agglomerations proposed in this study can be
applied to other regions to obtain a better understanding of urban development dynamics.
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