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Abstract: Hyperspectral anomaly detection (HAD) is an important application of hyperspectral
images (HSI) that can distinguish anomalies from background in an unsupervised manner. As a
common unsupervised network in deep learning, autoencoders (AE) have been widely used in
HAD and can highlight anomalies by reconstructing the background. This study proposed a novel
spatial–spectral joint HAD method based on a two-branch 3D convolutional autoencoder and spatial
filtering. We used the two-branch 3D convolutional autoencoder to fully extract the spatial–spectral
joint features and spectral interband features of HSI. In addition, we used a morphological filter and
a total variance curvature filter for spatial detection. Currently, most of the datasets used to validate
the performance of HAD methods are airborne HSI, and there are few available satellite-borne
HSI. For this reason, we constructed a dataset of satellite-borne HSI based on the GF-5 satellite for
experimental validation of our anomaly detection method. The experimental results for the airborne
and satellite-borne HSI demonstrated the superior performance of the proposed method compared
with six state-of-the-art methods. The area under the curve (AUC) values of our proposed method on
different HSI reached above 0.9, which is higher than those of the other methods.

Keywords: hyperspectral image; anomaly detection; 3D convolutional autoencoder; spatial–spectral
joint information; spatial filtering

1. Introduction

Hyperspectral imaging technology has the unique advantages of a high spectral
resolution and a high spatial resolution, and it is one of the most significant scientific
and technological breakthroughs since the development of remote sensing technology [1].
Hyperspectral images (HSI) are image cubes, enabling the acquisition of fine spectral infor-
mation along with spatial information about the feature [2,3]. HSI has been widely used
in different fields of remote sensing, such as classification [4], target detection [5], mineral
resources surveys [6], gas emissions surveys [7], and anomaly detection [8]. Anomalies in
HSI can be considered as pixels that are different from the background and usually have the
following characteristics: (1) they have significant spectral differences from the surrounding
background; (2) they are spatially isolated and often occupy fewer pixels or sub-pixels;
(3) the spatial brightness of anomalous pixels in different bands differs from the sur-
rounding background, being either brighter or darker [9–11]. Compared with target
detection, which requires a priori information, anomaly detection can detect an anomaly
without using any a priori information from the HSI, providing important information
for subsequent image analysis. Therefore, hyperspectral anomaly detection, which is
more practical [12,13], has been widely applied in many fields of remote sensing, such
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as target detection, mineral exploration and environmental monitoring [1,14]. In the past
two decades, researchers have proposed many effective hyperspectral anomaly detection
methods from different perspectives.

The statistical theory-based hyperspectral anomaly detection methods are the most
classical, which use the statistical features of hyperspectral images to detect anomalies.
The best-known and most representative statistical-based method is the Reed–Xiaoli (RX)
algorithm [15]. The RX algorithm assumes that the background of the hyperspectral image
follows a Gaussian distribution and obtains the anomaly detection result by calculating
the Mahalanobis distance between the mean spectrum and the test pixel’s spectrum. Many
improved methods based on the RX algorithm have been proposed. Multiple-window
RXD (MW-RXD) was proposed to obtain better detection results when the anomalies have
different shapes and sizes [16]. To address the problem that real hyperspectral images do
not always follow a Gaussian distribution, Matteoli proposed a data-driven strategy for
automatically estimating the background probability density function [17]. To reduce the
effect of anomalous pixels on the estimation of background statistical features, weighted-
RXD (W-RXD) sets different weights for background pixels and anomaly pixels; linear
filter-based RXD (LF-RXD) filters out anomalies by calculating the possibility of each pixel
being a background sample to [18]. RSAD [19] randomly selects background pixels several
times to calculate the background statistics for anomaly detection. In addition, the kernel
RX (KRX) algorithm [20] maps the raw data nonlinearly to a high-dimensional feature
space where the background and anomalies can be separated more effectively. For real
hyperspectral images, accurately modelling the background is statistically difficult, so
many approaches from other perspectives have been proposed.

The distance-based detection method groups all pixels in a hyperspectral image ac-
cording to their distance, and pixels that deviate from the centre of the group are considered
to be anomalous pixels. The support vector description (SVDD) anomaly detection method
calculates the amount of support vector description for each pixel and considers pix-
els outside the support region as anomalous pixels [21]. An anomaly detection method
based on the local joint subspace and the support vector machine (LJSSVM) [22] was
proposed by combining the SVM into a statistical approach. Clustering-based anomaly
detection (CBAD) [23] uses a clustering algorithm to divide the original hyperspectral
image into clusters, with a pixel further away from the centre of the nearest cluster consid-
ered to be more anomalous. The authors of [24] applied graph theory to the detection of
hyperspectral anomalies.

The representation-based hyperspectral anomaly detection methods have become
a hot research topic. The basic idea is that background pixels can be represented with
a small level of error using dictionary atoms, while anomalous pixels cannot. The local
sparsity divergence anomaly detection method (LSDAD) [25] provides a consistent sparse
divergence index (SDI) and fuses local spectral sparse divergence with local spatial sparse
divergence to represent the anomaly degree of the pixel. Ling et al. added sum-to-one
and non-negative constraints to the abundance vector on top of the sparse representation
model to ensure that it was physically meaningful [26]. Unlike sparse representation
methods, the collaborative representation anomaly detection (CRD) method [27] represents
the central pixel collaboratively with all pixels in the spatial neighbourhood and enhances
the collaboration of interpixel representation with an L2 norm constraint so that every pixel
participates in the representation.

Many matrix decomposition-based anomaly detection methods have been proposed
due to the global low rank of the background of the hyperspectral image and the global
sparsity of the anomaly. A low-rank and sparse matrix decomposition detection method
(LRaSMD) [28] was proposed, which uses the Go Decomposition (GoDec) algorithm to
solve the low-rank matrix decomposition problem and obtains the result by calculating the
Euclidean distance of sparse matrix. Based on the LRaSMD method, the LSMAD method
was proposed, which calculates the Mahalanobis distance using the background matrix
obtained from the decomposition to obtain detection results [29]. Considering that the
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backgrounds of hyperspectral images belong to different subspaces, many methods based
on the low-rank representation (LRR) have been proposed. To preserve the local geometric
structure and the spatial relationships of HSI, an anomaly detection method based on
graphs and total variational regularisation LRR (GTVLRR) has been proposed [30]. To give
a more accurate representation of the background, the low-rank and sparse representation
method (LRASR) adds a sparse regularisation term to the representation of the coefficient
matrix based on the low-rank constraint on the background matrix and uses the K-means
algorithm to construct the dictionary [31].

Deep learning-based methods are being increasingly applied to hyperspectral anomaly
detection due to they can capture high-dimensional, nonlinear features and fit complex
functions [32]. Du et al. applied a convolutional neural network (CNN) to detect hyper-
spectral anomalies and proposed an anomaly detection framework based on the migrating
depth of convolutional neural networks to measure the degree of anomaly as the simi-
larity between the pixel pair consisting of the pixel to be measured and the surrounding
pixels [33]. Song et al. used CNN to obtain abundance maps to use as input for LRR to
complete anomaly detection [34]. However, the lack of labeled anomalous samples in
anomaly detection tasks imposes significant limitations on supervised methods. As one of
the unsupervised neural networks, the autoencoder (AE) is increasingly being used for the
detection of hyperspectral anomalies due to its not requiring labeled anomalous samples.
To preserve the geometric structure and the local spatial consistency of HSI simultaneously,
a method named robust graph autoencoder (RGAE) has been proposed [35]. The spectral
constraint adversarial autoencoder approach (SC-AAE) [36] incorporates a spectral con-
straint strategy into adversarial autoencoders to fully utilize the spectral information of the
hyperspectral data to extract the features of high-dimensional spectral vectors. To attenuate
the effects of noise, interband nonlinear correlations, and other factors on detection, a
stacked denoising autoencoder-based detection method (HADSDA) was proposed [37].
A number of autoencoder-based methods of detecting hyperspectral anomalies are now
available and have had good results. However, they still have some problems. Firstly,
flattening the hyperspectral images’ 3D cube data into 2D matrix data results in the loss of
information on the spatial–spectral structure. Secondly, the rich spectral interband infor-
mation of HSI is underutilized. Finally, the presence of anomalous pixels in the training
set will make the reconstruction error for anomalies smaller, resulting in less ability to
distinguish between the background and an anomaly.

As the AE network can learn the background feature well and reconstruct the back-
ground without using labeled anomalous samples, it is used as the basic model in this
paper for hyperspectral anomaly detection. In order to address the abovementioned issues,
we proposed a spatial–spectral joint HAD method based on a two-branch 3D convolutional
autoencoder(3D-CAE) and spatial filtering. In addition, to address the lack of satellite-borne
HSI for anomaly detection experiments, we constructed a satellite-borne hyperspectral
dataset containing HSI with different backgrounds and different anomalous targets. The
main innovative contributions of our work can be summarised as follows.

(1) A novel two-branch 3D-CAE was developed to fully extract the spatial–spectral
joint features and spectral interband features of HSI, and novel multi-scale spectral
difference data were used as the input of the second network branch.

(2) A morphological filter and a total variance curvature filter were used for spatial
detection, and the spatial detection result was also used to filter the background
sample set for training the network.

(3) A satellite-borne hyperspectral dataset based on the images acquired by the GF-5
satellite was constructed that can be used to validate the effectiveness of many HAD
methods. We used six state-of-the-art methods to demonstrate the validity of the
proposed method, not only with the commonly used airborne hyperspectral images
but also with satellite-borne HSI.

The rest of the study is structured as follows. Section 2 details the two parts of the
hyperspectral anomaly detection method proposed in this study. In Section 3, we validate
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the effectiveness of the proposed method using real airborne and satellite-borne HSI, and
Section 4 presents the conclusions.

2. Proposed Method

This section describes in detail the method of detecting hyperspectral anomalies
proposed in this study. As shown in Figure 1, the proposed method consists of two
parts: the spatial anomaly detection part and the spatial–spectral joint detection part.
First, in the spatial anomaly detection part, morphological filtering and total variance
curvature filtering [38] are applied to the first few principal components of the original
HSI to extract the spatial features of anomalies and suppress the background information,
thus obtaining the spatial detection results. Then, in the spatial–spectral joint detection
part, we constructed a two-branch 3D convolutional autoencoder network [39]. To better
extract the spectral and interspectral information of the hyperspectral image, we proposed
a multi-scale spectral difference feature as the input for the second branch of the network.
The original HSI serves as the input of the first branch. After the training was completed,
we input the original HSI and the multi-scale spectral difference data into the network
and took the reconstruction error of the first branch as the results of spatial–spectral joint
anomaly detection result. Finally, we fused the results of the two parts to obtain the final
result of anomaly detection.
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Figure 1. Schematic of the proposed method based on a two-branch 3D convolutional autoencoder
and spatial filtering.

2.1. Spatial Detection

Based on the characteristics of anomalies described earlier, we know that anomalies
typically have rich spatial information that can be utilized. To make spatial information
more significant, we first performed principal component analysis (PCA) on the original
hyperspectral images to obtain the first few principal components. The PCA method
can concentrate the main spatial information in the first few principal components [40].
We then applied a morphological gradient and top-hat operations [41] to the first few
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principal components to obtain the boundaries of the anomalies and isolated pixels (i.e.,
potentially anomaly pixels) with higher brightness values than the surrounding area in the
first few components.

In this study, the original hyperspectral image is represented as X ∈ RM×N×L, where
M and N are the sizes of the spatial dimensions of the HSI, and L is the number of bands in
the spectral dimension. The first few principal components Ci ∈ RM×N×1 were obtained
by using PCA for X:

Ci = PCi(X), i = 1, 2 · · ·P (1)

where PCi(X) ∈ {PC1(X), PC2(X), · · · , PCB(X)} are the principal components of the hyper-
spectral image obtained using PCA. Then, morphological gradient and top-hat operations
were applied to Ci:

Gi = grad(Ci), Ti = tophat(Ci) (2)

grad(Ci) = (Ci ⊕ SE)− (Ci 	 SE) (3)

tophat(Ci) = Ci − (Ci 	 SE)⊕ SE (4)

where grad(·) and tophat(·) are the morphological gradient and top-hat operations,
⊕ denotes the morphological expansion operation, 	 denotes the morphological ero-
sion operation, and SE denotes the structural element (we used the cross-structure element).
After the morphological feature map had been obtained, the morphological feature map
was normalized and fused to obtain the initial result of spatial detection I ∈ RM×N. The
value of I can be calculated as

I =
1
P

P

∑
i=1

(Gi + Ti)

2
(5)

The operation above obtained the original result of spatial anomaly detection while
also obtaining some background information. Therefore, the background information
needed to be further subtracted from I to obtain the final result of spatial detection A1.
The total variance curvature filter (TVCF) [38,42] assumed that the surface of an image is a
piecewise constancy surface and that the HSI has inherent piecewise constancy due to their
sparsity. Therefore, in this study, the background image, denoted as B, was obtained by
multiple iterations of filtering using the TVCF for I.

In the TVCF, a domain decomposition method is used to divide all pixels of the image
into four subsets such that neighboring pixels in a four-connected neighborhood belong to
different subsets. The specific decomposition method is as follows: first, all image pixels
are divided into two non-adjacent subsets: the “white” points W and the “black” points B.
Then, each of these two subsets is further divided into triangles and circles. This results
in four subsets: black circles BC, black triangles BT, white circles WC and white triangles
WT, as shown in Figure 2. Then, for all pixels in each subset, the projection of the pixel to
the eight surfaces within its 3 × 3 neighborhood was calculated. The projection with the
smallest absolute value was then selected from these projections and added to the original
pixel to obtain the updated result. The algorithm is summarized in detail in Algorithm 1.
After several iterations using TVCF, the background image B could be obtained, subtracted
from the initial spatial anomaly feature map I, and the difference was squared to enhance
the attenuating background of the anomalies to obtain the results of spatial detection.

A1 = (I− B)2 (6)
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Algorithm 1. Total variation curvature filter

Input: Im,n ∈ BC, BT , WC, WT
1: d̂1 = (Im−1,n−1 + Im−1,n + Im,n−1 + Im+1,n−1 + Im+1,n)/5− Im,n
2: d̂2 = (Im−1,n + Im−1,n+1 + Im,n+1 + Im+1,n + Im+1,n+1)/5− Im,n
3: d̂3 = (Im−1,n−1 + Im−1,n + Im−1,n+1 + Im,n−1 + Im,n+1)/5− Im,n
4: d̂4 = (Im+1,n−1 + Im+1,n + Im+1,n+1 + Im,n−1 + Im,n+1)/5− Im,n
5: d̂5 = (Im−1,n−1 + Im−1,n + Im−1,n+1 + Im,n−1 + Im,n+1)/5− Im,n
6: d̂6 = (Im−1,n−1 + Im−1,n + Im−1,n+1 + Im,n−1 + Im+1,n+1)/5− Im,n
7: d̂7 = (Im+1,n−1 + Im+1,n + Im+1,n+1 + Im−1,n−1 + Im,n−1)/5− Im,n
8: d̂8 = (Im+1,n−1 + Im+1,n + Im+1,n+1 + Im−1,n+1 + Im,n+1)/5− Im,n

9: Find dm, such that |dm| = min
{∣∣∣d̂i

∣∣∣, i = 1, · · · , 8
}

Output: Im,n = Im,n + dm

2.2. Spatial–Spectral Joint Detection

AE networks can use spectral reconstruction errors to measure the degree of anomaly
of a pixel. However, the traditional AE networks flatten the 3D cube data into a 2D
matrix and use 1D spectral vectors as inputs to the network, ignoring the spatial and joint
spatial–spectral information. For spatial–spectral joint detection, we proposed a two-branch
3D-CAE network and a multi-scale spectral difference feature in order to make full use of
the spatial–spectral joint information. To avoid the involvement of anomalous pixels in the
training of the network, we proposed a coarse screening strategy for the background patch
samples. Below, we present a detailed description of the multi-scale spectral differencing
and network inputs, the network’s structure, the loss function, and the final results of
anomaly detection.

2.2.1. Multi-Scale Spectral Difference Feature Data and Network Inputs

Spectral differencing is a commonly used strategy for analyzing HSI’s spectral fea-
tures, where the spectral differences at different scales represent different spectral features.
Smaller spectral differences can reflect the details of the spectral changes, while larger
spectral differences can reflect the trends of the spectral changes. The difference between an
anomaly and the background may be greater at some scales. Figure 3 shows the different
scales of the spectral differences in the data. In order to fully extract the spectral features at
different scales, we proposed a multi-scale spectral difference strategy, where spectral dif-
ference data at different scales are calculated for the original hyperspectral image and fused
to obtain multi-scale spectral difference data as the input for one branch of the two-branch
3D-CAE network.
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The features of spectral difference at different scales can be expressed as

si(:, :) =
L−i

∑
k=1
|X(:, :, k + i)− X(:, :, k)| (7)

where i ∈ [1, L− 1] denotes the scale and si(:, :) ∈ RM×N is the spectral difference at scale
i. Then, the multi-scale spectral difference data cube can be obtained by combining the
spectral difference at different scales, described as

S(:, :, i) = si(:, :) (8)

where S ∈ RM×N×L−1 and, originally, the HSI data X ∈ RM×N×L are the two input datasets
for the two branches of network.

Further, to avoid patches containing abnormal pixels being fed into the network,
patches in X and S were not fed directly into the network. We used the spatial detection
result A1 to screen the background patches in X and S within the network. First, the
background anomaly segmentation map A1_seg was obtained using the Otsu thresholding
method [43] for A1. Then, the patches in X and S whose center pixels corresponded to a
value of zero in A1_seg were considered to be background patches and were inputted into
the network. Thus, the inputs of the two branches of the network were xm,n and sm,n, which
are described as

xm,n ∈ X =
{

xm,n
∣∣A1_seg(m, n) = 0

}
(9)

sm,n ∈ S =
{

sm,n
∣∣A1_seg(m, n) = 0

}
(10)

where xm,n, sm,n are the cube patch in X and S centered at (m, n) with sizes of p× p× L
and p× p× L− 1, respectively.

2.2.2. Architecture of the Two-Branch 3D-CAE Network

Hyperspectral images are three-dimensional cube data, while the AE network flattens
the cube data into a two-dimensional matrix during training, which can only extract spectral
features and lose the spatial-spectral joint features of hyperspectral images. The 3D-CAE
architecture is a variant of the traditional AE network, which takes the three-dimensional
cube data as input and can extract both spectral and spatial features simultaneously. There-
fore, 3D-CAE is suitable for hyperspectral-related applications and has been successfully
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applied in hyperspectral image processing, such as classification and detection [39,44–46].
To exploit both the rich spectral features and the spatial–spectral joint features of HSI, we
were inspired by the research on 3D-CAE and proposed a two-branch 3D-CAE network.
The network’s architecture is shown in Figure 4. The first branch of the network extracts
the deep spatial–spectral joint features from the original HSI X, while the second branch
extracts the spectral features from the multi-scale spectral difference data S. The spectral
difference branch improves the ability of the model to distinguish between different spec-
tra. For the two different branches, the network’s architecture is the same. The specific
configuration of the model is as follows.
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In the encoding part, the features of two patches xm,n and sm,n were extracted sepa-
rately from the two branches. The input 3D patches of the two branches of the network
were xm,n and sm,n, with a size of p× p× L and p× p× L− 1. We set the size a p = 5 for
both xm,n and sm,n because anomalies typically have a smaller spatial size (5 × 5 window is
sufficient to encompass the anomalies), and it is crucial to ensure that two branches extract
features at the same spatial scale. We used two 3D convolutional layers to extract the
spatial–spectral joint features. The first convolutional layer had 32 convolutional kernels
with a size of 3× 3× 5 and a stride of 1× 1× 1. The convolutional layer was followed by
the batch normalization layer and the PRelu layer. The second convolutional layer had
64 convolutional kernels with a size of 3× 3× 5 and a stride of 1× 1× 1. This convolutional
layer was followed by the batch normalization layer and a sigmoid layer. The features
obtained from the two convolutional layers were flattened to a 1D vector which became
the input of the fully connected layer. The output of this layer of the two branches was
concatenated and passed through a fully connected layer again to obtain the latent vector.

In the decoding part, the latent layer vector was first restored to its original scale by a
fully connected layer. It was then separated and transformed back into two 3D patches,
which were used as input for the decoding part of the two branches. The architecture of
the network of the decoding part was a mirror image of the encoding part, except that a
transposed convolutional layer was used instead of a convolutional layer. The output of
the network x̂m,n and ŝm,n, which had the same size as xm,n and sm,n, was the reconstructed
3D patch.

2.2.3. Loss Function and Final Results of Anomaly Detection

The loss functions of the two branches were calculated the same way and were
summed to obtain the loss function of the network. With the original image branch as an
example, the loss function had two components: Lspatial , which measures the input patch’s
spatial similarity to the reconstructed patch, and Lspectral , which measures the input patch’s
spectral similarity to the reconstructed patch. Since the background screening session made
the central pixel of each patch more likely to be the background, we multiplied Lspatial and
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Lspectral by Euclidean distance weights to make the central pixel contribute more to the
reconstruction error of the patch. The two parts of the loss functions are described as

Lspatial =
p

∑
i=1

p

∑
j=1

wi,j ∗ ‖x(i, j)− x̂(i, j)‖2 (11)

Lspectral =
p

∑
i=1

p

∑
j=1

wi,j ∗ arccos
(

x(i, j)x̂(i, j)
‖x(i, j)‖2‖x̂(i, j)‖2

)
(12)

where x(i, j) denotes the spectral vector at the spatial location in row i and column j in the
input cube of the original hyperspectral image, x̂(i, j) denotes the spectral vector at the
corresponding location in the reconstructed cube of that branch of the network, and wi,j
denotes the weight of distance at that location, which is expressed as

wi,j =
1√(

i−
⌈ p

2
⌉)2

+
(

j−
⌈ p

2
⌉)2

(13)

where p is the spatial size of the 3D patch. Thus, the loss function of the first branch of the
network is described as

L1 = Lspatial + (1− α)Lspectral (14)

where α denotes the weighting factor of the two parts; we set this as α = 0.8 in this study
based on experiments with different values of α. The loss function L2 for the second branch
of the network was calculated in the same way as L1, except that x(i, j) was replaced by
s(i, j). Thus, the loss function used for training the network can be described as

Loss = L1 + L2 (15)

The training dataset is filtered using the background samples selection method de-
scribed in Section 2.2.1 on the hyperspectral data introduced in Section 3.1. In the model
training, the Adam optimizer [47] was applied. The training process continues until either
100 iterations have been completed or the loss function has converged. After training the
network using the background samples, unfiltered hyperspectral data and multi-scale spec-
tral difference data are used as input during the testing stage to obtain the reconstructed
data. Since the network was only trained on background samples, the reconstruction error
of anomaly patches should be very high. Therefore, model validation is performed by
inputting unfiltered data into the network to generate a reconstruction error map. The
results of spatial–spectral anomaly detection were obtained by calculating the spectral
angular distance between the original hyperspectral image X and its reconstructed data X̂,
described as

A2 = arccos

(
XX̂

‖X‖2‖X̂‖2

)
(16)

We obtained the results of spatial detection A1 and the results of spatial–spectral joint
anomaly detection A2, both of which measured the likelihood of an anomaly occurring in
different dimensions. The final result of anomaly detection was obtained by fusing the two
in the form of a product, which can be described as

A = A1 ∗A2 (17)

3. Experimental Setting and Results

In this section, the experiments used to evaluate the effectiveness of the proposed
method are described in detail. First, we introduce the airborne and satellite-borne datasets
used for the experiments. Then, the experimental setup is described, including the other
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methods in the comparison and the settings of the experimental parameters. Finally, we
analyze and discuss the experimental results for the airborne and satellite-borne datasets.

3.1. Experimental Hyperspectral Datasets

Currently, most of the hyperspectral datasets used to validate anomaly detection meth-
ods contain airborne hyperspectral images, and fewer satellite-borne hyperspectral images
are available. Therefore, in this study, we selected some images containing anomalous
targets from a large number of hyperspectral images acquired by the GF-5 satellite AHSI to
form a satellite-borne hyperspectral dataset named the G5 anomaly dataset.

In the experiments of this study, we selected four airborne hyperspectral images and
four satellite-borne hyperspectral images from three datasets: the San Diego dataset, the
Airport–Beach–Urban (ABU) dataset, and the G5 anomaly dataset. The details of the
experimental images are as follows.

(1) San Diego dataset: The San Diego dataset was acquired by the AVIRIS sensor. The
first two airborne HSI used in the experiments are from this dataset. They have a
spatial resolution of 3.5 m and a spectral resolution of 10 nm. The spatial size of the
images is 100 × 100. After removing the water vapor bands and the low SNR bands,
we selected 189 of the 224 bands with spectral coverage ranging from 370 to 2510 nm.
The first image, denoted as SanDiego-I, has the anomalous target of three aircraft in
the upper right corner, occupying a total of 58 pixels; the second image, denoted as
SanDiego-II, has the anomalous target of three aircraft in the lower left and middle
positions, occupying a total of 104 pixels. The pseudo-color images and ground truth
maps of these two images are shown in Figure 5.

(2) Airport–Beach–Urban (ABU) dataset: The third and fourth airborne HSI used in the
experiment were from the ABU dataset. The third HSI was collected by the AVIRIS
sensor. The spatial size of the image is 100 × 100, and the spatial resolution is 17.2 m.
It has 198 bands selected from a total of 224 bands, with a range of 450–2500 nm and
a spectral resolution of 10 nm. The anomalous target is the rock in the middle of
the image in five columns, occupying a total of 155 pixels, denoted as Urban-I. The
fourth HSI was collected by the ROSIS-03 sensor in Pavia, Italy. The spatial size of
the image is 100 × 100, and the spatial resolution is 1.3 m. The number of bands is
102 ranging from 430–860 nm, with a spectral resolution of 3.3 nm. The anomalous
targets are vehicles on the bridge, occupying a total of 68 pixels, denoted as Beach-I.
The pseudo-color images and ground truth maps of these two images are shown in
Figure 6.

(3) G5 anomaly dataset: The AHSI on board the GF-5 satellite acquired a large number of
valuable images [48], from which we selected images containing different anomalous
targets in different scenes to establish a satellite-borne hyperspectral dataset for
anomaly detection, named the G5 anomaly dataset. The images in this dataset are
mainly from the visible near-infrared (VNIR) channel of the AHSI, with a spatial
resolution of 30 m, a band number of 150, and a spectral resolution of 5 nm, with a
spectral coverage ranging from 400 to 1000 nm. We selected four images of different
typical anomalous targets in different typical scenes for the experiment. The images
with a size of 100 × 100 pixels around the anomalous target were intercepted as
the experimental images. G5-I is a pixel-level anomaly against a thin cloudy, and
land background. G5-II is a building anomaly against a land background. G5-III is
a ship anomaly against an ocean background. G5-IV is a building anomaly against
a lake background. The pseudo-color images synthesized using the 74th, 38th, and
12th bands, and the ground truth maps are shown in Figure 7.
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image of G5-I, (b) pseudo-color image of G5-II, (c) pseudo-color image of G5-III, (d) pseudo-color
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3.2. Comparison Algorithm and Parameter Settings

To evaluate the effectiveness of the method proposed in this study, six different state-
of-the-art anomaly detection methods were selected for comparison. Among them, the
statistics-based methods were RX [15] and LRX [49], the representation-based method was
CRD [27], the decomposition-based methods were LRASR [31] and LSMAD [29], and the
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deep learning-based method was RGAE [35]. For each method, we set the parameters
that optimized its performance. For LRX, the size of the sliding dual window (Wout, Win)
needed to be set. For CRD, the size of the sliding dual window (Wout, Win) and the penalty
factor λ needed to be set. For LRASR, the number of clusters K, the number of pixels per
class P, and the low-rank sparse trade-off factors β and λ needed to be set. For LSMAD,
the maximum rank r of the background matrix and the cardinality parameter k of the
sparse matrix needed to be set. For RGAE, the trade-off parameter λ and the number of
superpixels S needed to be set. For our method, the dimensions of the hidden layer d of
the network, the morphological structure se, and the number of principal components P
needed to be set. For the four satellite-borne hyperspectral images from the G5 anomaly
dataset, we set the same parameters. The parameters of the six methods and our method
were set as shown in Table 1.

Table 1. Main parameters for the different methods for different datasets.

Method Parameter San Diego-I San Diego-II Urban-I Beach-I G5

LRX (Wout , Win) (25, 23) (25, 23) (21, 19) (9, 7) (9, 5)

CRD (Wout , Win) (17, 15) (17, 15) (9, 5) (9, 7) (9, 5)
λ 10−6 10−6 10−6 10−6 10−6

LRASR

K 15 15 15 15 15
P 20 20 20 20 20
β 0.005 0.005 0.005 0.005 0.005
λ 0.01 0.01 0.01 0.01 0.01

LSMAD
r 2 2 2 1 2
k 0.005 0.005 0.01 0.01 0.002

RGAE
λ 0.01 0.01 0.01 0.01 0.01
S 150 150 100 150 150

Proposed
P 2 2 2 2 2
se (5, 5) (5, 5) (5, 5) (5, 5) (3, 3)
d 200 200 200 200 200

The computer configuration used in the experiment had 256 GB of main memory, an
Inter (IR) Xeon (R) Gold 5218 CPU@2.3 GHz, and an NVIDIA GeForce RTX 3090 GPU, and
the software resources used in the experiment include: Python 3.8.12 compiler, PyTorch
1.9.0 deep learning framework, and PyCharm IDE.

3.3. Experimental Results and Analysis
3.3.1. Experimental Results for the Airborne Hyperspectral Image Datasets

In this section, we describe and analyze the experimental results for the airborne
hyperspectral images in detail. Figure 8 shows the results of detecting anomalies in the
airborne datasets.

As can be seen in the results of visual detection (Figure 8b), our proposed method
successfully highlighted the anomalous targets and suppressed the background well for all
four datasets compared with the other six methods. The anomaly scores for the anoma-
lous targets differed significantly from the background, and the anomalous targets could
be clearly observed in the visual detection maps. This is because we made use of the
spatial–spectral joint information along with the spatial information, which allowed for
better suppression of the background and enhanced the response to the anomalous targets.
For RX, the more complex the background of the HSI was, the greater the percentage of
anomalous pixels and the worse the results of detection. As can be seen from Figure 8c,
the RX algorithm failed to detect the anomalous targets and incorrectly detected many
background pixels as anomalies in the San Diego-I dataset. For the other three datasets, the
RX algorithm was able to detect some of the anomalies but still detected many background
pixels as anomalies. For LRX, using pixels within a sliding dual window to estimate the
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background statistical features produced large errors and made it difficult to detect anoma-
lous targets. Figure 8d shows that the LRX algorithm lost most of the anomalous targets in
the San Diego-I, San Diego-II, and Urban-I datasets. For CRD, it can be seen from Figure 8e
that the anomalous targets were detected in the San Diego-I, San Diego-II, and Beach-I
datasets, but the difference between the anomalous targets and the background was small,
with many background pixels responding more than the anomalous targets. The CRD
algorithm lost some of the anomalous targets in the Beach-I dataset, probably because some
of the lost anomalous targets were larger and denser.
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For LRASR, Figure 8f shows that all anomalous targets could be clearly seen in all four
datasets. However, its lack of suppression of the background caused the background to be
too visible. LSMAD was able to separate the anomalies from the background very well. As
can be seen in Figure 8g, the anomalous targets were clearly detected with less interference
from the background and noise in the four datasets. For RGAE, as can be seen in Figure 8h,
the results of detection were very close to those of our proposed method for the San Diego-
II, Urban-I, and Beach-I datasets. However, for the San Diego-I dataset, the anomalous
target was not clear enough, and the most obvious place was the background pixels.

Next, we analyzed the results of detection using three commonly used evaluation
criteria: the receiver operating characteristic (ROC) curve, the area under the ROC curve
(AUC), and the separability map. The ROC curve reflects the change in the FPR (false
positive rate) and the TPR (true positive rate) for different thresholds, with the horizontal
axis being the FPR and the vertical axis being the TPR. The closer the curve is to the top
left corner, the better the result is. The AUC value is the area under the ROC curve, and
the closer it is to one, the better the result is. The separability map shows the dispersion
of background and abnormal pixels in the results and reflects the ability of the results to
separate the background and the anomalies.

Figure 9 shows the ROC curves of the different methods for the four airborne HSI.
We can see that in Figure 9a, the curve of our proposed method was always at the top for
the San Diego-I dataset. This means that our method had the maximum detection rate
for different false positive rates. For the San Diego-II dataset in Figure 9b, the curve of
our proposed method had a high detection rate at lower false positive rates, while the
RGAE method was able to achieve the maximum detection rate first. As can be seen in
Figure 9c,d, for the latter two datasets, our proposed method was the first to achieve a high
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detection rate at a lower false positive rate. Table 2 shows the AUC values of the results of
different detection methods for each airborne HSI. It can be seen that for airborne datasets,
our proposed method had the largest AUC value compared with the other six methods.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

positive rate) and the TPR (true positive rate) for different thresholds, with the horizontal 
axis being the FPR and the vertical axis being the TPR. The closer the curve is to the top 
left corner, the better the result is. The AUC value is the area under the ROC curve, and 
the closer it is to one, the better the result is. The separability map shows the dispersion of 
background and abnormal pixels in the results and reflects the ability of the results to 
separate the background and the anomalies. 

Figure 9 shows the ROC curves of the different methods for the four airborne HSI. 
We can see that in Figure 9a, the curve of our proposed method was always at the top for 
the San Diego-I dataset. This means that our method had the maximum detection rate for 
different false positive rates. For the San Diego-II dataset in Figure 9b, the curve of our 
proposed method had a high detection rate at lower false positive rates, while the RGAE 
method was able to achieve the maximum detection rate first. As can be seen in Figure 
9c,d, for the latter two datasets, our proposed method was the first to achieve a high de-
tection rate at a lower false positive rate. Table 2 shows the AUC values of the results of 
different detection methods for each airborne HSI. It can be seen that for airborne datasets, 
our proposed method had the largest AUC value compared with the other six methods. 

 
Figure 9. ROC curves of different methods for four airborne HSI: (a) San Diego-I, (b) San Diego-II, 
(c) Urban-I, and (d) Beach-I. 

Table 2. AUC values of the results of detection of different methods for each airborne HSI. 

AUC San Diego-I San Diego-II Beach-I Urban-I 
RX 0.9053 0.9403 0.9885 0.9951 

LRX 0.8725 0.9675 0.9284 0.9188 
CRD 0.9788 0.9293 0.9570 0.9283 

LRASR 0.9836 0.8803 0.9778 0.9456 
LSMAD 0.9864 0.9813 0.9903 0.9927 

Figure 9. ROC curves of different methods for four airborne HSI: (a) San Diego-I, (b) San Diego-II,
(c) Urban-I, and (d) Beach-I.

Table 2. AUC values of the results of detection of different methods for each airborne HSI.

AUC San Diego-I San Diego-II Beach-I Urban-I

RX 0.9053 0.9403 0.9885 0.9951

LRX 0.8725 0.9675 0.9284 0.9188

CRD 0.9788 0.9293 0.9570 0.9283

LRASR 0.9836 0.8803 0.9778 0.9456

LSMAD 0.9864 0.9813 0.9903 0.9927

RGAE 0.9791 0.9919 0.9914 0.9887

Proposed 0.9974 0.9927 0.9940 0.9980

Figure 10 shows the separability map of the different methods for the four airborne HSI.
It can be observed that our proposed method was able to achieve an effective separation of
the anomalies and the background in the four airborne HSI. The proposed method was
able to achieve high anomaly scores while also effectively suppressing the background.
The LRASR and RGAE methods were equally capable of separating anomalies from the
background in the four datasets, but neither suppressed the background as well as our
proposed method.
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3.3.2. Experimental Results for the Satellite-Borne Hyperspectral Image Dataset

We carried out the same experiment with the four satellite-borne HSI. Figure 11 shows
the visual detection results. It can be seen that the RX method was able to highlight most of
the anomalous targets, while in the case of complex background components, it highlighted
a large amount of background information at the same time, such as in G5-II, G5-III, and
G5-IV. Compared with the RX method, the LRX method suppressed the background better,
while the reinforcement of the anomalous target became weaker. For anomalous targets
with a large spatial area, such as G4, the detection was poor. The RX and LRX method
achieved better results with G5-I because the distribution of the image background was
more uniform and was close to a Gaussian distribution. The CRD method was weak at
suppressing the background, and the background pixels generally had a high anomaly
score. The LRASR method highlighted the anomalous targets very well in all four HSI;
however, the background was not well suppressed in all four HSI. For the LSMAD method,
when the background had a small number of components and a homogeneous distribution,
such as in G5-I, G5-II, and G5-III, this method was able to detect the anomalous targets
and suppress the background. For G-IV, which had more complex backgrounds, it lost
some of the anomalous targets and had high scores for more background pixels. The RGAE
method was able to highlight most of the anomalous targets in the first three HSI, but the
background was poorly suppressed; in the last image, it lost some of the anomalous targets.
Our proposed method clearly had the best ability to highlight the anomalous targets in all
four HSI. Due to the combination of spatial and spectral information, our proposed method
was able to suppress the background better; only a few high-contrast edge background
pixels had high anomaly scores.
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(g) LSMAD, and (h) RGAE.

The ROC curves and AUC values for the different methods for the four satellite-borne
HSI are presented in Figure 12 and Table 3. It is important to specify that for G5-I, where
the anomalous target occupied a few pixels, RX, LRX, CRD, LRASR, and our proposed
method all obtained the highest scores for the anomalous target’s location. Thus, as shown
in Figure 12a, the ROC curves were all red horizontal straight lines with a value of one.
These methods had an AUC value of 0.999. For the other three HSI, the ROC curves of our
proposed method were higher than those of the other methods and achieved a detection
rate close to one with the lowest false positive rate. The proposed method achieved the
highest AUC values for these four HSI.

For the satellite-borne HSI with anomalous pixels occupying only a few pixels, the ROC
curve was close to a horizontal straight line with a value of one, and the AUC value was
close to one when the anomalous pixels had the highest score, such as G5-I. In this case, the
ROC curve and AUC values only indicated that anomalies can be detected but did not reflect
the effect of suppressing the background. Therefore, as shown in Figures 13 and 14, we
used a 3D mesh map and a separability map to visualize the suppression of the background
and the degree of separation of the anomalous targets and the background. It can be seen
that for G5-I, although the other methods showed good performance in terms of the ROC
curves and AUC values, their ability to suppress the background was weaker than that of
our proposed method. For all four satellite-borne HSI, our proposed method adequately
suppressed the background while separating the background from the anomalous targets.

Based on the detection results of airborne and satellite-borne hyperspectral images
shown in Figures 8 and 11, we discuss the differences in anomaly detection results between
airborne and satellite-borne hyperspectral images. Satellite-borne hyperspectral images
have a larger spatial range compared to airborne hyperspectral images, but the spatial
resolution is somewhat lower. Therefore, for some small anomalous targets, satellite-
borne hyperspectral images may exhibit pixel-level anomalies, which require anomaly
detection methods to make full use of spectral information, such as Figure 11a. In addition,
although satellite-borne hyperspectral images have lower spatial resolution due to their
large spatial range, the background distribution in a local area may be more uniform
compared to airborne hyperspectral images, resulting in better anomaly detection results.
Our proposed method can effectively utilize both spatial and spectral information of
hyperspectral images and achieve good detection results on both airborne and satellite-
borne hyperspectral images.
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method were all red horizontal straight lines with a value of 1 because these methods obtained the
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Table 3. AUC values of different methods for four satellite-borne HSI.

AUC G5-I G5-II G5-III G5-IV

RX 0.9999 0.9945 0.9135 0.9663

LRX 0.9999 0.9903 0.8865 0.8691

CRD 0.9999 0.9938 0.8758 0.6394

LRASR 0.9999 0.9992 0.9993 0.9720

LSMAD 0.9997 0.9995 0.9998 0.5482

RGAE 0.9997 0.9619 0.9929 0.6136

Proposed 0.9999 0.9995 0.9998 0.9949
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4. Conclusions

In this study, we proposed a novel method of detecting hyperspectral anomalies based
on the two-branch 3D convolutional autoencoder and spatial filtering with the aim of
making full use of the spatial–spectral joint information. The proposed method consists of
two parts: spatial detection and spatial–spectral joint detection. During spatial detection, we
extracted the spatial features using a morphological filter and a total variational curvature
filter. In spatial–spectral joint detection, a two-branch 3D convolutional autoencoder
network was proposed to extract the spectral interband features and spatial–spectral
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joint features from hyperspectral images. Due to the lack of satellite-borne hyperspectral
images for evaluating anomaly detection, we constructed a satellite-borne hyperspectral
dataset containing different backgrounds and different anomalous targets based on the
HSI acquired by the GF-5 satellite. To verify the effectiveness of our proposed method,
experiments were conducted on four airborne hyperspectral images and four satellite-borne
hyperspectral images with different backgrounds. The experimental results showed that
compared with other state-of-the-art methods, our proposed method performed well on
both airborne and satellite-borne datasets, highlighting anomalies while suppressing the
background. However, we have not yet conducted experiments on whether our two-branch
3D-CAE model can be transferred to other fields, such as low-rank recovery, classification,
and denoising. We will conduct further research in these areas in the future.
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