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Abstract: How to extract the indicative signatures from the spectral data is an important issue
for further retrieval based on remote sensing technique. This study provides new insight into
extracting indicative signatures by identifying oblique extremum points, rather than local extremum
points traditionally known as absorption points. A case study on retrieving soil organic matter
(SOM) contents from the black soil region in Northeast China using spectral data revealed that
the oblique extremum method can effectively identify weak absorption signatures hidden in the
spectral data. Moreover, the comparison of retrieval outcomes using various indicative signature
extraction methods reveals that the oblique extremum method outperforms the correlation analysis
and traditional extremum methods. The experimental findings demonstrate that the radial basis
function (RBF) neural network retrieval model exposes the nonlinear relationship between reflectance
(or reflectance transformation results) and the SOM contents. Additionally, an improved oblique
extremum method based on the second-order derivative is provided. Overall, this research presents
a novel perspective on indicative signature extraction, which could potentially offer better retrieval
performance than traditional methods.

Keywords: soil organic matter; indicative signatures; oblique extremum; radial basis function
neural network

1. Introduction

Black soil plays a vital role in maintaining food security. Unfortunately, the quality of
black soil has deteriorated due to improper human use [1,2]. Soil organic matter (SOM) is a
crucial indicator for soil fertility assessment and serves as the primary source of various
nutrients necessary for plant growth [3]. Furthermore, SOM can enhance soil resilience and
fertility retention, improve soil physicochemical properties, and help fix soil heavy metals
and organic pollutants [4]. Consequently, accurate and timely measuring of SOM content is
crucial to monitor land quality. However, traditional methods requiring field samples and
expensive laboratory analyses [5,6] are impractical for large-scale land-quality monitoring.
Therefore, a quantitative retrieval method based on spectral data is an efficient and viable
solution to this problem.

Soil composition monitoring through spectral data analysis typically involves three
major processes: spectral data analysis, indicative signature extraction, and retrieval mod-
eling. Here, spectral data analysis ordinarily involves spectrum denoising [6,7], spectral
transformation [6,8,9], standard normal variate (SNV) [7], multiplicative scatter correction
(MSC) [10], and continuum removal (CR) [11–13]. As to the indicative signature extraction,
correlation analysis is the most popular method [5,14]. Some other methods, such as genetic
algorithm (GA) [15,16], successive projections algorithm (SPA) [8,17,18], and competitive
adaptive reweighted sampling (CARS) [15], are also employed. Further, the quantitative
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retrieval models for soil components with soil spectra are categorized into statistical analy-
sis and machine learning models, including multiple linear regression (MLR) [9], multiple
stepwise linear regression (SMLR) [8,19], principal component regression (PCR) [20], par-
tial least squares regression (PLSR) [7–9,21], back propagation (BP) neural network [14],
extreme learning machine (ELM) [22], random forest (RF) [9,23], support vector machine
regression (SVMR) [23], and radial basis function (RBF) neural network [24]. These retrieval
models provide feasible solutions to disclose the linear and nonlinear relationship between
reflectance and soil component contents. However, these methods rely on identifying
indicative signatures from the spectral data curve’s absorption positions, i.e., the extremum
points (local minimum points), to retrieve the contents. Unfortunately, for spectral data,
some special indicative signatures, especially for the weak absorption features, are not
indicated as the extremum points. Actually, these weak absorptions always manifest as the
oblique extremum points [25]. Thus, this study focuses on how to combine both the local
minimum points and the oblique extremum points to extract indicative signatures and
retrieve the SOM in black soil based on these combinatorial points from spectral data. Then,
this study discusses and compares the retrieval performance of the radial basis function
neural network with different indicative signature extraction methods. The experimental
results show that this new idea of extracting indicative signatures for further retrieval is
superior to traditional methods.

2. Materials and Methods
2.1. Study Area

The study area is situated in the western part of Qixing Farm of Jiansanjiang River,
Fujin of Jiamusi City, Heilongjiang Province, in the northeast of China. It is located within
latitude 47

◦
07′N to 47

◦
23′N, and longitude 132

◦
36′E to 132

◦
46′E, with a total area about

approximately 300 km2, which is a central black soil region in China (Figure 1). The
Qixing Farm is located within the Three Rivers Plain, an extensive flat terrain that offers an
ideal setting for large-scale mechanized farming operations. The soil surface is primarily
composed of black, dark brown, and dark brown humus, with a granular structure. Below
it lies a clayey sedimentary layer containing brown iron-manganese nodules and a brown-
yellow clayey parent material underneath it. Black soil is known for its high fertility and is
predominantly used in the cultivation of soybeans, rice, and corn.

2.2. Data Acquisition and Pre-Process

A total of 68 black soil samples, as shown in Figure 1, were collected from the study
area. To eliminate errors caused by tillage and fertilizer application, S-shaped sampling
was employed, avoiding certain special locations such as ridges and fertilizer accumulation
areas. These surface soil samples, each weighing approximately 1 kg and collected at a
depth of 10–20 cm, were first rid of impurities such as grains, weeds, and stones before
being placed in cloth sample bags, numbered, and stored for processing. To remove any
effects of moisture, particle size, or impurities in the soil sample on the spectral data, the
samples were naturally air-dried and passed through a 120-mesh nylon screen. Following
that, every 500 g of soil was subjected to hyperspectral detection and measurements of
SOM content.

The spectrums of the samples were measured using an Analytical Spectral Devices
(ASD) FieldSpec4 portable object spectrometer, while excluding the range of 350–400 nm
and 2451–2500 nm due to interference from moisture and systematic errors associated
with the instrument. The resulting data, consisting of 2050 spectral bands, were processed
using the Savitzky-Golay (SG) smoothing method [26] to eliminate noise. Additionally, five
nonlinear transformations were applied, namely reciprocal (1/R), reciprocal logarithmic
(ln(1/R)), square (R2), cubic (R3), and root mean square (

√
R), to the original spectrum to

explore the indicative signatures further.



Remote Sens. 2023, 15, 2508 3 of 18Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 21 
 

 

 

Figure 1. Geographic distribution of collected samples in the study area. (a) A map of China; (b) A 

map of Heilongjiang Province; (c) A map of Jiamusi City and study area; (d) The sample distribution 

in the study area. 

2.2. Data Acquisition and Pre-Process 

A total of 68 black soil samples, as shown in Error! Reference source not found., were 

collected from the study area. To eliminate errors caused by tillage and fertilizer applica-

tion, S-shaped sampling was employed, avoiding certain special locations such as ridges 

and fertilizer accumulation areas. These surface soil samples, each weighing approxi-

mately 1 kg and collected at a depth of 10–20 cm, were first rid of impurities such as grains, 

Figure 1. Geographic distribution of collected samples in the study area. (a) A map of China; (b) A
map of Heilongjiang Province; (c) A map of Jiamusi City and study area; (d) The sample distribution
in the study area.

The SOM contents of all samples were determined through wet oxidation at 180 ◦C,
using a mixture of potassium dichromate and sulfuric acid. The 68 samples were sorted in
ascending order according to their SOM contents and divided into 17 categories, with four
samples in each category, which was designed in a 3-to-1 ratio for modeling and validation
datasets. Three random samples were then selected from each category and assigned to the
modeling dataset, leaving the remaining 17 samples for validation. Table 1 shows some
statistical parameters of the SOM contents for all 68 samples.
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Table 1. Statistical characteristics of SOM in soil samples from the study area.

Dataset Number of
Samples

Minimum
(g/kg)

Maximum
(g/kg)

Mean
(g/kg)

SD 1

(g/kg)
CV 2

(%)

Total dataset 68 7.651 133.678 40.055 19.226 2.083
Modeling

dataset 51 7.651 133.678 40.431 20.579 1.965

Validation
dataset 17 12.408 76.433 38.929 14.923 2.609

1 SD: Standard Deviation; 2 CV: Coefficient of Variation.

2.3. Indicative Signature Extraction
2.3.1. Pearson Correlation Analysis

The Pearson coefficients defined in Equation (1) were calculated to analyze the relation-
ship between the different spectral transformations and the SOM contents. In Equation (1),
j denoted the band number; rj was the correlation coefficient between the spectral data of
soil samples in the jth band and its SOM contents; n was the total number of the samples; i
denoted the soil sample number; xij was the spectral data of the ith sample at the jth band;
xj was the average spectrum for all samples at the jth band; yi was the SOM content of the
ith sample; and y denoted the average SOM content for all samples.

rj =

n
∑

i=1
(xij − xj)(yi − y)√

n
∑

i=1
(xij − xj)

2 n
∑

i=1
(yi − y)2

. (1)

2.3.2. Extremum Method

Commonly, the indicative signatures of the spectrum are selected with correlation
analysis [6,14,27]. Although the correlation analysis can correlate well between reflectance
and sample contents, the selected results lack physical significance because the indicative
signatures are always presented as the absorption bands or points, not the maximum
correlation coefficient bands. Thus, a combination of the absorption bands and the cor-
relation coefficient analysis is usually used to extract the indicative signatures from the
spectrum. In this study, this combination is called as the extremum method. Unfortunately,
not all indicative signatures appeared as the extremum points, especially for some weak
absorption features. So, how to extract this type of points is an interesting issue for the
following retrieval process. In this study, we have improved a method to extract these
signatures and subsequently retrieve the contents of SOM in black soil by utilizing the
new extracted signatures. First, we will introduce the improved method, followed by a
discussion and comparison of the results.

2.3.3. Oblique Extremum Method and Improved Oblique Extremum Method

Here, the oblique extremum points [25] are used to define this kind of special absorp-
tion phenomenon, in which absorptions are not indicated as the extremum points of the
spectrum. To illustrate the detail, consider the signal defined in Equation (2), below.

y(t) = t + 0.9 sin(t), t ∈ [1, 64]. (2)

As shown in Figure 2a, obviously, the signal y(t) is strictly monotonically increasing,
without any extremum points. However, intuitively, there indeed exist some special signa-
tures in this signal. To address this problem, Yang et al. [25] defined the oblique extremum
points to characterize these special points and proposed an approach to detect them.
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Figure 2. The original signal y(t) (a) and its oblique extremum points (b).

Given a signal y(t), let (ta, f (ta)) and (tb, f (tb)) (ta < tb) be two consecutive inflection
points of y(t), and l(t) to be the straight line connecting these two inflection points. Denote

yl(t) = y(t)− l(t), t ∈ [ta, tb], (3)

then, the local maximum (or minimum) point ξ of yl(t) is called an oblique local maximum
(or minimum) point of y(t).

Therefore, the key to extracting the oblique extremum points lies in identifying the
inflection points of the signal. As described in [25], the first-order derivative of the original
signal is used to detect the inflection points. The adjacent inflection points generate a line
segment that forms the trend curve of the original signal. Thus, the oblique extremum
points are determined as the extremum points of the subtraction result of the trend curve
from the original signal. Figure 2b demonstrates that the extracted oblique extremum
points of y(t) are all located as the gentle humps in the curve. These results in Figure 2b
indicate that certain special signatures in remote sensing imagery and spectral data can also
be identified as the oblique extremum points. Before we introduce the oblique extremum
points in spectral data, let us first discuss the algorithm for detecting such points.

As described in the literature [25], the determination of the inflection points of a signal
is crucial in defining the oblique extremum point and implementing the algorithm to extract
them. Yang et al. [25] employed the first-order derivative to do that. However, in theory,
the inflection point of a continuous signal is defined as the demarcation point between
the concave and the convex intervals of the signal. The second-order derivative is more
reasonable than the first-order derivative for detecting the inflection points of a signal.
Therefore, we develop an improved algorithm for extracting oblique extremum points from
a signal y(x(t)) based on the second-order derivative. Details on this algorithm can be
found in Algorithm 1.

Algorithm 1 Improved algorithm to extract oblique extremum points.

1. Calculate the second-order derivative of original hyperspectral signal y(x(t))

y′′ (x(t)) =
y′(x(t+1/2))−y′(x(t−1/2))

x(t+1/2)−x(t−1/2) =
y(x(t+1))−y(x(t))

x(t+1)−x(t) − y(x(t))−y(x(t−1))
x(t)−x(t−1)

x(t+1/2)−x(t−1/2) ,

=
y(x(t+1))+y(x(t−1))−2y(x(t))

(∆x)2 , t = 2, . . . , end− 1
(4)
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Algorithm 1 Cont.

2. Extract the oblique maximum points of the signal.
Step 1. Define and identify the kth concave interval

ICC
kh = [x(i), . . . , x(i + h− 1)], k = 1, . . . , m

s.t.


y′′ (x(t)) < 0, t = i, . . . , i + h− 1,

y′′ (x(i− 1)) ≥ 0,
y′′ (x(i + h)) ≥ 0,
2 ≤ i < end− 1,

h ≥ 1,

,
(5)

in which h is the interval length,
m is the total number of concave intervals, and the superscript CC represents concave.
Step 2. Find inflection points on both sides of the concave interval ICC

kh , and
construct the trend line lCC

kh (x(t)).

a. Since the first point x(i) of ICC
kh is a concave point, so the previous point x(i− 1) must be a

convex point or an inflection point, according to Equation (5). If x(i− 1) is a convex point,
not an inflection point, then the abscissa and ordinate of the inflec-tion point at the left end
of ICC

kh is defined as the mean value of these two adjacent points in Equation (6)

xle f t_inf
CC =

x(i− 1) + x(i)
2

, yle f t_inf
CC =

y(i− 1) + y(i)
2

, (6)

else if x(i− 1) is an inflection point, then set

xle f t_inf
CC = x(i− 1), yle f t_inf

CC = y(i− 1), (7)

where the superscript le f t _inf represents the left inflection point.
b. Similarly, the last point x(i + h− 1) of ICC

kh is a concave point, so the next point
x(i + h) must be a convex point or an inflection point. If x(i + h) is a convex point, define
abscissa and ordinate of the inflection point at the right end of ICC

kh as

xright_inf
CC =

x(i + h− 1) + x(i + h)
2

, yright_inf
CC =

y(i + h− 1) + y(i + h)
2

, (8)

else
xright_inf

CC = x(i + h), yright_inf
CC = y(i + h), (9)

where the superscript right _inf represents the right inflection point.
c. Connect the left and right inflection points of the concave interval ICC

kh (k = 1, . . . , m) with
a straight line lCC

kh (x(t)) as the trend curve of ICC
kh .

Step 3. Subtract the trend line from the original signal: ylCC
kh
(x(t)) = y(x(t))− lCC

kh (x(t)), where

x(t) ∈ ICC
kh .

Step 4. Obtain all oblique maximum points xOMAX
kh and construct a set

UOMAX = ∪
k=1,2,...,m

xOMAX
kh = ∪

k=1,2,...,m
argmax(

∣∣∣ylCC
kh
(x(t))

∣∣∣), (10)

in which the superscript OMAX represents oblique maximum.
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Algorithm 1 Cont.

3. Extract the oblique minimum points of the signal.
Step 1. Define and identify the kth convex interval

ICV
kl = [x(i), . . . , x(i + l − 1)], k = 1, . . . , n

s.t.


y′′ (x(t)) > 0, t = i, . . . , i + l − 1,

y′′ (x(i− 1)) ≤ 0,
y′′ (x(i + l)) ≤ 0,
2 ≤ i < end− 2,

l ≥ 1,

,
(11)

in which l is the interval length, n is the total number of convex intervals, and the superscript CV
represents convex.
Step 2. Find inflection points on both sides of the convex interval ICV

kl , and
constructthe trend line lCV

kl (x(t)).

a. Since the first point x(i) of ICV
kl is a convex point, the previous point x(i− 1) must be a

concave point or an inflection point, according to Equation (11). If x(i− 1) is a concave
point, define abscissa and ordinate of the inflection point at the left end of ICV

kl as

xle f t_inf
CV =

x(i− 1) + x(i)
2

, yle f t_inf
CV =

y(i− 1) + y(i)
2

, (12)

else
xle f t_inf

CV = x(i− 1), yle f t_inf
CV = y(i− 1), (13)

where the superscript le f t _inf represents the left inflection point.
b. Similarly, the last point x(i + l − 1) of ICV

kl is a convex point, so the next point
x(i + l) must be a concave point or an inflection point. If x(i + l) is a concave point, define
abscissa and ordinate of the inflection point at the right end of ICV

kl as

xright_inf
CV =

x(i + l − 1) + x(i + l)
2

, yright_inf
CV =

y(i + l − 1) + y(i + l)
2

, (14)

else
xright_inf

CV = x(i + l), yright_inf
CV = y(i + l), (15)

where the superscript right _inf represents the right inflection point.
c. Connect the left and right inflection points of convex interval ICV

kl (k = 1, . . . , n) with a
straight line lCV

kl (x(t)) as the trend line of ICV
kl .

Step 3. Subtract the trend line from the original signal : ylCV
kl
(x(t)) = y(x(t))− lCV

kl (x(t)), where

x(t) ∈ ICV
kl .

Step 4. Obtain all oblique minimum points xOMIN
kl and construct a set

UOMIN = ∪
k=1,2,...,n

xOMIN
kl = ∪

k=1,2,...,n
argmax(

∣∣∣ylCV
kl
(x(t))

∣∣∣), (16)

in which the superscript OMIN represents oblique minimum.

Let’s consider the spectral data of a measured soil sample after SG smoothing as
an example, to further illustrate the difference between the extremum method and the
improved oblique extremum method for extracting the indicative signatures. As shown in
Figure 3a, for the extremum method, only 30 local minimum points—also known as the
absorption points—were extracted, with no local minimum points detected in 600–1700 nm.
In other words, almost all the absorption signatures are located on either side of the signal.
However, with the improved oblique extremum method, 133 points that covered the entire
wavelength of the signal are extracted totally. Clearly, the extracted results of the improved
oblique extremum method reflect more information and detail about the signal than the
extremum method does. Moreover, the improved oblique extremum method has the ability
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to extract potential weak absorption points in the spectral data. The comparative details
are all demonstrated in Figure 3.
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2.4. Retrieval Method

In order to explore the nonlinear relationship between spectral transformations and
SOM contents, a nonlinear regression model, radial basis function neural network, is
utilized in this study. The RBF neural network is a feed-forward neural network with three
layers: input layer, hidden layer, and output layer [24]. The input layer receives the training
data. The hidden layer applies an activation function to perform a nonlinear transformation
on the input data, where the Gaussian radial basis function is frequently utilized. The
activation function for the output layer is the linear function. The final output is obtained by
taking the linear weighted sum of the outputs of the neurons in the hidden layer. Therefore,
the RBF neural network boasts a simpler structure, faster learning convergence speed, and
better generalization ability in comparison to other machine learning algorithms [27].
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3. Results and Discussion
3.1. The Spectral Characteristics Analysis

The original and denoised spectra of all the samples are demonstrated in Figure 4.
Generally, the minor differences of the reflectance play a crucial role in revealing the
undiscovered relationships between the SOM contents and the reflectance of the samples.
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To gain a deeper understanding of the spectral characteristics and investigate the
relationship between soil reflection spectra and SOM content, all the 68 samples were
clustered into four classes using the K-means clustering method [28] (Figure 5). The
number of the classes was determined with the Elbow method [29]. Based on Figure 5, it
is apparent that there exists a negative correlation between soil spectral reflectance and
SOM content, meaning that the higher the SOM content, the lower the spectral reflectance.
Obviously, the significant absorption features are located near 1400 nm and 1900 nm,
primarily due to the stretching vibration of hydroxyl and the bending vibration of Al-OH
of the water molecules [12,30,31]. These features are also caused by the water vapor in the
air during the laboratory spectroscopy measurements. Additionally, an absorption close to
2200 nm, a characteristic of kaolinite, can also be observed, resulting from the combination
of Al-OH bend and O-H stretch [32].

3.2. Extraction Results of Indicative Signatures for SOM
3.2.1. Correlation Analysis between the SOM Contents and the Spectral Reflectance and
Their Different Transformations

The correlation coefficients between the SOM contents of the samples and their spectral
reflectance, as well as their five spectral transformations (1/R, ln(1/R), R2, R3, and

√
R),

were calculated and illustrated in Figure 6. There is a strong negative correlation between
the SOM contents and the original spectral reflectance within the range of 401–2450 nm,
which is consistent with the findings of the clustering analysis discussed in Section 3.1.
Regarding the five spectral transformations, R2, R3, and

√
R coincide with the original spec-

tral reflectance R, whereas the transformations 1/R and ln(1/R) exhibit a mirror symmetry,
as depicted in Figure 6a. From Figure 6, it can be observed that: (1) the coefficients between
the original spectral reflectance and SOM contents fall within the range of [−0.615, −0.336];
and (2) the transformations 1/R, ln(1/R), and

√
R can marginally improve the correlation

between the original spectral reflectance and the SOM content.
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Then, the indicative bands were chosen based on the correlation analysis results,
guided by two principles: the first is that the selected bands must have higher correlation
coefficients than others, and the second is that they should be separated from each other; in
other words, they should not be adjacent. All the selected indicative bands are illustrated
in Table 2, including the peaks of the correlation coefficients and corresponding bands. It
is worth noting that most of the indicative bands extracted by the correlation analysis are
situated within the range of 600–1000 nm, which is basically consistent with the finding of
Yuan et al. [33].
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Table 2. Indicative bands and correlation coefficients between SOM contents and different spectral
transformations.

Spectral Transformation Indicative Bands (nm) Correlation Coefficients

R

838 −0.607
1142 −0.573
537 −0.546

1442 −0.521

1/R
762 0.643
838 0.642
697 0.638

ln(1/R)
838 0.629
683 0.616

1003 0.608

R2
929 −0.584

1280 −0.541
574 −0.519

R3
1042 −0.563
941 −0.558

1145 −0.552

√
R

838 −0.619
1141 −0.576
537 −0.562

3.2.2. Indicative Signatures Extracted by Extremum Method

For remote sensing imagery or spectral data, the absorption points are represented as
the local minimum points in the spectral curve, and the indicative signatures are always
extracted from these absorption points. Thus, the extremum method to extract the indicative
signatures here means that the characteristic bands are extracted from the local minimum
points of the spectral curve based on their corresponding correlation results. For this case
data, the extracted results are demonstrated in Table 3.

Table 3. Indicative signatures obtained by extremum method with different spectral transformations.

Spectral Transformation Indicative Bands (nm) Correlation Coefficients

R
408 −0.477

1773 −0.467
998 −0.595

1/R
2354 0.474
463 0.544

1002 0.612

ln(1/R)
2354 0.463
463 0.533

1002 0.607

R2
408 −0.464

1773 −0.461
998 −0.579

R3
408 −0.441

1773 −0.453
998 −0.559

√
R

408 −0.478
1773 −0.469
998 −0.601
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Table 3 reveals an intriguing observation: that the extracted results for transformations
R, R2, R3, and

√
R are the same, i.e., 408 nm, 998 nm, and 1773 nm. For the transformations

1/R and ln(1/R), the results are the same, too, i.e., 463 nm, 1002 nm, and 2354 nm. The cor-
relation results between the spectral data and SOM contents for these five transformations,
namely 1/R, ln(1/R), R2, R3, and

√
R, exhibit slight variations, suggesting that spectral

transformations can marginally affect the correlation coefficients.

3.2.3. Indicative Signatures Extracted by Improved Oblique Extremum Method

As described in Section 2.3.3, the oblique minimum points in the spectral curve may
hint at potential weak absorptions. Thus, we proposed a new idea to extract the indica-
tive signatures based on oblique extremum points with the improved oblique extremum
method. More specifically, the indicative signatures are derived from oblique minimum
points, which encompasses all the local minimum points [25]. All the extracted indicative
signatures are illustrated in Table 4. By utilizing oblique minimum points as the extracted
indicative signatures, all absorption points of the spectral data are accounted for, and it also
allows for the identification of potential weak absorptions depicted as oblique extremum
points rather than local minimum points. Further, in order to compare the retrieval results
based on oblique minimum points, another indicative signature that only contains the
oblique minimum points without the local minimum points is also considered. Here,
oblique minimum without local minimum means that the local minimum points of the
spectral curve are deleted from the extracted oblique minimum points.

Table 4. Indicative signatures obtained by improved oblique extremum method with different
spectral transformations.

Spectral
Transformation Indicative Signatures Kind Bands (nm) Correlation

Coefficients

R

Oblique Minimum
841 −0.607
951 −0.601
605 −0.567

Oblique Minimum Without
Local Minimum

841 −0.607
951 −0.601
701 −0.588
605 −0.567

1/R

Oblique Minimum

863 0.636
703 0.637
941 0.624
557 0.605

Oblique Minimum Without
Local Minimum

863 0.636
1587 0.494
557 0.605

ln(1/R)
Oblique Minimum

863 0.624
703 0.617
941 0.617
557 0.583

Oblique Minimum Without
Local Minimum

863 0.624
1587 0.494

R2

Oblique Minimum
841 −0.577
415 −0.486

1516 −0.503

Oblique Minimum Without
Local Minimum

841 −0.577
605 −0.525

1516 −0.503
1677 −0.474
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Table 4. Cont.

Spectral
Transformation Indicative Signatures Kind Bands (nm) Correlation

Coefficients

R3

Oblique Minimum 841 −0.542
419 −0.470

Oblique Minimum Without
Local Minimum

841 −0.542
951 −0.558
605 −0.476
701 −0.503

√
R

Oblique Minimum
841 −0.618
951 −0.609
605 −0.584

Oblique Minimum Without
Local Minimum

841 −0.618
951 −0.609
701 −0.604

3.3. The Retrieval Results Analysis with Different Indicative Signature Extraction Methods

The determination coefficient (R2), root mean of squared error (RMSE), and the ratio of
the performance to deviation (RPD) were used to evaluate the performance of the retrieval
results. These three evaluation criteria were defined in Equations (17)–(19), respectively.
Specifically, R2 acted as the criterion to assess the effectiveness of the retrieval model.
Commonly, the closer the value is to 1, the better the fitting results. RMSE is used to
measure the accuracy of the retrieval model, and a smaller value of RMSE indicates higher
accuracy. Further, the value of RPD always represents the predictive ability of the model,
and a higher value signifies a better prediction result. Therefore, in general, high R2 and
high RPD, but low RMSE, are characteristics of an excellent retrieval model. As pointed
out by Chang et al. [34], for R2 > 0.5, if RPD < 1.4, the model fails to predict the samples;
if 1.4 ≤ RPD < 2.0, the model can provide a rough estimation of the samples; and if
RPD ≥ 2.0, the model exhibits excellent predictive ability.

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

, (17)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
, (18)

RPD =
SDv

RMSEv
. (19)

In Equations (17)–(19), i was the soil sample number; n denoted the total number of
samples; yi and ŷi were the observed and predicted value of the ith sample, respectively; y
was the mean of the observed data; and SDv and RMSEv were the standard deviation and
the root mean of the squared error of the validation dataset, respectively.

3.3.1. The Retrieval Results Based on Indicative Signatures with Correlation Analysis

The evaluation results of the RBF neural network based on indicative signatures using
correlation analysis are all illustrated in Table 5. The results indicate that: (1) the retrieval
model relying on correlation analysis can only provide a rough estimation, given that the
values of R2

m and R2
v exceed 0.5, and RPD ranges between 1.4 to 2.0 for both modeling

and validation datasets; (2) among the six spectral transformations, original reflectance
R displays the best-fitting performance for the modeling dataset, with the highest being
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R2
m = 0.659 and the smallest being RMSEm = 11.900 g/kg; (3) ln(1/R) yields the most

favorable prediction outcome, with an RPD of 1.885. Overall, the transformation ln(1/R)
appears to be more appropriate for retrieving the SOM contents when utilizing correlation
analysis to identify indicative signatures.

Table 5. RBF neural network model performance results to retrieve the SOM contents based on
indicative signatures extracted by correlation analysis.

Spectral
Transformation

Modeling Dataset Validation Dataset

R2
m RMSEm (g/kg) R2

v RMSEv (g/kg) RPD

R 0.659 11.900 0.730 8.755 1.705
1/R 0.534 13.908 0.639 8.025 1.860

ln(1/R) 0.653 12.004 0.602 7.919 1.885
R2 0.579 13.219 0.725 8.126 1.836
R3 0.527 14.025 0.751 8.452 1.766√

R 0.638 12.258 0.562 8.773 1.701

3.3.2. The Retrieval Results Based on Indicative Signatures with Extremum Method

The retrieval results based on the extremum method demonstrated in Table 6 indicate
that: (1) only one model with R2 transformation can be used to retrieve the contents of
the SOM with R2

m = 0.550 > 0.5, R2
v = 0.702 > 0.5, and RPD = 1.643 > 1.4; (2) although

the transformation R3 retrieval model based on minimum indicative signatures achieved
a good predictive effect with RPD = 1.818 > 1.643, it did not fit well with the modeling
dataset with R2

m = 0.465 < 0.5; (3) combining the results listed in Table 3, the indicative
signatures of four transformations, R, R2, R3 and

√
R, are the same, but the retrieval

performances for them, as showcased in Table 6, varied significantly, indicating that the
transformations R2 are helpful to improve the SOM predictive result.

Table 6. RBF neural network model performance results to retrieve the SOM contents based on
indicative signatures extracted by extremum method.

Spectral
Transformation

Modeling Dataset Validation Dataset

R2
m RMSEm (g/kg) R2

v RMSEv (g/kg) RPD

R 0.583 13.163 0.586 10.679 1.397
1/R 0.498 14.441 0.432 9.785 1.525

ln(1/R) 0.518 14.145 0.337 11.726 1.273
R2 0.550 13.663 0.702 9.085 1.643
R3 0.465 14.898 0.742 8.208 1.818√

R 0.599 12.896 0.541 11.934 1.251

3.3.3. The Retrieval Results Based on Indicative Signatures with Improved Oblique
Extremum Method

The retrieval results based on indicative signatures extracted by the improved oblique
extremum method are all illustrated in Table 7. It is exciting that the retrieval model based
on oblique minimum without the minimum performs better than oblique minimum for all
six transformations, as compared in Table 7. Further, from the view of the RPD performance
criterion, all six models are suitable for SOM retrieval with R2

m > 0.5, R2
v > 0.5, and

RPD > 1.4. Four of the models yield outstanding predictions, with RPD > 2.0. This result
reveals that the oblique minimum (non-minimum) signatures of soil spectra are crucial for
retrieving SOM content, which is a new insight never reported in previous studies.
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Table 7. RBF neural network model performance results to retrieve the SOM contents based on
indicative signatures extracted by improved oblique extremum method.

Spectral
Transformation

Indicative
Signatures Kind

Modeling Dataset Validation Dataset

R2
m RMSEm (g/kg) R2

v RMSEv (g/kg) RPD

R
Oblique Minimum 0.642 12.185 0.660 8.692 1.717

Oblique Minimum Without
Local Minimum 0.706 11.046 0.747 6.280 2.376

1/R
Oblique Minimum 0.624 12.502 0.736 7.715 1.934

Oblique Minimum Without
Local Minimum 0.598 12.916 0.745 6.751 2.211

ln(1/R) Oblique Minimum 0.622 12.532 0.501 9.440 1.581
Oblique Minimum Without

Local Minimum 0.550 13.662 0.591 7.677 1.944

R2 Oblique Minimum 0.560 13.512 0.738 10.625 1.405
Oblique Minimum Without

Local Minimum 0.614 12.655 0.842 6.652 2.243

R3 Oblique Minimum 0.416 15.577 0.515 10.096 1.478
Oblique Minimum Without

Local Minimum 0.547 13.721 0.744 8.639 1.727

√
R

Oblique Minimum 0.656 11.946 0.668 8.382 1.780
Oblique Minimum Without

Local Minimum 0.671 11.685 0.772 6.642 2.247

Upon comparing the results displayed in Tables 5 and 6, it is clear that the RBF neural
network based on improved oblique extremum method outperforms both correlation
analysis and extremum methods. Specifically, for original reflectance R, the RPD value of
oblique minimum without the minimum retrieval model is 2.376, whereas the RPD values
for the correlation analysis and extremum methods are 1.705 and 1.397, respectively.

It is interesting to compare the correlation coefficients of the indicative bands obtained
by the improved oblique extremum method with those extracted with only the correlation
analysis. As illustrated in Tables 2 and 4, the correlation coefficients of the indicative
bands obtained by the improved oblique extremum method are not the highest. Thus,
relying on only the correlation analysis to extract the indicative signatures seems to be
unreasonable because the correlation coefficient can only disclose the linear relationship
between reflectance and SOM contents. Actually, the relationship is always nonlinear, as
the results show in Figure 6.

3.3.4. Comparison of Retrieval Results with Different Indicative Signature
Extraction Methods

The performance comparison of the optimal models for six transformations with
different indicative signature extraction methods are demonstrated in Figure 7. The results
show that, on the whole, models based on indicative signatures extracted through the
improved oblique extremum method outperform both correlation analysis and extremum
methods; they have higher R2, lower RMSE, and higher RPD. These results reveal the fact
that the improved oblique extremum method is capable of detecting the possible weak
indicative signatures in the spectral data, which were hidden as the oblique minimum
points rather than local minimum points. Further, these weak indicative signatures are of
great importance in subsequent retrieval processes.
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4. Conclusions

This study focuses on how to extract the indicative signatures from the spectral data
during the retrieval process based on remote sensing technique. Herein, we provide a
new insight into the indicative signatures as the oblique extremum points of the data. The
oblique extremum points include not just the traditional local minimum points, also known
as absorption points, but also potential weak absorption points. However, these weak
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absorption points are not presented as local minimum points of the signal. The results
from a case study of the retrieval of SOM contents in black soil located in Northeast China
indicate the effectiveness of this new insight. Thus, the oblique extremum points of the
spectral data are suggested to be the extracted indicative signatures for further retrieval
models. Commonly, the relationship between reflectance or their transformations and SOM
contents is nonlinear, as indicated by the correlation analysis. In other words, the correlation
coefficients between the SOM contents and the reflectance or their transformations reveal
a nonlinear relationship in nature. Therefore, a retrieval model with nonlinear mapping
capability, such as an RBF neural network model, is more appropriate than those that
can only disclose linear relationships. Another important fact to note is that the spectral
transformations used in this paper, namely the reciprocal, reciprocal logarithmic, square,
cubic, and root mean square transformations, do not alter the indicative signatures extracted
by the extremum method. However, it is worth mentioning that the square transformation
improved the retrieval performance of the SOM. Therefore, identical indicative signatures
are obtained in different spectral transformations, and it is still necessary to further explore
their impact on the retrieval outcomes.
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for Monitoring Soil Heavy Metals Based on Soil Spectral Features. Soil Water Res. 2016, 10, 218–227. [CrossRef]

https://doi.org/10.1007/s11769-013-0626-5
https://doi.org/10.17221/155/2009-PSE
https://doi.org/10.1016/j.agrformet.2013.01.007
https://doi.org/10.1016/j.agee.2018.07.025
https://doi.org/10.1080/00387010.2017.1297958
https://doi.org/10.3390/rs12071206
https://doi.org/10.1016/S1002-0160(12)60022-8
https://doi.org/10.1016/j.saa.2021.119963
https://doi.org/10.3390/su132112088
https://doi.org/10.1016/j.geoderma.2017.03.012
https://doi.org/10.17221/113/2015-SWR


Remote Sens. 2023, 15, 2508 18 of 18

12. Wu, Y.; Chen, J.; Ji, J.; Gong, P.; Liao, Q.; Tian, Q.; Ma, H. A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy
Metals in Soils. Soil Sci. Soc. Am. 2007, 71, 918–926. [CrossRef]

13. Shen, Q.; Xia, K.; Zhang, S.; Kong, C.; Hu, Q.; Yang, S. Hyperspectral Indirect Inversion of Heavy-Metal Copper in Reclaimed Soil
of Iron Ore Area. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2019, 222, 117191. [CrossRef]

14. Chang, R.; Chen, Z.; Wang, D.; Guo, K. Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil
Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network. Remote Sens. 2022, 14, 4316. [CrossRef]

15. Jiang, Q.; Liu, M.; Wang, J.; Liu, F. Feasibility of Using Visible and Near-Infrared Reflectance Spectroscopy to Monitor Heavy
Metal Contaminants in Urban Lake Sediment. Catena 2018, 162, 72–79. [CrossRef]

16. Sun, W.; Zhang, X. Estimating Soil Zinc Concentrations Using Reflectance Spectroscopy. Int. J. Appl. Earth Obs. Geoinf.
2017, 58, 126–133. [CrossRef]

17. Yuan, J.; Wang, X.; Yan, C.; Chen, S.; Wang, S.; Zhang, J.; Xu, Z.; Ju, X.; Ding, N.; Dong, Y.; et al. Wavelength Selection for
Estimating Soil Organic Matter Contents Through the Radiative Transfer Model. IEEE Access 2020, 8, 176286–176293. [CrossRef]

18. Shi, T.; Liu, H.; Chen, Y.; Wang, J.; Wu, G. Estimation of Arsenic in Agricultural Soils Using Hyperspectral Vegetation Indices of
Rice. J. Hazard. Mater. 2016, 308, 243–252. [CrossRef]

19. Shi, T.; Cui, L.; Wang, J.; Fei, T.; Chen, Y.; Wu, G. Comparison of Multivariate Methods for Estimating Soil Total Nitrogen with
Visible/near-Infrared Spectroscopy. Plant Soil 2012, 366, 363–375. [CrossRef]

20. Wu, Y.; Chen, J.; Wu, X.; Tian, Q.; Ji, J.; Qin, Z. Possibilities of Reflectance Spectroscopy for the Assessment of Contaminant
Elements in Suburban Soils. Appl. Geochem. 2005, 20, 1051–1059. [CrossRef]

21. Xu, X.; Chen, S.; Xu, Z.; Yu, Y.; Zhang, S.; Dai, R. Exploring Appropriate Preprocessing Techniques for Hyperspectral Soil Organic
Matter Content Estimation in Black Soil Area. Remote Sens. 2020, 12, 3765. [CrossRef]

22. Lu, Q.; Wang, S.; Bai, X.; Liu, F.; Wang, M.; Wang, J.; Tian, S. Rapid Inversion of Heavy Metal Concentration in Karst Grain
Producing Areas Based on Hyperspectral Bands Associated with Soil Components. Microchem. J. 2019, 148, 404–411. [CrossRef]

23. Wijewardane, N.K.; Ge, Y.; Morgan, C.L.S. Moisture Insensitive Prediction of Soil Properties from VNIR Reflectance Spectra Based
on External Parameter Orthogonalization. Geoderma 2016, 267, 92–101. [CrossRef]

24. Zhang, S.; Shen, Q.; Nie, C.; Huang, Y.; Wang, J.; Hu, Q.; Ding, X.; Zhou, Y.; Chen, Y. Hyperspectral Inversion of Heavy
Metal Content in Reclaimed Soil from a Mining Wasteland Based on Different Spectral Transformation and Modeling Methods.
Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2019, 211, 393–400. [CrossRef]

25. Yang, Z.; Yang, L.; Qing, C. An Oblique-Extrema-Based Approach for Empirical Mode Decomposition. Digit. Signal Process.
2010, 20, 699–714. [CrossRef]

26. Steinier, J.; Termonia, Y.; Deltour, J. Smoothing and Differentiation of Data by Simplified Least Square Procedure. Anal. Chem.
1972, 44, 1906–1909. [CrossRef] [PubMed]

27. Zhao, J.; Zhang, C.; Min, L.; Guo, Z.; Li, N. Retrieval of Farmland Surface Soil Moisture Based on Feature Optimization and
Machine Learning. Remote Sens. 2022, 14, 5102. [CrossRef]

28. Lloyd, S. Least Squares Quantization in PCM. IEEE Trans. Inform. Theory 1982, 28, 129–137. [CrossRef]
29. Liu, F.; Deng, Y. Determine the Number of Unknown Targets in Open World Based on Elbow Method. IEEE Trans. Fuzzy Syst.

2021, 29, 986–995. [CrossRef]
30. Rossel, R.A.V.; Behrens, T. Using Data Mining to Model and Interpret Soil Diffuse Reflectance Spectra. Geoderma 2010, 158, 46–54.

[CrossRef]
31. Liu, J.; Xie, J.; Han, J.; Wang, H.; Sun, J.; Li, R.; Li, S. Visible and Near-Infrared Spectroscopy with Chemometrics Are Able to

Predict Soil Physical and Chemical Properties. J. Soils Sediments 2020, 20, 2749–2760. [CrossRef]
32. Stenberg, B.; Rossel, R.A.V. Diffuse Reflectance Spectroscopy for High-Resolution Soil Sensing. In Proximal Soil Sensing; Springer:

Dordrecht, The Netherlands, 2010; pp. 29–47.
33. Yuan, J.; Hu, C.; Yan, C.; Li, Z.; Chen, S.; Wang, S.; Wang, X.; Xu, Z.; Ju, X. Semi-Empirical Soil Organic Matter Retrieval Model

with Spectral Reflectance. IEEE Access 2019, 7, 134164–134172. [CrossRef]
34. Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy-Principal Components

Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2136/sssaj2006.0285
https://doi.org/10.1016/j.saa.2019.117191
https://doi.org/10.3390/rs14174316
https://doi.org/10.1016/j.catena.2017.11.020
https://doi.org/10.1016/j.jag.2017.01.013
https://doi.org/10.1109/ACCESS.2020.3026813
https://doi.org/10.1016/j.jhazmat.2016.01.022
https://doi.org/10.1007/s11104-012-1436-8
https://doi.org/10.1016/j.apgeochem.2005.01.009
https://doi.org/10.3390/rs12223765
https://doi.org/10.1016/j.microc.2019.05.031
https://doi.org/10.1016/j.geoderma.2015.12.014
https://doi.org/10.1016/j.saa.2018.12.032
https://doi.org/10.1016/j.dsp.2009.08.013
https://doi.org/10.1021/ac60319a045
https://www.ncbi.nlm.nih.gov/pubmed/22324618
https://doi.org/10.3390/rs14205102
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TFUZZ.2020.2966182
https://doi.org/10.1016/j.geoderma.2009.12.025
https://doi.org/10.1007/s11368-020-02623-1
https://doi.org/10.1109/ACCESS.2019.2941258
https://doi.org/10.2136/sssaj2001.652480x

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition and Pre-Process 
	Indicative Signature Extraction 
	Pearson Correlation Analysis 
	Extremum Method 
	Oblique Extremum Method and Improved Oblique Extremum Method 

	Retrieval Method 

	Results and Discussion 
	The Spectral Characteristics Analysis 
	Extraction Results of Indicative Signatures for SOM 
	Correlation Analysis between the SOM Contents and the Spectral Reflectance and Their Different Transformations 
	Indicative Signatures Extracted by Extremum Method 
	Indicative Signatures Extracted by Improved Oblique Extremum Method 

	The Retrieval Results Analysis with Different Indicative Signature Extraction Methods 
	The Retrieval Results Based on Indicative Signatures with Correlation Analysis 
	The Retrieval Results Based on Indicative Signatures with Extremum Method 
	The Retrieval Results Based on Indicative Signatures with Improved Oblique Extremum Method 
	Comparison of Retrieval Results with Different Indicative Signature Extraction Methods 


	Conclusions 
	References

