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Abstract: With the rapid development of artificial intelligence and computer vision, deep learning
has become widely used for aircraft detection. However, aircraft detection is still a challenging task
due to the small target size and dense arrangement of aircraft and the complex backgrounds in remote
sensing images. Existing remote sensing aircraft detection methods were mainly designed based on
algorithms employed in general object detection methods. However, these methods either tend to
ignore the key structure and size information of aircraft targets or have poor detection effects on
densely distributed aircraft targets. In this paper, we propose a novel multi-task aircraft detection
algorithm. Firstly, a multi-task joint training method is proposed, which provides richer semantic
structure features for bounding box localization through landmark detection. Secondly, a multi-
task inference algorithm is introduced that utilizes landmarks to provide additional supervision
for bounding box NMS (non-maximum suppression) filtering, effectively reducing false positives.
Finally, a novel loss function is proposed as a constrained optimization between bounding boxes
and landmarks, which further improves aircraft detection accuracy. Experiments on the UCAS-AOD
dataset demonstrated the state-of-the-art precision and efficiency of our proposed method compared
to existing approaches. Furthermore, our ablation study revealed that the incorporation of our
designed modules could significantly enhance network performance.

Keywords: aircraft detection; multi-task learning; landmark detection; bounding box detection

1. Introduction

Remote sensing has emerged as a powerful tool for gathering data and information
about the ground’s surface from a long distance. Recent developments in deep learn-
ing have revolutionized the field of remote sensing, providing researchers with new and
sophisticated methods for image processing and interpretation. Among these methods,
classification [1–5], object detection [6–12], change detection [13–16] and semantic segmen-
tation [17–19] are some of the most popular uses for deep learning-based remote sensing,
which have significantly accelerated the realization of related applications in the fields of
environmental monitoring, traffic security and national defense.

As typical remote sensing targets, aircraft are important transportation carriers and
military targets. The accurate detection of aircraft targets plays a vital role in diverse appli-
cations, such as air transportation, emergency rescue and military surveillance. Compared
to object detection methods based on other specific targets, such as ships and construc-
tions [20,21], it is difficult to detect aircraft in remote sensing images, mainly because of
their small size, dense distribution and complex backgrounds. Therefore, aircraft detection
is an important task within the field of remote sensing.
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Over the past few years, researchers have been striving to develop efficient and
accurate methods for aircraft detection, which can be broadly categorized into two groups
based on the techniques used: bounding box regression and landmark detection. Bounding
box regression methods employ general detection models, such as the R-CNN series [22–24]
and the YOLO series [25–27], to extract features by selecting a large number of region
proposals for subsequent regression and classification. In contrast, landmark detection-
based methods first locate different types of landmarks on objects and then form detection
boxes based on these landmarks, which can make better use of the structural characteristics
of aircraft.

However, aircraft detection has some characteristics that are different from those of
general object detection. Firstly, as shown in Figure 1, aircraft targets in remote sensing
images are usually densely arranged in airports and are prone to interference between
different targets. Secondly, the head, wings and tail of an aircraft contain strong structural
information that is crucial for accurate detection. Finally, the fine-grained classification of
aircraft categories [28] relies heavily on the structural information of aircraft. The existing
approaches [29–33] do not fully leverage these features, despite some improvements in
aircraft detection methods. For example, bounding box regression-based methods suffer
from irrelevant background interference within the rectangular anchor boxes, while implicit
feature extraction fails to make full use of the strong structural information of aircraft targets.
Moreover, in the case of a large number of closely spaced targets, landmark-based methods
are prone to errors when grouping keypoints. Therefore, it is necessary to develop new
and more effective methods for aircraft detection that can overcome these challenges and
take full advantage of the unique characteristics of aircraft targets.

Figure 1. The challenges of aircraft detection, including dense arrangement, different aircraft scales,
different structure information and complex background interference. Existing anchor-based methods
do not fully utilize aircraft scale and structural information, while keypoint methods have difficulty
clustering and grouping densely arranged objects.

To address the characteristics of aircraft detection and the problems of existing algo-
rithms, we propose an aircraft detection algorithm called Aircraft-LBDet (aircraft landmark
and bounding box detection), which is a multi-task algorithm model combining bounding
box detection and landmark detection. The bounding box-based approach can effectively
compensate for the grouping errors of landmark detection in the case of dense arrangement,
thus improving the accuracy of detection. By adding landmark supervision information to
the bounding box-based approach, the structural features of aircraft can be fully utilized to
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provide more detailed position information for bounding box localization, which is helpful
for subsequent fine-grained classification tasks. We can achieve more accurate aircraft
detection by combining bounding box detection with landmark supervision. In this paper,
we present our method and evaluate its performance on relevant remote sensing datasets.
The experimental results demonstrated that the proposed method outperformed existing
state-of-the-art algorithms and was robust to various environmental conditions.

The main contributions of our method are as follows:

• We propose a multi-task joint training method for remote sensing aircraft detection,
within which landmark detection provides stronger semantic structural features for
bounding box localization in dense areas, which helps to improve the accuracy of
aircraft detection and recognition;

• We propose a multi-task joint inference algorithm, within which landmarks provide
more accurate supervision for the NMS filtering of bounding boxes, thus substantially
reducing post-processing complexity and effectively reducing false positives;

• We optimize the landmark loss function for more effective multi-task learning, thereby
further improving the accuracy of aircraft detection.

In the rest of this paper, we first review the related work in the field of remote sensing
and identify the gaps that our proposed method aims to address. Next, we describe our
proposed method and explain how it differs from existing approaches. Then, we present
the results of our experiments, including comparisons to existing methods and ablation
studies. Finally, we summarize our findings and discuss the implications of our work for
future research within the remote sensing field.

2. Related Work

With the rapid development of deep neural networks, breakthroughs have been made
in text, image and speech processing [34–37]. As a crucial task in the field of computer
vision, object detection has attracted a lot of research attention. In this section, we provide
a brief overview of existing deep learning-based object detection algorithms for general
methods and remote sensing methods.

2.1. General Object Detection Methods

Object detection has traditionally involved utilizing feature matching templates and
sliding windows for detection. In recent years, researchers have proposed numerous anchor-
based detection methods based on deep CNNs. These methods are typically categorized
as either two-stage or one-stage methods. In two-stage detectors, anchors are generated
and then regions of interest are subsequently utilized for classification and regression. One
classic two-stage detector, the Fast-RCNN [24], uses RoI pooling to enhance the semantic
descriptions of features and improve efficiency. Building on this, the Faster-RCNN [22]
method improves this approach further by introducing a region proposal network to extract
regions and enable end-to-end training. However, the region proposal stage requires many
parameters and computational costs. The Cascade R-CNN [38] introduces a multi-stage per-
ception mechanism that reduces the proportion of false positive samples. While two-stage
methods have high detection accuracy, they require a significant number of parameters
and computational costs. In contrast, one-stage methods offer faster inference speeds,
making them ideal for real-time object detection in resource-constrained environments.
One-stage methods have been reported to reach inference efficiency. YOLOv1 [25] performs
regression and classification directly with a grid for images instead of generating anchors.
Subsequently, other methods, such as YOLOv2 [26], YOLOv3 [27] and SSD [39], use anchors
with multi-stage feature maps to improve detection accuracy.

Although one-stage methods are more efficient, their detection accuracy is a big
problem compared to that of two-stage methods. Therefore, more precise anchor-based one-
stage methods have been explored and the keypoint-based method has become an essential
direction. By utilizing a single convolutional neural network, CornerNet [40] is able to
detect bounding boxes that are defined by keypoints situated at the top left and bottom
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right corners, transforming the detection problem into keypoint prediction and clustering.
Duan et al. [41] found that CornerNet can only extract the edge features of objects, so they
proposed CenterNet and introduced keypoint triplets to determine objects, allowing the
network to obtain the internal features of objects and distinguish whether each bounding
box is correct. To address the problem that features extracted from the regular cells of
bounding boxes are easily affected by invalid features in background and foreground areas,
RepPoints [42] uses deformable convolutional kernels, which can adaptively extract object
features and contain the semantic information of multi-stage levels, thereby solving the
problem of the limited feature extraction capability of rectangular boxes. The creators of
CentripetalNet [43] found that relying solely on appearance-based embeddings to group
keypoints had significant limitations, so they proposed a new corner-matching method
based on CornerNet, which improves robustness by learning additional centripetal offsets.

2.2. Object Detection in Remote Sensing Images

There are many challenges in the field of object detection in remote sensing images
compared to object detection in standard images, such as extensive modifications, intricate
surroundings and compact objects at multiple scales. Li et al. [44] addressed the the issue
of rotation by designing multi-angle anchors and proposing a double-channel feature
fusion network to enhance the joint representation of ambiguous features. Fu et al. [45]
built a rotation-aware detector based on the Faster R-CNN to cover objects in arbitrary
directions. These methods offer feature fusion frameworks to produce and fuse hierarchical
features at multiple scales. To address the challenge of detecting multi-scale objects in aerial
imagery, Qian et al. [46] proposed a method called multi-level feature fusion (MLFF), which
combines the multi-scale features output by FPNs. Yao et al. [47] designed a unified EssNet
backbone to preserve the resolution of deep features by using dilated convolution. The
approach involves generating high-quality feature maps that enable the detection of objects
at varying scales. Liu et al. [48] designed a feature pyramid model, which can be used
to combine multi-scale features through selective refinement modules between different
spaces and channels. Then, rich semantic information can be added to multi-scale object
detection using a context enhancement module. Taking into account the object distribution
patterns observed in selected datasets, Ye et al. [49] applied a stitcher to make one image
comprising objects of diverse scales, effectively balancing the proportions of targets.

The advancement of deep convolutional neural networks has led to notable advance-
ments in the detection of aircraft in remote sensing images. Yu et al. [29] proposed an
aircraft detection network in a remote sensing GLF-Net utilizing the encoder and decoder
fusion of multi-scale features with both global and local information, which addresses
the characteristics of small targets and the complex backgrounds in aircraft samples. To
address the problem of interference by clouds, Zhang et al. [30] proposed a novelty feature
aggregation network called AFA-Net. The method includes a self-attention module that
dynamically emphasizes the local features of the exposed sections of aircraft, across both
the feature map’s channel and spatial dimensions. X-LineNet [31] is an aircraft detector
that utilizes local object features based on lines. This method transforms the aircraft de-
tection task into the prediction and clustering of pairs of intersecting lines within objects,
making clustering easier by enhancing the dimensionality of point-to-line. Considering
the geometric semantics of the sword-shaped elements of aircraft structures, S2CGNet [32]
transforms the task of detecting aircraft into the estimation of sparse instance-level masks.
It introduces SAMs (sword attenuation masks) to capture the geometric appearance of air-
craft, which enriches local appearance features and improves the accuracy of the bounding
boxes. Zhao et al. [33] introduced a module for fusing multi-scale features called BFPCAR,
which incorporates semantic features that are prioritized during the fusion of information
to reduce information loss between different layers and overcome the issue of imbalanced
attention between non-adjacent layers. Liu et al. [50] proposed an aircraft detection CNN
with a corner cluster algorithm. The method begins by detecting the corners of binary im-
ages using mean-shift, which generates potential regions of interest. Subsequently, a CNN
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layer is employed to extract features and classify the regions that could potentially include
aircraft. To further confirm the locations of any aircraft, an extra screening process is then
conducted. The DPANet [51] combines deconvolution operations with a position attention
method for two-stage aircraft detection, which aims to capture external structural features
and enhance the network’s capability to differentiate between aircraft and the background.

Although there are various kinds of algorithms concerning the aircraft detection task,
the realization of multi-stage feature extraction and the understanding of aircraft-related
information remain important problems that need to be researched.

3. Proposed Method
3.1. Overview

The suggested method employs YOLO [52] for enhanced efficiency and reduced
computational resource usage. As illustrated in Figure 2, the method consists of three
components: a feature extraction backbone, a multi-scale feature pyramid module and an
object and landmark detection head. The feature extraction backbone utilizes a residual
structure, with a deeper network layer designed to facilitate in-depth feature extraction
from input remote sensing images. The multi-scale feature pyramid module is crucial
to the overall method as it combines the features obtained from the backbone network,
thereby enriching the diversity of the learned features and boosting the network’s detection
performance. It was mainly designed by SPP (spatial pyramid pooling) [53], with small
convolution kernels and parallel modes for aircraft detection tasks. The object and landmark
detection head is the module that is used to locate aircraft precisely and regress any
landmarks, which was mainly designed by decoupling to resolve conflicts between tasks.

Figure 2. The architecture of Aircraft-LBDet, consisting of a P-stem module, a backbone, an SPP,
a PAN module and a D-Head module. Some modules are described in more detail below. In the
bottleneck module, k1 and k3 mean the 1× 1 and 3× 3 kernel size of convolution.

3.2. Feature Extraction Backbone

The feature extraction backbone contains a stem, CSPNet and ResBlock. Stem is
usually the initial module in whole networks, which provides better information extraction
in deeper dimensions. In YOLOv5, the initial stem layer employs a slicing operation to
divide high spatial resolution feature maps into several low spatial resolution maps. This
way, the information attenuation caused by downsampling can be reduced. As depicted
in Figure 3, the P-Stem module supersedes the original Focus layer, effectively reducing
computational demands while essentially maintaining feature extraction capability.
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Figure 3. P-Stem was designed to be a lightweight module with 1× 1 convolution.

CSPNet is reported to mitigate the issue of redundant gradient information, which
leads to inefficient optimization and expensive inference computations. In order to stream-
line the architecture, decrease the number of parameters and more effectively leverage the
fuse operation during inference, we redesigned the CSP module and named it CSP-NB. In
Figure 4, the CSP-NB module is shown. This module was inspired by the DenseNet [54]
and PeleeNet [55], which have dynamic numbers of channels. The CSP-NB module divides
the original input into two branches and then uses N neckblock residual convolution opera-
tions after CBS operations to deepen the network channel dimensions and improve feature
extraction. After merging features, CBS operation is performed. The CSP-NB module is
applied to feature extraction and the backpropagation effect between layers is increased
through the nested residual structure to avoid the disappearance of the gradient caused
by the deepening of the network layer, which helps to obtain deeper features without
degrading the module.

Figure 4. The CSP-NB module with N neckblocks.

3.3. Multi-Scale Feature Pyramid Module

The multi-scale feature pyramid module contains spatial pyramid pooling (SPP) [53] in
Figure 5 and a prototype alignment network (PAN) [56]. The SPP module extracts multi-
scale features, which are advantageous when dealing with different target sizes within
images to be detected. The core lies in the consistent adjustment of the spatial dimensions
of feature maps when passing through the multi-scale MaxPool layer, which is convenient
for subsequent feature stacking and merging. The three kernel sizes were revised to 7 ∗ 7,
5 ∗ 5 and 3 ∗ 3 in our method for small aircraft targets. In addition, we redesigned SPP as
an equivalent serial mode using three 3 ∗ 3-kernel MaxPool operations to accelerate the
running speed of the module. Input images undergo parallel processing through multiple
MaxPool operations of varying sizes, followed by further fusion, which can address the
multi-scale issue of targets to some degree.

The PAN architecture involves two main components: a prototype network and an
alignment network. The prototype network generates a set of class prototypes for each
type, which represent the common features of each class. The prototype generation module
takes the feature characteristics generated by the backbone and produces a series of class
prototypes for each class. Each prototype is a weighted average of the support images of the
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feature vector belonging to the same class. The alignment module aligns the prototypes to
query images by computing the similarity degree between the features at each pixel location.
The PAN can further fuse multi-scale features and realize the alignment of multi-scale
feature maps so as to provide features with richer information for subsequent detection.

Figure 5. The SPP module with small kernels and parallel mode.

3.4. Object and Landmark Detection Head

General object detection heads do not include landmark detection; however, in the
context of aircraft detection tasks, detecting landmarks is a crucial component for accurately
identifying aircraft. Therefore, we recommend a brand-new approach for improving overall
mission accuracy by adding landmark detection as a parallel task.

To achieve this, we decouple the head into a multi-task detection module where the
network can simultaneously output the target bounding box coordinates, classification
confidence for prediction and landmark coordinates. However, it is worth noting that
for object detection tasks in the remote sensing field, there is the well-known problem of
conflict between classification, regression and landmark detection tasks [57]. This conflict
arises due to misalignment between different tasks in the spatial dimension, which greatly
limits overall performance and results in a highly constrained trade-off. To overcome
this limitation, we adopt a 1 ∗ 1 convolution layer for each level of the PAN feature,
which reduces the channel number of the feature layer to 256. Additionally, we introduce
three parallel branches, each with two 3 ∗ 3 convolution layers, to handle the regression,
classification and landmark detection tasks. These changes improve the output labels for
the head, as shown in Figure 6.

Figure 6. The D-Head module, with three parallel branches each for classification regression and
landmark detection tasks. PN is the output of the PAN structure.
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3.5. Central-Constraint NMS

The NMS operation is a common component of the post-processing stage of object
detection. After an input image is predicted by a network, the network will predict a large
number of bounding boxes. Then, the appropriate bounding boxes need to be reserved
so that the object confidence of each box is at its highest and the same object will not be
detected repeatedly. For aircraft detection tasks, when the range of a bounding box is out
of accuracy, especially for large-scale tasks, the images include redundant background
and parts of surrounding targets, which makes it difficult for the basic NMS operation
to completely eliminate redundant boxes. However, in terms of aircraft detection, the
landmark points of aircraft have relatively fixed spatial geometric relationships with each
other. Hence, we can use aircraft landmark points to further constrain the selection of
bounding boxes for more accurate output results. In this module, we further strengthen
the constraints during the NMS operation using the landmark detection results output by
the decoupled detection head, which aims to filter out highly redundant candidate boxes.
In detail, there should be only five landmark points in each candidate box and the center
coordinates of the five landmark points should coincide with the center coordinates of the
box as much as possible. Therefore, we propose an additional landmark point confidence
con f lms to update the original object confidence con f obj. Supposing the geometric center
coordinate for a candidate bounding box is bc, where the geometric center coordination of
the five landmark points is pc, the update formula is:

con f lms = max
{

0, 1− dist(pc − bc)

min(w, h)/2
}

, (1)

con f obj = con f lms · ori_con f obj, (2)

where dist(·) is the L2 distance between two points (i.e., the Euclidean distance) and w and
h are the width and height of the candidate box, respectively. Then, the updated object
confidence can be used to remove redundant boxes during NMS processes. For clarity, the
process of Central-Constraint NMS is shown in Algorithm 1.

Algorithm 1 Central-constraint non-maximum suppression (central-constraint NMS) al-
gorithm.

Inputs: A = {a1, · · · , aN}, P = {p1, · · · , pN}, t; A represents the list of initial detection
boxes; P contains the corresponding detection scores; t denotes the NMS threshold.
Output: R, P
1: R← {}
2: while A 6= empty do:
3: for ai, pi in A, P do:
4: pi ← ScoreUpdate(pi, Ai)
5: end
6: n← arg max P
7: N ← an

8: R← R
⋃

N; A← A− N
9: for ai in A do:
10: if IoU(N, ai) ≥ t then:
11: pi ← pi · (1− IoU(N, ai))

12: end
13: end
14: end
15: return R, P
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3.6. Landmark Box Loss Function

Due to the small pixels of aircraft target samples, the L2 loss function has a poor fitting
effect. When the input increases, the derivation of the L2 loss concerning the input also
increases, which causes the gradient to become unstable. Therefore, we adopt a piecewise
loss function method to smooth the gradient loss during model training.

Func(y) =

{
f · ln

(
1 + |y|

d

)
, if y < f

|y| − B, otherwise
(3)

The non-negative f has a nonlinear range of [− f , f ], d limits the curvature of the
nonlinear region’s scope and B is a constant that links the piecewise-defined linear and
nonlinear parts in a smooth way.

lossK = ∑
i

Wing(s− s′), (4)

where s is the predicted landmark and s′ is the ground truth.
Furthermore, for the sake of simultaneously constraining the relationships between

landmarks and anchor boxes to make them pair, the constraint loss was designed as follows:

lossrelation = ∑
i

L2(pc − bc), (5)

where pc denotes the geometric center of the landmark group and bc refers to the geometric
center of the rectangular regression box.

The losspull and losspush refer to the method of pairing constraints between points in
CornerNet [40] and extend to five points, as follows:

losspull =
1
N

N

∑
k=1

[(etlk − ek)
2 + (eblk − ek)

2 + (etrk − ek)
2 + (ebrk − ek)

2], (6)

losspush =
1

N(N − 1)

N

∑
k=1

N

∑
j=1,j 6=k

max(0, 1− ek − ej), (7)

where ek is the mean of etlk, eblk, etrk and ebrk. Through the losspull and losspush, the nose,
tail and wings of each aircraft target can be effectively clustered. On the basis of the loss
between landmarks and bounding boxes, the point and the box of the same aircraft target
can be effectively paired and the two-way regression of multi-task aircraft detection can be
effectively realized. The new overall landmark box loss function was designed as follows:

Lall = α · lossK + β · lossrelation + γ(losspull + losspush), (8)

where α, β and γ are the hyperparameters, which can be adjusted based on the dataset
distribution during training.

4. Results

In this section, we describe the experiments related to our proposed approach. We start
by describing the dataset used for our experiments, followed by details of the implementation.
Then, we discuss the evaluation metrics that were employed to measure the performance of
our method. Subsequently, we compare our method to other state-of-the-art techniques on the
same dataset. Furthermore, we conduct ablation experiments to analyze the contributions of
the individual components of our approach. Finally, we provide visualizations of our results
and discuss our findings regarding the fine-grained performance.
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4.1. Dataset

During the experimental stage, we chose the UCAS-AOD dataset [58] to validate the
performance of our model. The UCAS-AOD is a dataset comprising aerial images for object
detection in remote sensing applications, which was developed by the University of the
Chinese Academy of Sciences (UCAS) and contains high-resolution images captured by an
unmanned aerial vehicle (UAV) over a university campus. The images have a resolution of
0.1 m per pixel and cover an area of approximately 2.4 square kilometers.

The UCAS-AOD dataset is annotated with ground truth object bounding boxes for
three object classes: cars, buildings and trees. The annotations were performed manually by
experts in remote sensing and computer vision. The dataset has been extensively utilized to
demonstrate the effectiveness of object detection algorithms for aerial images, particularly
those relying on deep CNNs. There are 648 images for training, including 4720 instances,
and 432 images for testing, including 3490 instances. During the experiments, the original
image input size was cropped to 832 × 832.

4.2. Implementation Details

We conducted experiments utilizing the PyTorch 1.8.1 framework in conjunction with
the Nvidia Geforce GTX 1080 GPU. We employed the YOLOv5-4.0 as our initial version and
implemented modifications that were specific to our research. Our experiments utilized
a batch size of 16 and training was executed for a duration of 200 epochs using an SGD
optimizer. We set the initial learning rate to 10−2 and the final learning rate to 10−5 in order
to effectively optimize the model performance over time. Furthermore, a momentum value
of 0.8 was utilized for the first five warm-up epochs, subsequently transitioning to 0.9 for
later steps to enhance the stability and computational efficiency of the training process. In
an effort to increase the resilience of our proposed model and improve its generalizability,
we also enlarged the dataset through a range of techniques, including flipping, rotation
and random cropping.

4.3. Comparison Experiments

We set up comparative experiments in several areas to demonstrate the validity of our
proposed model.

Comparison of our model to other generic detection models.
The proposed Aircraft-LBDet method was evaluated in comparison to several ad-

vanced object detection methods on the UCAS-AOD dataset. The results are presented
in Table 1. The proposed method achieved an impressive AP of 0.904, outperforming the
other methods by significant margins. Specifically, it outperformed the Faster R-CNN, SSD,
CornerNet, Yolo v3, RetinaNet+FPN and Yolo v5s by 4.5%, 0.8%, 13.9%, 4%, 0.3% and 4.5%,
respectively. In addition to its superior performance, the proposed method was also highly
efficient. The Yolo v5s, which is known for its efficient and real-time detection, achieved a
frame rate of 80.6 FPS; however, the Aircraft-LBDet method further improved the efficiency
of the YOLO method, achieving a frame rate of 94.3 FPS, which was 17.0% higher than
that of the Yolo v5s. Overall, these results demonstrated that the proposed Aircraft-LBDet
method is a highly effective and efficient method for object detection, particularly for
aircraft detection.

Table 1. The comparisonbetween the different methods on the UCAS-AOD dataset.

Method AP FPS Model Size

Faster R-CNN [22] 0.859 11 243.5 MB
SSD [39] 0.896 17 144.2 MB

CornerNet [40] 0.765 6.9 804.9 MB
Yolo v3 [27] 0.864 25 248.1 MB

RetinaNet+FPN [59] 0.901 7.2 228.4 MB
Yolo v5s 0.859 80.6 14.17 MB

Ours 0.904 94.3 13.8 MB
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Comprehensive comparison of multiple indicators between our approach and the
baseline.

In Table 2, a comparison between the Aircraft-LBDet method and the baseline YOLOv5s
method is presented. The performance of these two methods was evaluated from several
aspects. In terms of the average aircraft detection precision, Aircraft-LBDet performed
slightly better than the baseline when the threshold was adjusted from 0.5 to 0.95. Addi-
tionally, the parameter of Aircraft-LBDet was significantly less than that of YOLOv5s. The
false alarm rate (FA) is an important evaluation metric and it is evident from the table that
Aircraft-LBDet had a 39.7% lower false alarm rate than the baseline method. The F1 score,
which is a measure of the balance between precision and recall, was also significantly higher
for Aircraft-LBDet than the baseline. Therefore, the results indicated that Aircraft-LBDet
outperforms the baseline in terms of both accuracy and efficiency.

Table 2. The comparison to the baseline.

Method AP0.5−0.95 Flops (G) FA F1

Yolo v5s 0.667 26.3 0.121 0.928
Ours 0.675 15.3 0.073 0.956

Comparison of other aircraft detection methods.
In the field of aircraft detection, there have been numerous studies exploring effec-

tive models to enhance the accuracy of detection [60–64]. We conducted comparative
experiments between our model and other models for aircraft detection. The results are
summarized in Table 3. It is evident that our approach outperformed all of the other meth-
ods, including FR-O [22], ROI-trans [60], FPN-CSL [61], R3Det-DCL [62], P-RSDet [63] and
DARDet [64], which had AP scores ranging from 0.834 to 0.903. Our method achieved an
AP score of 0.904, which was 0.001 higher than the best performing method in the literature.
Moreover, our approach utilized the smallest backbone (CSP-ResBlock) compared to the
other methods, indicating the superiority of our architecture in terms of computational
efficiency. The reason for this superior performance was the re-designed CSP-ResBlock
architecture in our method. The CSP-ResBlock architecture effectively balances the accuracy
and efficiency of the model. It combines the advantages of a residual block and a cross-
stage partial (CSP) structure, which allows the model to capture more useful features from
input images. Our method outperformed the other SOTA methods and had the smallest
backbone (CSP-ResBlock) compared to ResNet-50 and ResNet-101, which indicated the
effectiveness of our re-designed CSP-ResBlock architecture and innovative collaborative
learning detection head.

Table 3. The comparison of other methods for aircraft detection. All methods were evaluated on the
UCAS-AOD dataset.

Method Backbone AP

FR-O [22] ResNet-101 0.834
ROI-trans [60] ResNet-101 0.889
FPN-CSL [61] ResNet-101 0.892

R3Det-DCL [62] ResNet-101 0.893
P-RSDet [63] ResNet-101 0.900
DARDet [64] ResNet-50 0.903

Ours CSP-ResBlock 0.904

4.4. Ablation Experiments

The detection of aircraft in remote sensing images is a challenging task that requires the
accurate localization of aircraft landmarks and bounding boxes. With respect to this matter,
we propose a novel method for detecting aircraft in remote sensing images by integrating
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various modules and loss functions. To evaluate the effectiveness of our proposed method,
we conducted a series of ablation experiments on the UCAS-AOD dataset.

The ablation experiments comprised a quantitative analysis of the different modules
and loss functions to determine their contributions to the overall performance of our
proposed method. The results demonstrated that the landmark box loss function enhanced
the detection performance of the algorithm by constraining the relationships between
landmarks and bounding boxes. Consequently, the algorithm’s detection performance was
boosted by 4.9%.

Building on this initial improvement, we specifically added the CSP-NB module to
improve the network’s feature extraction ability by deepening the network channel, which
improved the detection performance of the algorithm by 4.2%. We then incorporated a
P-Stem module to improve the average precision (AP) of the algorithm by 1.6%. Finally,
we added a central-constraint NMS operation to further increase the detection precision
of the algorithm by 0.2%. The ablation study results are listed in Table 4, where each row
corresponds to a different combination of modules and loss functions.

Overall, the ablation experiments indicated the effectiveness of our proposed method
for detecting aircraft. By integrating different modules and loss functions, we were able
to achieve a significant improvement in the detection performance of the algorithm. Our
proposed method could be used for various applications, including aerial surveillance,
border patrol and disaster response. Further research should explore the possibility of our
method being used in other domains and applications.

Table 4. The ablation studies of different modules and loss functions in our proposed model.

ID a b c d e

Landmark Box Loss X X X X
CSP-NB X X X
P-Stem X X

Central-Constraint NMS X

AP 0.795 0.844 0.886 0.902 0.904
Comparison - 0.049 ↑ 0.042 ↑ 0.016 ↑ 0.002 ↑

4.5. Visualization

This paper proposes an innovative method for the precise detection of dense objects
in large-scale remote sensing imagery. In particular, the proposed method leverages
highlight detection and keypoint detection to realize dense object detection and fine-grained
classification. In this section, we present some example predictions (Figures 7 and 8) to
demonstrate the effectiveness and superiority of our method.

Figure 7. Cont.
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Figure 7. A visualization of the detection results for images with densely arranged targets, showing
that our proposed approach had good robustness with different backgrounds and obtained accurate
landmarks.

1 

Figure 8. A more detailed visualization of the detection results at a higher resolution, showing that our
method maintained its good performance with different backgrounds and obtained accurate landmarks.

Figures 7 and 8 show two densely arranged scenes captured by large-size remote
sensing imagery at different resolutions. From these figures, we can see that our proposed
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method could accurately detect aircraft and precisely identify their positions to achieve
dense object detection. The results showed that our method is capable of handling complex
and cluttered environments and could be a promising approach for real-world applications.

Overall, the proposed method achieved a significant improvement over existing
methods for the detection of dense objects in large-scale remote sensing imagery. By
leveraging highlight detection and keypoint detection, our approach offers a more accurate
and precise solution for a wide range of real-world scenarios.

5. Discussion

In Figure 9, we demonstrate that our proposed approach can judge specific types
of aircraft, including the MD-90, A330, Boeing787, Boeing777, ARJ21 and Boeing747, by
calculating the size of detected keypoints. Different points represent different parts of
aircraft. The purple point represents the head, while the green and yellow points represent
the left and right wings, respectively. The red and blue points represent the left and right
of the tail, respectively. This fine-grained classification is achieved by utilizing highlight-
detected keypoints, which enables the proposed method to accurately distinguish between
different types of aircraft.

Figure 9. Avisualization of the detection results between the ground truth (top) and the prediction
(bottom): (a) MD-90; (b) A330; (c) Boeing787; (d) Boeing777; (e) ARJ21; (f) Boeing747.

Furthermore, we calculated the wingspan and fuselage length of each aircraft category
and compared them to relevant data on Wiki. The results of this specific contrast are shown
in Table 5. The contrast between the actual and theoretical data for the aircraft categories
was conducted to aid the fine-grained classification. The results suggested that the actual
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data tended to exhibit slightly increased wingspan and fuselage lengths, ranging from 5–15%,
which was because of the angle and inclination of the samples during measurement. Our
analysis of the relevant data within each category consistently indicated a close resemblance,
which showed that length is a reliable parameter for fine-grained classification. Therefore, the
focus on wingspan and fuselage length provides a more comprehensive understanding of
aircraft categories and better fine-grained classification performance.

Table 5. The comparison of the wingspans and fuselage lengths (m) of different aircraft.

Aircraft Theoretical Actual
Wingspan Fuselage Length Wingspan Fuselage Length

MD-90 32.9 39.5 35.4 (7.6% ↑) 42.8 (8.4% ↑)
A330 60.3 58.8 64.1 (6.3% ↑) 62.9 (7.0% ↑)

Boeing787 60.1 57.7 68.0 (13.1% ↑) 60.5 (4.9% ↑)
Boeing777 64.8 63.7 71.4 (10.2% ↑) 65.4 (2.7% ↑)

ARJ21 22.5 33.5 25.8 (14.7% ↑) 36.7 (9.6% ↑)
Boeing747 68.5 70.6 69.3 (1.2% ↑) 73.2 (3.7% ↑)

6. Conclusions

In this paper, we proposed an end-to-end multi-task aircraft detection method using
landmark box detection in remote sensing images. The proposed method enables the more
accurate detection of closely spaced aircraft targets by combining bounding boxes and
landmark detectors, thereby enhancing the reliability and efficacy of remote sensing aircraft
detection. Meanwhile, the designed multi-task joint training and inference algorithm proves
the satisfactory practical applicability of our model. Our work validates the importance
of considering aircraft structures and combining different supervisory information for
remote sensing aircraft detection. In future work, we aim to incorporate special component
semantic information to achieve more efficient fine-grained classification and guarantee
the sufficient perception of visual aircraft features. We believe that future research will be
inspired by our work in this area and that this work could contribute to the development
of advanced remote sensing technologies for aircraft detection.
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