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Abstract: Convolutional neural networks (CNNs) perform well in tasks of segmenting buildings from
remote sensing images. However, the intraclass heterogeneity of buildings is high in images, while
the interclass homogeneity between buildings and other nonbuilding objects is low. This leads to an
inaccurate distinction between buildings and complex backgrounds. To overcome this challenge, we
propose an Attentional Feature Learning Network (AFL-Net) that can accurately extract buildings
from remote sensing images. We designed an attentional multiscale feature fusion (AMFF) module
and a shape feature refinement (SFR) module to improve building recognition accuracy in complex
environments. The AMFF module adaptively adjusts the weights of multi-scale features through the
attention mechanism, which enhances the global perception and ensures the integrity of building
segmentation results. The SFR module captures the shape features of the buildings, which enhances
the network capability for identifying the area between building edges and surrounding nonbuilding
objects and reduces the over-segmentation of buildings. An ablation study was conducted with both
qualitative and quantitative analyses, verifying the effectiveness of the AMFF and SFR modules. The
proposed AFL-Net achieved 91.37, 82.10, 73.27, and 79.81% intersection over union (IoU) values
on the WHU Building Aerial Imagery, Inria Aerial Image Labeling, Massachusetts Buildings, and
Building Instances of Typical Cities in China datasets, respectively. Thus, the AFL-Net offers the
prospect of application for successful extraction of buildings from remote sensing images.

Keywords: building extraction; remote sensing; image segmentation; feature fusion; feature
refinement

1. Introduction

Buildings are the main spaces where humans gather. The extraction of buildings from
remote sensing images has been applied widely in fields such as digital city
construction [1,2], urban planning [3,4], change detection [5–7], damage assessment [8,9],
and digital mapping [10].

Before the development of building extraction methods based on the building features
in images, buildings were manually and individually labelled, making such extraction a
time-consuming and labor-intensive task. Conventional building extraction methods in-
clude those based on feature detection [11,12], regional segmentation [13,14], and combined
auxiliary information [4,15]. These methods mainly rely on experts to design an algorithm
with appropriate parameter thresholds by studying basic features of buildings, such as
the light spectra, shapes, texture, and shades. However, such methods cannot utilize the
deep-level information contained in images, implying limited accuracy in the building
extraction results and a low degree of automation.

The rapid advance of computer vision has led to the development of convolutional
neural networks (CNNs) that show excellent performance in semantic segmentation tasks
such as car navigation [16], scene analysis [17], and medical image segmentation [18]. In
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the training process, a CNN generates feature maps of various resolutions and levels by
stacking the convolutional layers. When a training dataset contains abundant data, the
CNN can stably obtain rich amounts of feature information. Accordingly, ample study
has been conducted on utilizing CNNs to extract buildings from remote sensing images.
Despite such abundant research, two unresolved problems remain.

(1) With feature maps, the features obtained from images are neither rich enough
nor adequately utilized, resulting in building over- or under-segmentation. In generating
feature maps, conventional CNNs usually reduce and subsequently increase their resolu-
tion [19]. As the downsampling process reduces the resolution of the feature map, a certain
amount of detailed information is lost [20]. This can cause small buildings and buildings
with rich feature information on their roofs to be neglected in the extraction process. Several
studies [21,22] have attempted to recover some of the lost detailed information through
fusion with low-level feature maps during the upsampling process. The results showed
that, despite abundant redundant information being available for fusion with the low-level
feature maps, a limited amount of such information could be utilized [23].

A popular method [24,25] for feature utilization is to directly concatenate the gener-
ated feature maps after unifying their sizes. This newly generated feature map is a simple
fusion of all feature information. As the weights of each piece of feature information are not
adjusted adaptively according to the segmentation target, it is difficult to selectively retain
effective information and filter out noise. Consequently, the feature information cannot
be fully utilized. In building extraction tasks, this aspect causes difficulty in distinguish-
ing buildings from their surrounding background pixels, leading to the false detection
of buildings.

(2) With the target, the shapes and features of buildings are not maintained adequately,
making it difficult to distinguish buildings from their surrounding ground-based objects.
In conventional CNNs, the size of the receptive field of the generated feature map is
limited [26]. Moreover, the range of the receptive field is regular. When the receptive
field is too small or the feature map contains irregularly shaped buildings, it is difficult to
capture the complete shape feature of an entire building for identifying a round-shaped
shed or irregularly shaped buildings, such as art museums. To expand the receptive field,
various feature pyramid modules have been designed based on dilated convolution or
large-scale convolutional kernels, such as the receptive field block [27] and atrous spatial
pyramid pooling module [28]. Using these modules for building extraction tasks [29,30] has
improved the ability to extract buildings of various sizes. Nevertheless, it remains difficult
to accurately identify irregularly shaped buildings. Buildings in urban areas are arranged
in a certain manner with regular orientation, but buildings in suburban areas are arranged
differently, distributed randomly, and may even overlap each other. Moreover, diverse
types of ground-based objects are located around buildings in suburban areas, including
trees, shrubs, bare ground, and concrete pavements. Existing algorithms are usually unable
to consider the spatial relationship between buildings and the surrounding ground-based
objects, leading to the false or missed detection of buildings.

To solve these problems, we propose an attentional feature learning CNN for building
extraction from remote sensing images. In particular, our proposed network was able
to solve unfocused feature fusion and incomplete building shape retention. The main
contributions are as follows.

1. We designed an attentional multiscale feature fusion (AMFF) module to adjust the
weight of each piece of feature information during the feature fusion process. Therefore,
more effective information conducive to the separation of buildings from backgrounds
was retained and irrelevant noise information was filtered out. Employing our module
ensured highly efficient use of the feature information and enhanced the integrity of
building segmentation.

2. We designed a shape feature refinement (SFR) module that featured a receptive
field that is not limited to a regular area and an expanded receptive field range. Therefore,
the network adaptively learned the shape features of buildings and reduced interference
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from complex environments at the interface between buildings and backgrounds, thereby
maintaining the shape patterns of the extracted buildings.

3. We conducted a comparison of the results from the application of our model on
four benchmark datasets. This indicated that the performance of the proposed AFL-Net
was the most advanced of the compared models. In addition, we conducted an ablation
study to verify the effectiveness of the proposed AMFF and SFR modules.

2. Methodology
2.1. AFL-Net Architecture

The proposed AFL-Net followed the ‘encoder-decoder’ structure shown in Figure 1.
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Figure 1. Schematic diagram of the AFL-Net framework. The encoder extracts the features through
the backbone, outputting four feature maps at different scales. The decoder fuses the feature maps
via the AMFF module, optimizes the building shape features via the SFR module, and outputs the
building segmentation mask after the classifier.

The encoder captured the features from the input images. The decoder separated the
buildings from the background according to the features acquired, outputting the segmen-
tation masks of the buildings, and resizing the feature maps to those of the input images.
Using HRNetV1 [31] as the feature extraction backbone during the encoding process had
two major advantages. The first is that high-resolution features were maintained through-
out the network structure, which was conducive to accurately identifying small buildings
in the images. The second was that feature maps with different resolutions were fused
together, which was conducive to information exchange, and substantiated the feature
information contained in the feature map at each resolution. For each input image, the
backbone can output four feature maps. The feature maps underwent multiscale feature
fusion via the AMFF module during the decoding process. The fused feature map was
subsequently input into the SFR module for refined learning of the shape features. Finally,
the 1 × 1 convolution in the classifier was used to adjust the number of channels of the
input images to match the number of classes, and to upsample the results bilinearly to the
size of the input images to obtain the semantic segmentation results of the buildings.

2.2. AMFF Module

A conventionally used feature fusion method stacks the feature maps via a concate-
nating operation or adds the feature maps directly. However, concatenating and adding
procedures are both simple operations to fuse features, making it difficult to selectively
utilize the features at each scale. Inspired by the polarized self-attention mechanism [32],
a self-attention module was designed and embedded in the proposed AMFF module to
learn the importance of spatial features at various scales and correlate channel features,
adaptively and selectively retaining effective features and eliminating useless features. The
AMFF structure is shown in Figure 2.
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Figure 2. Schematic diagram of the AMFF module structure. The attention mechanism facilitates
adaptive adjustment of the weights of the distinctive features.

The AMFF module mainly comprises three steps of reshaping, weight calculation,
and feature fusion. In the first step, the feature maps xi (i∈{1,2,3,4}) were resized to the
same size using nearest neighbor interpolation to obtain xi’. The 3 × 3 convolution (C3)
was subsequently used on xi’ to enhance the feature information and obtain C3(xi’). In the
second step, the attention mechanism was used to calculate the weights of C3(xi’). The four
weighted feature maps were concatenated, and 1 × 1 convolution was used to adjust the
number of channels, obtaining an output weighted feature map wi (i∈{1,2,3,4}). In the third
step, C3(xi’) and wi were multiplied pixel by pixel to obtain a weight-adjusted feature map.
Finally, the weight-adjusted feature maps were concatenated to obtain the final feature map
after fusion.

In the second step above, the polarized self-attention mechanism was inspired by the
characteristic of polarized lenses that filter light in random directions, only allowing light
orthogonal to the transverse direction to pass through. A polarization filtering mechanism
was established in the attention calculation. In other words, the spatial dimensional fea-
tures along the orthogonal direction were folded when calculating channel-only attention,
whereas the channel dimensional features along the orthogonal direction were folded when
calculating spatial-only attention. In this way, a high resolution was maintained at the
attention calculation dimension, reducing information loss. The attention mechanism used
in the AMFF module is shown in Figure 3.

As calculated using Function (1), X∈RH×W×C is defined as the feature tensor of a
sample, where H, W, and C are the height, width, and number of channels of X, respectively.
The attention weights output by the attention mechanism WA(X) are the sum of the channel-
only attention weight Wc(X) and spatial-only attention weight Ws(X).

WA(X) = Wc(X) + Ws(X), (1)

where the channel-only attention weight Wc(X) is calculated by Function (2):

Wc(X) = FSi(L(C3(R1(C1(X))× FSo(R2(C2(X)))))), (2)

and the spatial-only attention weight Ws(X) is calculated by Function (3):

Ws(X) = FSi(R3(FSo(R1(G(C2(X))))× R2(C1(X)))). (3)
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In the above functions, FSo represents the softmax operation, which increases the
dynamic range of the attention through normalization; FSi represents the sigmoid operation,
and the softmax–sigmoid combination is a probability distribution function that results in
nonlinear mapping that fully utilizes the high-resolution information stored in the attention
branch; L represents the layer normalization operation; Ci represents the i × i convolution
operation; Ri represents the tensor reshape operation; G represents the global average
pooling operation; and × represents the cross product.

The weights acquired from the various feature maps were spliced and fused to retain
the weights of specific features in the same feature map and the importance of the weights
of the various feature maps. This factor allowed weight distribution of the distinct pieces
of feature information from the same or different feature maps in the third step (feature
fusion). In this way, features conducive to building segmentation were retained adaptively
and selectively, while unimportant features were filtered out.

2.3. SFR Module

To refine building extraction from high-resolution images, a shape feature refinement
module was designed and added before the classifier to allow the extraction of irregularly
shaped buildings, and to effectively separate the buildings from the background. The
structure of the SFR module is shown in Figure 4.
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The SFR module contains two branches. Branch one is the deformable convolution [33]
and Branch two contains the squeeze-and-excitation channel attention mechanism [34]
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and the dilated convolution [35] in series. The two branches were spliced together to
output a new feature map. The sampling position of the deformable convolution in Branch
one was adjusted adaptively according to the building shape, enabling acquisition of the
shape features of the buildings, and enhancing the capability to identify buildings with
irregular shapes. Branch two connected the rectified linear unit (ReLU) activation function
through a global average pooling and fully connected layers. It subsequently performed
the sigmoid operation after another fully connected layer to obtain the channel attention
weights. The channel attention weights were multiplied by the original input feature
map to allow adaptive feature correction for obtaining the feature map after adaptive
learning of the fused features. The dilated convolution expanded the receptive field. In
the proposed structure, two dilated convolutions with dilation rates of three and five were
used to expand the receptive field and capture contextual relationships. Accordingly, the
SFR module learned the building shape features through Branch one and the relationships
between the buildings and the surrounding backgrounds through Branch two. This method
improved the separation of buildings from the surrounding backgrounds and the retention
of building shapes during building segmentation.

3. Experiments
3.1. Dataset Details

Four publicly available datasets were used in the experiments, including WHU Build-
ing Aerial Imagery dataset (WHU dataset) [36], Inria Aerial Image Labeling dataset (Inria
dataset) [37], Massachusetts Buildings dataset (Massachusetts dataset) [38], and Building
Instances of Typical Cities in China (BITCC) dataset [39]. The details of each dataset are
listed in Table 1.

Table 1. Details of each dataset.

Dataset Resolution Pixels Coverage Area Source Area

WHU dataset 0.3 m 512 × 512 450 km2 Christchurch, New Zealand

Inria dataset 0.3 m 5000 × 5000 810 km2 San Francisco, Chicago,
the Alps, and others

Massachusetts
dataset 1.0 m 1500 × 1500 240 km2 Boston area, USA

BITCC
dataset 0.29 m 500 × 500 120 km2 Beijing, Shanghai, Shenzhen,

and Wuhan, China

Before the experiment, we cropped the original images in the Inria and Massachusetts
datasets to 512 × 512 pixels. The images in the BITCC dataset were also adjusted from
500 × 500 pixels to 512 × 512 pixels before inputting to the model. According to the dataset
division rules, images in the Inria and BITCC datasets were randomly separated in an
8:1:1 ratio for training, validation, and testing, respectively. The WHU and Massachusetts
datasets provided the divided training, validation, and testing sets. We directly used
their default ratios for training, validation, and testing, respectively. The final training,
validation, and testing set divisions of each dataset are listed in Table 2.

Table 2. Settings used for each dataset in the experiments.

Dataset Training Set (Tiles) Validation Set (Tiles) Test Set (Tiles)

WHU dataset 4737 1036 2416
Inria dataset 14,418 1782 1800

Massachusetts dataset 1233 36 90
BITCC dataset 5790 716 723
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3.2. Experimental Settings

Prior to the experiments, the pixels with labels indicating buildings in the four datasets
were set to a value of one, whereas the pixels belonging to the background were set to a
value of zero. The models employed for comparison included U-Net, PSPNet, DeepLab
v3+, HRNetV2 [40], and CFENet [41]. The U-Net, PSPNet, DeepLab v3+, and HRNetV2
models are popular semantic segmentation models with proven effectiveness for seman-
tic segmentation of remote sensing images. CFENet is an excellent building extraction
model proposed recently. To ensure fairness in the experiments, the proposed AFL-Net
was trained in the same experimental environment as the comparison models and with
the same training parameters. The operating system of the experimental platform was
Windows 10 x 64 (Microsoft Corporation, Redmond, Washington, USA) and the graphics
processing unit (GPU) was GeForce RTX 3090 (24 GB, Nvidia Corporation, Santa Clara,
California, USA). The parameter settings were as follows: the batch size was set to 12,
number of epochs to 120, an Adam Optimizer Algorithm was used, the loss function was
the sum of dice loss and focal loss, the benchmark learning rate was 0.0005, the learning
rate was updated by cosine annealing [42], and the number of warmups was 10. The data
enhancement techniques used included flipping, rotation, scaling, color enhancement, and
Gaussian blur.

3.3. Evaluation Metrics

Four widely used metrics were employed for evaluating the reliability and accuracy
of the corresponding building extraction models. The metrics employed to quantitatively
evaluate the semantic segmentation results of buildings were Intersection over Union
(IoU), F1 score, Recall, and Precision. The ratio between the intersection and union of the
pixels predicted to contain buildings and the pixels with labels indicating buildings was
represented by IoU. Recall represented the ratio of the correctly predicted pixels containing
buildings to the pixels with labels indicating buildings. Precision represented the ratio
of the correctly predicted pixels containing buildings to the pixels predicted to contain
buildings. The F1 score was the harmonic mean of Recall and Precision.

The building segmentation results were compared pixel by pixel with the correspond-
ing labels. Pixels with correctly predicted results were True, and pixels with falsely pre-
dicted results were False. Pixels belonging to buildings were Positive, and pixels belonging
to the background were Negative, with TP, TN, FP, and FN used to represent True Positive,
True Negative, False Positive, and False Negative, respectively.

The formulae for the calculation of IoU, F1 score, Recall, and Precision are as follows:

IoU = TP/(FN + FP + TP), (4)

F1 score = 2TP/(2TP + FN + FP), (5)

Recall = TP/(FN + TP), (6)

Precision = TP/(FP + TP), (7)

4. Results and Discussion
4.1. Comparative Experiments
4.1.1. Quantitative Results

Figures 5–8 show the evaluation metrics (IoU, F1 score, Recall, and Precision) of the
comparison models on the four datasets.

The figures show that the performance of the proposed AFL-Net was superior for the
IoU and F1 scores. The IoU scores of the AFL-Net were 0.73, 1.01, 1.49, and 0.71% higher,
on the WHU, Massachusetts, Inria, and BITCC datasets, respectively, than those of the
second-best performing model, the HRNetV2. The F1 scores of the AFL-Net were 0.40, 0.61,
1.00, and 0.44% higher on WHU, Massachusetts, Inria, and BITCC datasets, respectively,
compared with those of HRNetV2.
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On the WHU dataset, the IoU achieved by AFL-Net was 9.16, 6.71, and 2.24% higher
than that of U-Net, PSPNet, and DeepLab v3+, respectively. U-Net achieved higher Recall
than PSPNet and DeepLab v3+, while the other metrics were lower than PSPNet and
DeepLab v3+. On the Inria dataset, U-Net, PSPNet, and DeepLab v3+ achieved a compa-
rable IoU. On the Massachusetts dataset, AFL-Net improved substantially in IoU and F1
scores compared to the HRNetV2. The Recall of the AFL-Net was 0.33% lower than that of
the HRNetV2, but its Precision was 2.33% higher. PSPNet performed poorly and achieved
the lowest results in all four metrics. The reason may be that PSPNet tends to overfit on
datasets with smaller data volumes. On the BITCC dataset, the performances of U-Net and
DeepLab v3+ were comparable, and the results of all four metrics were very close.

Among the four models used for comparison, the performance of HRNetV2 was
superior to that of U-Net, PSPNet, and DeepLab v3+. This result was ascribed to both U-
Net and DeepLab v3+ fusing low-level feature maps with insufficient semantic information
in the upsampling process, and PSPNet fusing only low-resolution feature maps through
skip connections. In contrast, HRNetV2 used HRNetV1 as its backbone to extract features
at four specific scales in parallel. Therefore, the output features of each scale contained rich
semantic information, and the final fused feature map contained more feature information.

4.1.2. Qualitative Results

Figure 9 shows the test images, corresponding labels, and building extraction results
from applying the selected models to four sample areas from the WHU dataset. In the
extraction results, black represents the background area, white represents the correctly
detected building area, red represents the falsely detected building area (i.e., background
falsely identified as buildings), and blue represents building areas that were not detected
(i.e., building areas falsely identified as background).

In these sample areas, all the models employed for comparison returned some false
and missed detection results. For test image (a), UNet, DeepLab v3+, and HRNetV2 could
not adequately distinguish the orange building from the surrounding ground of a similar
color, leading to the surrounding ground being falsely identified as a building. The PSPNet
and DeepLab v3+ models failed to extract a small building. For test image (b), all the
comparison models except CFENet failed to identify the buildings with rooftops having
special texture features. For test image (c), UNet, PSPNet, HRNetV2, and CFENet falsely
identified the container box as a building, and DeepLab v3+ could not detect a conjoined
building blocked by trees. For test image (d), UNet, PSPNet, and DeepLab v3+ could not
adequately extract the relatively large cross-shaped building, HRNetV2 returned minor
cases of missed detection, and CFENet mistakenly identified other objects as buildings.
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In contrast, the building extraction results from AFL-Net showed completely segmented
buildings with smooth edges and sharp corners, with extremely rare cases of false or missed
detection.
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Figure 10 shows the test images, corresponding labels, and building extraction results
after applying the models to four sample areas from the Inria dataset.
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For test image (a), a portion of the buildings was blocked by trees and none of the
comparative models could extract the blocked area. For test image (b), the building
circled in green has complex rooftop texture features of diverse colors and shades, and all
comparison models except for CFENet failed to completely extract this rooftop, while the
CFENet falsely detected three areas. For test image (c), the color of the building circled
in green was similar to that of the ground, making it extremely difficult for the models
to accurately detect the building. For test image (d), the building circled in green had a
square open space in the center, with complex rooftop structures and various colors. U-Net,
PSPNet, DeepLab v3+, and HRNetV2 falsely detected the central open space as a building,
and CFENet failed to adequately distinguish the complex roof. In contrast, AFL-Net not
only detected the blocked area and distinguished the rooftop and ground with similar
colors, but it also adequately detected the rooftops with complex structures and colors.

Figure 11 shows the test images, corresponding labels, and building extraction results
after applying the selected models to four sample areas from the Massachusetts dataset.
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Figure 11. (a–d) Sample building segmentation results from the selected models with the Mas-
sachusetts dataset (comparative experiment).

The Massachusetts dataset has low resolution, and the buildings are mostly shown
as scattered patches, posing challenges when extracting small buildings. For test images
(a) and (c), all the comparison models failed to adequately detect the buildings with
composite structures. The UNet, PSPNet, and HRNetV2 models failed to distinguish the
building marked in green and the background in test image (b), with a relatively substantial
number of false and missed detections. All the comparative models failed to detect the
two buildings on the water in test image (d). As mentioned, the Massachusetts dataset
has low resolution, and the lower the resolution of the images, the more insufficient the
features that could be extracted would be. In contrast, because of the high resolution of
the output feature map owing to the feature extraction backbone, AFL-Net maintained an
adequate building extraction performance for images with relatively low resolution, with
substantially reduced occurrences of missed detection.

Figure 12 shows the test images, corresponding labels, and building extraction results
after applying the selected models to four sample areas from the BITCC dataset. For test
image (a), all the comparative models falsely identified the yard next to the building as a
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building. For test image (b), the rooftop with composite structure was difficult to extract,
and all the comparison models missed the detection to varying degrees. Just as with test
image (d) in the previous dataset, test image (c) also contains a building with an open
space in the center, and all the comparison models failed to accurately detect this building
with an irregular shape. For test image (d), AFL-Net and CFENet accurately separated the
building and the ground, with smooth edges and clear boundaries in the extraction results.
For the satellite images, AFL-Net was able to completely remove the complex background
and accurately retain only the building area.
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In summary, the four datasets contain buildings of a range of styles, scales, and shapes,
with AFL-Net achieving superior performance on all four datasets, proving the robustness
of our proposed method. The high-resolution feature map provided by the backbone
network of AFL-Net reduced the occurrences of missed detection of small buildings. For
scenarios where the buildings have features similar to the background, or the building
rooftops have complex structures, the AMFF module drove the AFL-Net to adaptively learn
the relationship between the buildings and the background. Consequently, AFL-Net could
distinguish clearly between the buildings and the background and retain the complete
building area. The SFR module drove the AFL-Net to optimize the detection of irregularly
shaped buildings in a targeted manner, ensuring the accuracy and smoothness of the edges
of the irregularly shaped buildings detected.

4.1.3. Comparison with Recent Methods

Due to the label accuracy and the wide application of the WHU dataset, it was used
to demonstrate the accuracy of the proposed AFL-Net in comparison with other building
extraction models proposed over the last 2 years, as shown in Figures 13 and 14. The
selected building extraction models included SST [43], MHA-Net [44], MAP-Net [45], B-
FGC-Net [46], and AGs-Unet [47]. The evaluation metrics for the comparison were IoU,
the number of parameters, and the floating-point operations (FLOPs). The higher the IoU,
the higher was the accuracy of the model. A model with lower number of parameters
and FLOPs usually has fewer complex algorithms and is more convenient for practical
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applications. The values of the metrics of these building extraction models were taken
directly from the respective publications.
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As shown in Figure 13, the IoU of the proposed AFL-Net was higher than those of the
other recently proposed building extraction models. In particular, the IoU of AFL-Net was
0.89, 0.11, 0.51, 1.33, and 5.87% higher, respectively, than that of SST, MHA-Net, MAP-Net,
B-FGC-Net, and AGs-Unet. Further, the number of parameters of AFL-Net (10.13 M) was
approximately 37.55% of that of MHA-Net (26.98 M), which achieved the second highest
IoU score. As shown in Figure 14, the FLOPs of AFL-Net (26.16 G) is lower than that
of most models, accounting for only 24.31% of that of MHA-Net (107.59 G), proving the
excellent balance achieved by AFL-Net between accuracy and computational cost.
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4.2. Ablation Study
4.2.1. Quantitative Analysis

HRNetV2 was selected as the Baseline, and an ablation study was conducted on
the four datasets to quantitatively analyze the contribution of the proposed modules in
AFL-Net. Additionally, we conducted ablation experiments to investigate the effects of
the AMFF module and the SFR module on the training speed and inference speed of the
Baseline. Speed was measured by the number of frames per second (FPS). The speed tests
were conducted on an NVIDIA RTX 3090 GPU with one (for inference speed test) or two
(for training speed test) input images of three channels and a size of 512 × 512 pixels. The
evaluation results are shown in Table 3.

Table 3. Ablation study of various module combinations with four datasets.

Method Parameters
Training

Speed
Inference

Speed

WHU Inria Massachusetts BITCC

IoU
(%)

F1
Score
(%)

IoU
(%)

F1
Score
(%)

IoU
(%)

F1
Score
(%)

IoU
(%)

F1
Score
(%)

Baseline 9.64 M 26.02 FPS 34.86 FPS 90.64 95.09 81.09 89.56 71.78 83.57 79.10 88.33
Baseline+ SFR 9.83 M 22.32 FPS 32.68 FPS 91.10 95.34 81.65 89.90 72.85 84.29 79.51 88.59

Baseline+ AMFF 9.94 M 23.73 FPS 34.05 FPS 91.21 95.41 81.82 90.00 72.94 84.35 79.46 88.56
Baseline+ SFR + AMFF 10.13 M 20.83 FPS 30.67 FPS 91.37 95.49 82.10 90.17 73.27 84.57 79.81 88.77

Table 3 shows that the SFR module improved the IoU of the model by 0.46, 0.56, 1.07,
and 0.41%, respectively, for the WHU, Inria, Massachusetts, and BITCC datasets. After
adding the AMFF module, IoU was improved by 0.57, 0.73, 1.16, and 0.36%, respectively,
for the four datasets compared with the Baseline. The combination of the SFR and AMFF
modules improved the IoU by 0.73, 1.01, 1.49, and 0.71%, respectively, over the Baseline.
The SFR and AMFF modules increased the parameters by approximately 0.19M and 0.3M,
respectively. Both the SFR and the AMFF modules improved the model performance and,
in combination, the improvement was greater than either of the two alone. This result
indicated that these two modules only conflicted with each other to a minor degree and
could both independently improve the model performance.

The SFR module decreased the training and inference speeds by 3.70 and 2.18 FPS,
respectively, compared to the Baseline. The AMFF module decreased the training and
inference speeds by 2.29 and 0.81 FPS, respectively, compared to the Baseline. The results
show that, although the AMFF and SFR modules improve the accuracy of the model, they
also decrease the training and inference speeds of the model.

4.2.2. Qualitative Analysis

To qualitatively analyze the influence of the proposed modules on the model perfor-
mance, the extraction results of Baseline, Baseline + SFR, Baseline + AMFF, and
Baseline + SFR + AMFF with the four datasets were compared qualitatively, as shown
in Figure 15. The last layer of each of the four networks was visualized to compare and
analyze the influence of each module on the feature map, as shown in Figure 16.

Figure 15 shows that the SFR module could reduce false detection. For example,
the feature map Baseline + SFR shows that the SFR module adequately distinguished
between the building edges and the surrounding ground-based objects (circled in orange
in the WHU and BITCC samples), while ensuring the smoothness of the building edges.
Additionally, the SFR module successfully identified the background areas between two
buildings and in the center of one building (circled in orange in the Massachusetts and
Inria samples), preventing adjacent buildings from being identified as one building in the
results, while retaining relatively complete building shape features. The area circled in
orange corresponds to missed detection in the samples by Baseline, which was improved
substantially by Baseline + AMFF. This result indicated that the AMFF module is superior
in complex rooftop detection and retained the complete building segmentation results. The



Remote Sens. 2023, 15, 95 15 of 19

Baseline + SFR + AMFF model could take full advantage of the two modules, avoiding
both false and missed detections, achieving superior extraction results.
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The deeper red the area in the feature map, the higher the attention of the model. The
more attention the model pays to the background area, the more likely it is to return false
detections, whereas the less attention the model pays to the building area, the more likely
it is to return missed detections. Figure 16 shows that the SFR module reduced attention to
the background area (circled in magenta) in the samples of the Massachusetts and Inria
datasets, reducing the interference from background noise on the building extraction results.
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Moreover, it increased attention to the building area (circled in magenta) in the samples
of the WHU and BITCC datasets, reducing the missed detections caused by insufficient
attention to the building area. The AMFF module increased the attention to the building
area (circled in magenta) in the samples of all four datasets, leading to more complete
extraction results.

Generally, both the SFR and the AMFF modules reduced the occurrence of over-
or under-segmentation. The SFR module learned the shape features to overcome over-
segmentation caused by the background areas between buildings, also ensuring the smooth-
ness and completeness of the building edges. The AMFF module adaptively learned the
building features through the self-attention mechanism, enhancing the capability of the
model to detect complex rooftops, ensuring the completeness of the detection results, and
reducing the occurrence of under-segmentation. The performance of the combined SFR and
AMFF modules achieved performance that was superior to that of either one of the two
modules. This finding was attributed to the advantages of combining the two modules (i.e.,
not interfering with each other but, rather, leading to more complete building extraction
results, with the original shape being retained).

4.3. Limitations and Future Work

Although the proposed AFL-Net has achieved excellent performance with all four
datasets, there is room for improvement.

In the ablation study in Section 4.2, we found that the improvement of IoU compared
with Baseline on the BITCC dataset was less than that on the other datasets. This could
be ascribed to the side views of buildings demonstrating features similar to those of the
rooftops in the satellite images, interfering with the extraction of the rooftops. In contrast,
aerial images are mostly orthophotos that do not contain the side views of buildings, which
facilitates the model extracting the roof features of buildings.

We conducted comparative experiments on training and inference speeds of each
model, as shown in Figure 17.
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The inference speed of AFL-Net was lower than that of U-Net, PSPNet, and HRNetV2,
and was comparable to that of CFENet. The training speed of AFL-Net was higher than
that of CFENet and DeepLabv3+, but lower than that of other models. Although the
number of parameters and computational cost of AFL-Net was less than that of most
models, the speed of the model was insufficient. A lower training speed costs more time for
model training, and a lower inference speed limits the application of the model in real-time
processing tasks.

In future work, the capability of the model to identify the side views of buildings will
be improved, and the model will be applied further to detect other types of ground-based
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objects. Additionally, we will attempt to improve the training and inference speeds of the
model so that it can be used in more building extraction tasks.

5. Conclusions

In this study, we proposed an attentional feature learning neural network (AFL-Net)
for building extraction. The backbone of AFL-Net allowed the extracted feature map to
retain a high resolution, reducing the loss of detailed information in the downsampling
process and ensuring that the features acquired were abundant. The multiscale feature
fusion module based on the self-attention mechanism adaptively learned the relationships
between various features, ensuring sufficient utilization of building features, while reducing
the occurrence of under-segmentation. The shape feature refinement module adaptively
learned the shape features of the buildings and improved the smoothness of building edges,
while reducing the occurrence of over-segmentation. We conducted experiments with four
publicly available datasets, which showed that the accuracy of AFL-Net was superior to
that of all the other tested models, proving the robustness and effectiveness of AFL-Net.
An ablation study was conducted with the WHU dataset, with the results indicating that,
in comparison with other recently proposed models, AFL-Net had significantly fewer
parameters and computational cost, while achieving the highest accuracy, indicating an
excellent balance between model complexity and accuracy. Both the quantitative and
qualitative analyses of the ablation study proved the effectiveness of the proposed AMFF
and SFR modules. In future work, we will attempt to improve the efficiency of our model
and apply it to the extraction of other types of ground-based objects.
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AFL-Net Attention feature learning network
AMFF Attentional multiscale feature fusion
CNN Convolutional neural network
FLOPs Floating-point operations
FN False negative
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FPS Frames per second
IoU Intersection over union
PSA Polarized self-attention
ReLU Rectified linear unit
SFR Shape feature refinement
TN True negative
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