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Abstract: Traditional LiDAR odometry (LO) systems mainly leverage geometric information obtained
from the traversed surroundings to register lazer scans and estimate LiDAR ego-motion, while they
may be unreliable in dynamic or degraded environments. This paper proposes InTEn-LOAM, a
low-drift and robust LiDAR odometry and mapping method that fully exploits implicit information of
lazer sweeps (i.e., geometric, intensity and temporal characteristics). The specific content of this work
includes method innovation and experimental verification. With respect to method innovation,we
propose the cylindrical-image-based feature extraction scheme, which makes use of the characteristic
of uniform spatial distribution of lazer points to boost the adaptive extraction of various types
of features, i.e., ground, beam, facade and reflector. We propose a novel intensity-based point
registration algorithm and incorporate it into the LiDAR odometry, enabling the LO system to jointly
estimate the LiDAR ego-motion using both geometric and intensity feature points. To eliminate the
interference of dynamic objects, we propose a temporal-based dynamic object removal approach to
filter them out in the resulting points map. Moreover, the local map is organized and downsampled
using a temporal-related voxel grid filter to maintain the similarity between the current scan and
the static local map. With respect to experimental verification, extensive tests are conducted on both
simulated and real-world datasets. The results show that the proposed method achieves similar
or better accuracy with respect to the state-of-the-art in normal driving scenarios and outperforms
geometric-based LO in unstructured environments.

Keywords: SLAM; LiDAR odometry; dynamic removal; point intensity; scan registration

1. Introduction

Autonomous robots and self-driving vehicles must have the ability to localize them-
selves and intelligently perceive external surroundings. Simultaneous localization and
mapping (SLAM) focuses on the issue of vehicle localization and navigation in unknown
environments, which plays a major role in many autonomous driving and robotics-related
applications, such as mobile mapping [1], space exploration [2], robot localization [3] and
high-definition map production [4]. In accordance with the on-board perceptional sensors,
it can be roughly classified into two categories, i.e., camera-based and LiDAR (Light detec-
tion and ranging)-based SLAM. Compared with images, LiDAR point clouds are invariant
with respect to the changing illumination and are sufficiently dense for 3D reconstruction
tasks. Accordingly, LiDAR SLAM solutions have become a preferred choice for self-driving
car manufacturers compared to vision-based solutions [5–7]. Note that a complete SLAM so-
lution usually composes the front-end and back-end, which are in charge of ego-estimation
by tracking landmarks and global optimization by recognizing loop-closures, respectively.
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The front-end part is also referred to as odometry solution, though both SLAM and odometry
have self-localization abilities in unknown scenes and mapping abilites with respect to
traversprincipled environments. For instance, though both LOAM [8] and LeGO-LOAM [9]
enable one to perform low-drift and real-time ego-estimation and mapping, only LeGO-
LOAM can be referred to as a complete SLAM solution since it is a loop closure-enabled
system.

Remarkable progress has occurred in LiDAR-based SLAM over recent decade [8–13].
State-of-the-art solutions have shown remarkable performances, especially in structured
urban and indoor scenes. Recent years have seen solutions for more intractable problems,
e.g., fusion with multiple sensors [14–18], adapting to cutting-edge solid-state LiDAR [19],
global localization [20], improving the efficiency of optimization back-end [21,22], etc.,
yet many issues remain unsolved. Specifically, most conventional LO solutions currently
ignore intensity information from the reflectance channel, though they reveal reflectivities
of different objects in the real world. An efficient incorporation approach making use
of point intensity information is still an open problem since the intensity value is not as
straightforward as the range value. It is a value with many factors, including the material
of target surface, the scanning distance, the lazer incidence angle, as well as the transmitted
energy. In addition, the lazer sweep represents a snapshot of surroundings and thus moving
objects, such as pedestrians, vehicles, etc., may be scanned. These dynamic objects result in
‘ghosting points’ in the accumulated points map and increase the probability of incorrect
matching during scan registration, which may deteriorate the localization accuracy of LO.
Moreover, improving the robustness of point registration in some geometric-degraded
environments, e.g., long straight tunnel, is also a topic worthy of in-depth discussion. In this
paper, we present InTEn-LOAM (as shown in Figure 1) to cope with the aforementioned
challenges. The main contributions of our work are summarized four-fold as follows:

Figure 1. Overview of the proposed InTEn-LOAM system. (a) The color image from the on-board
camera. (b) The projected scan-context segment image. (c) The raw point cloud from the on-board
Velodyne HDL-64 LiDAR colored according to intensity. (d) The projected cylindrical range image
colored according to depth. (e) The segmented label image. (f) The estimated normal image (x, y, z).
(g) The intensity image of non-ground points. Only reflector features are colored. (h) Various types of
feature (ground, facade, beam, reflector) extracted from the current lazer scan. (i) The current point
features align with the local feature map that is in use so far (dynamic object in the current scan).
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• We propose an efficient range-image-based feature extraction method that is able to
adaptively extract features from the raw lazer scan and categorize them into four
different types in real time.

• We propose a coarse-to-fine, model-free method for online dynamic object removal
enabling the LO system to build a purely static map by removing all dynamic outliers
in raw scans.

• We propose a novel intensity-based points registration algorithm that directly lever-
ages reflectance measurements to align point clouds, and we introduce it into the LO
framework to achieve jointly pose estimation utilizing both geometric and intensity
information.

• Extensive experiments are conducted to evaluate the proposed system. Results show
that InTEn-LOAM achieves similar or better accuracy in comparison with state-of-the-
art LO systems and outperforms them in unstructured scenes with sparse geomet-
ric features.

2. Related Work
2.1. Point Cloud Registration and LiDAR Odometry

Point cloud registration is the most critical problem in LiDAR-based autonomous
driving, which is centered on finding the best relative transformation of point clouds.
Existing registration techniques can be either categorized into feature-based and scan-based
methods [23] in terms of the type of data or local and global methods [24] in terms of the
registration reference. Though the local registration requires a good initial transformation,
it has been widely used in LO solutions since sequential LiDAR sweeps commonly share
large overlap and a coarse initial transformation can be readily predicted.

For feature-based approaches, different types of encoded features, e.g., FPFH (fast
point feature histogram) [25], CGF (compact geometric feature) [26] and arbitrary shapes are
extracted to establish valid data associations. LOAM [8] is one of the pioneering works of
feature-based LO, which extracts plane and edge features based on the sorted smoothness of
each point. Many follow-up works follow the proposed feature extraction scheme [16–19].
For example, LeGO-LOAM [9] additionally segmented ground to bound the drift in the
ground norm direction. MULLS (multi-metric linear least square) [27] explicitly classifies
features into six types, (facade, ground, roof, beam, pillar and encoded points) using the
principal component analysis (PCA) algorithm and employs the least square algorithm to
estimate the ego-motion, which remarkably improves the LO performance, especially in
unstructured environments. Yin, et al. [28] propose a convolutional auto-encoder (CAE) to
encode feature points to conduct a more robust point association.

Scan-based local registration methods iteratively assign correspondences based on the
closest-distance criterion. The iterative closest point (ICP) algorithm, introduced by [29],
is the most popular scan registration method. Many variants of ICP have been derived
over the past three decades, such as Generalized ICP (GICP) [30] and improved GICP [31].
Many LO solutions apply variants of ICP to align scans for their simplicity and low
computational complexity. For example, Moosmann, et al. [32] employ standard ICP,
while Palieri, et al. [15] and Behley, et al. [10] employ GICP and normal ICP. The normal
distributions transform (NDT) method, first introduced by [33], is another popular scan-
based approach, in which surface likelihoods of the reference scan are used for scan
matching. Because of that, there is no need for computationally expensive nearest-neighbor
searching in NDT, making it more suitable for LO with large-scale map points [12–14].

2.2. Fusion with Point Intensity

Some works have attempted to introduce the intensity channel into scan registration.
Inspired by GICP, Servos [34] proposes the multichannel GICP (MCGICP), which integrates
color and intensity information into the GICP framework by incorporating additional
channel measurements into the covariances of points. In [35], a data-driven intensity
calibration approach is presented to acquire a pose-invariant measure of surface reflectivity.
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Based on that, Wang [36] establishes voxel-based intensity constraints to complement
the geometric-only constraints in the mapping thread of LOAM. Pan [27] assigns higher
weights for associations with similar intensities to suppress the effect of outliers adaptively.
In addition, the end-to-end learning-based registration framework, named Deep VCP
(virtual corresponding points) [37], is proposed, achieving accuracy comparable to the prior
state-of-the-art. The intensity channel is used to find stable and robust feature associations,
which are helpful with respect to avoiding the interference of negative true matchings.

2.3. Dynamic Object Removal

A good amount of learning-based works related to dynamic removal have been
reported in [38]. In general, the trained model is used to predict the probability score that a
point originated from dynamic objects. The model-based approaches enable one to filter
out the dynamics independently, but they also require laborious training tasks and the
segmentation performance is highly dependent on the training dataset.

Traditional model-free approaches rely on differences between the current lazer scan
and previous scans [39–41]. Though they are convenient and straightforward, only points
that have fully moved outside their original position can be detected/removed.

3. Materials and Methods

The proposed framework of InTEn-LOAM consists of 5 submodules, i.e., feature extrac-
tion filter (FEF), scan-to-scan registration (S2S), scan-to-map registration (S2M), temporal-
based voxel filter (TVF) and dynamic object removal (DOR) (see Figure 2). Following
LOAM, LiDAR odometry and mapping are executed on two parallel threads to improve
the running efficiency.

InputInput

I.FEF

II.
S2S

V.DOR

last feature
in memory

III.
TVF

Keyframe
points

in memory

......

Trajectory
poses in
memory

......

Keyframe Y

IV.S2M

N

Original point cloud

Sparse feature points

Feature points

Sph. (depth, normal,
label, feature) images

Kf. points list

Traj. poses list

Feature extraction filter

Feature points reg.

Tem. voxel filter

Dynamic objects removal

Relative trans. Trans.

Pose in map Trans. diff.

Figure 2. Overall workflow of InTEn-LOAM.

3.1. Feature Extraction Filter

The workflow of FEF is summarized in Figure 3, which corresponds to the gray block
in Figure 2. The FEF receives a raw scan frame and outputs four types of features, i.e.,
ground, facade, beam and reflector and two types of cylindrical images, i.e., range and
label images.
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Figure 3. The workflow of FEF.

3.1.1. Motion Compensation

Given the point-wise timestamp of a scan P , the reference pose for a point pi ∈ P at
timestamp τi can be interpolated by the relative transformation Te,s = [Re,s, te,s] under the
assumption of uniform motion:

Ts,i = [slerp(Re,s, si)
>,−si · T−1

e,s · te,s], (1)

where slerp(·) represents the spherical linear interpolation. The time ratio si is si =
τi−τs
τe−τs

,
where τs, τe stand for the start and end timestamps of the lazer sweep, respectively. Then,
the distorted points can be deskewed by transforming to the start timestamp Ts,i · pi ∈ P ′.
Note that the current relative transformation Te,s can be estimated by registering lazer scans
in timestamps τe and τs, which will be described in Section 3.4.

3.1.2. Scan Preprocess

The undistorted points P ′ are first preprocessed. The main steps are as below:
I. Scan projection. Since raw 3D lazer points are disordered, it is time-consuming to

search one specific point and its neighbors. Scan projection is a good way to manage 3D
points with an ordered 2D matrix, which facilitates searching a local region of interest
points. P ′ is projected into a cylindrical plane to generate range and intensity images, i.e.,
D and I (see Figure 1d,e). A point with 3D coordinates in the lazer frame pi = [x, y, z]>

can be projected as a cylindrical image pixel [u, v]> by:(
u
v

)
=

(
[1− arctan(y, x) · π−1] · w

2
(arcsin( z√

x2+y2+z2
) + θd) · h

θ

)
, (2)

where θ = θd + θt is the vertical field-of-view of the LiDAR (vertical angle of the bottom
lazer ray θd plus that of the top lazer ray θt), and w, h are the width and height of the result-
ing image. In D and I , each pixel contains the smallest range and the largest reflectance of
scanning points falling into the pixel, respectively. In addition, P ′ is also preprocessed as a
segment image S (see Figure 1b) according to azimuthal and radial directions of 3D points,
and each pixel contains the lowest z. The former converter is the same as u in Equation (2),
while the latter is equally spaced with the distance interval ∆ρ:

ρ = b
√
(x2 + y2 + z2)/∆ρc, (3)
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where b·c indicates a rounding down operator. Note that the size of S is not the same as D.
II. Ground segmentation. The method from [42] is applied in this paper with the input of

segment image S. Each column of S is fitted as a ground line li = ai · ρ + bi. Then, residuals
can be calculated representing the differences between the predicted and the observed z:

r(u, v) = li(D(u, v))−D(u, v) · sin(θv), (4)

where θv indicates the vertical angle of the vth row in D. Pixels with residuals smaller
than the threshold Thg will be marked as ground pixels with label identity 1. Then, the
non-ground image D′ can be generated.

III. Object clustering. After the ground segmentation, the angle-based object clustering
approach from [43] is used in D′ to group non-ground pixels into different clusters with
identified labels and generate a label image L (see the label image in Figure 3).

IV. Create feature images. We partition the intensity image I into M× N blocks and
establish intensity histograms for each block. The extraction threshold ThI,n of each inten-
sity block is adaptively determined by taking the median of the histogram. In addition,
the intensity difference image I∆, the normal image N and the curvature image C are
created by:

I∆(u, v) = I(u, v)− I(u, v + 1),

N (u, v) = (Π[D(u + 1, v)]−Π[D(u, v)])

× (Π[D(u, v + 1)]−Π[D(u, v)]),

C(u, v) =
1

N · D(u, v)
· ∑

i,j∈N
(D(u, v)−D(u + i, v + j))

(5)

where Π[·] : D 7→ P denotes the mapping function from a range image pixel to a 3D
point. N is the neighboring pixel count. Furthermore, pixels in the cluster with fewer than
15 points are marked as noises and blocked. All the valid-or-not flag is stored in a binary
mask image B.

3.1.3. Feature Extraction

According to the above feature images, pixels of four categories of features can be
extracted. Then, 3D feature points, i.e., ground PG , facade PF , edge PE and reflector PR,
can be obtained per the pixel-to-point mapping relationship. Specifically,

• Points correspond to pixels that meet L(u, v) = 1 and B(u, v) 6= 0 are categorized as
PG .

• Points correspond to pixels that meet I·(u, v) > Th∆I and B(u, v) 6= 0 are categorized
as PR. In addition, points in pixels that meet I(u, v) > ThI,n and their neighbors are
all included in PR to keep the local intensity gradient of reflector features.

• Points correspond to pixels that meet C(u, v) > ThE and B(u, v) 6= 0 are categorized
as PE .

• Points correspond to pixels that meet C(u, v) < ThF and B(u, v) 6= 0 are categorized
as PF .

To improve the efficiency of scan registration, the random downsample filter (RDF)
is applied on PG and PR to obtain NG downsampled edge features PG ′ and NR facade
features PR′. To obtain NE refined edge features PE ′ and NF refined facade features PF ′,
the non-maximum suppression (NMS) filter based on point curvatures is applied on PE
and PF . Note that the thresholds above are empirical and all of them are consistently set
as default for common scenarios.

3.2. Intensity-Based Scan Registration

Similar to the geometric-based scan registration, given the initial guess of the transfor-
mation T̄t,s from source points Ps to target points Pt, we try to estimate the LiDAR motion
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Tt,s by matching the local intensities of the source and target. In the case of geometric
feature registration, the motion estimation is solved through nonlinear iterations by mini-
mizing the sum of Euclidean distances from each source feature to their correspondence
in the target scan. In the case of reflecting feature registration, however, we minimize the
sum of intensity differences instead. The fundamental idea of the intensity-based point
cloud alignment method proposed in this paper is to make use of the similarity of intensity
gradients within the local region of lazer scans to achieve scan matching.

Because of the discreteness of the lazer scan, sparse 3D points in a local area are not
continuous, causing the intensity values of the lazer sweep to be non-differentiable. To
solve this issue, we introduce a continuous intensity surface model using the local support
characteristic of the B-spline basis function. A simple intensity surface example is shown in
Figure 4.

sp

tp̄

tq

{tqn}

cp̄

Figure 4. A simple example of B-spline intensity surface model. The grid surface depicts the modeled
continuous intensity surface with colors representing intensities and spheres in the center of surface
grids representing control points of the B-spline surface model. sp denotes the selected point and
{tqn} denotes query points. sp is transformed to the reference frame of {tqn} and denoted as tp̄. tq
denotes the nearest neighboring query point of tp̄.

3.2.1. B-Spline Intensity Surface Model

The intensity surface model presented in this paper uses the uniformly distributed
knots of the B-spline; thus, the B-spline is defined fully by its degree [44]. Specifically, the
intensity surface is a space spanned by three d-degree B-spline functions on the orthogonal
axes and each B-spline is controlled by d + 1 knots on the axis. Mathematically, the B-spline
intensity surface in local space is a scalar-valued function ¯(p) : R3 → R, which builds
the mapping relationship between a 3D point p = [x, y, z]> and its intensity value. The
mapping function is defined by the tensor product of three B-spline functions and control
points ci,j,k ∈ C in the local space:

¯(p) =
d+1

∑
i=0

d+1

∑
j=0

d+1

∑
k=0

ci,j,kbd
i (x)bd

j (y)b
d
k (z)

= vec(bd
x ⊗ bd

x ⊗ bd
z)
> · vec(C)

= φ(p)> · c

(6)

where bd is the d degree B-spline function. We use the vectorization operator vec(·) and
Kronecker product operator ⊗ to transform the above equation in the form of matrix
multiplication. In this paper, the cubic (d = 3) B-spline function is employed.

3.2.2. Observation Constraint

The intensity observation constraint is defined as the residual between the intensities
of source points and their predicted intensities in the local intensity surface model. Figure 4
demonstrates how to predict the intensity on the surface patch for a reflector feature
point. The selected point sp ∈ Ps with intensity measurement η is transformed to the
model frame by tq̄ = T̄t,s ·s p. Then, the nearest point tq ∈ Pt and its R-neighbor points
tqn ∈ Pt, n = 1 · · ·N can be searched. Given the uniform space of the B-spline function
κ, the neighborhood points tqn can be voxelized with the center tq and the resolution
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κ × κ × κ to generate control knots cp̄ for the local intensity surface. The control knot takes
the value of the average intensities of all points in a voxel. To sum up, the residual is
defined as:

rI (T̃t,s) = [φ(T̄t,s ·s p)> · cq̄ − η]. (7)

Stacking normalized residuals to obtain residual vector rI (T̃t,s) and computing the Jacobian
matrix of rI with respect to Tt,s, denoted as JI = ∂rI/∂Tt,s. The constructed nonlinear
optimization problem can be solved by minimizing rI toward zero using the L-M algo-
rithm. Note that Lie group and Lie algebra are implemented for the 6-DoF transformation in
this paper.

3.3. Dynamic Object Removal

The workflow of the proposed DOR is shown in Figure 5, which corresponds to the
pink block in Figure 2. Inputs of the DOR filter include the current lazer points Pk, the
previous static lazer points Ps,k−1, the local map pointsMk, the current range image DPk ,
the current label image LPk and the estimated LiDAR pose in the world frame T̃w,k. The
filter divides Pk into two categories, i.e., the dynamic Pd,k and static Ps,k. Only static points
will be appended into the local map for map update. The DOR filter introduced in this
paper exploits the similarity of point clouds in the adjacent time domain for dynamic point
filtering and verifies dynamic objects based on the segmented label image.

Dynamic Objects Removal
Map points Mk Last scan points Pk−1 LiDAR pose

Point Proj.

Map points projected range image DMkImage
Diff.

Scan points projected range image DPk

Binary difference image DBk Object
Refine.

Scan label image LPk

Depth difference image D∆k

Current scan

points Pk

Dynamic Points Classify
Dynamic points Pd,k Static points Ps,k

Figure 5. The workflow of DOR.

3.3.1. Rendering Range Image for the Local Map

Both downsampling with coarse resolution and uneven distribution of map points
may result in pixel holes in the rendered range image. Considering the great similarity of
successive lazer sweeps in the time domain, we use both the local map pointsMk and the
previous static lazer points Ps,k−1 to generate the to-be-rendered map points Ek:

Ek = T−1
w,k ·Mk ∪ Tk,k−1 · Ps,k−1. (8)

The rendered imageDMk and the current scan imageDPk are shown in the second and third
rows of Figure 5. A pedestrian (see red rectangle in Figure 5) can be clearly distinguished
in DPk but not in DMk .
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3.3.2. Temporal-Based Dynamic Points Searching

Dynamic pixels in DPk can be coarsely screened out in accordance with the depth
differences between DPk and DMk . In particular, if the depth difference at [u, v]> is larger
than the threshold Th∆d, the pixel will be marked as dynamic. Consecutively, we can also
generate a binary image DBk indicating whether the pixel is dynamic or not:

D∆k (u, v) = |DMk (u, v)−DPk (u, v)| > Th∆d?

DBk (u, v) = 1 : 0,
(9)

where DMk (u, v) 6= 0 and DPk (u, v) 6= 0. An example of DBk is shown in the fourth row of
Figure 5, in which red pixels represent the static and purple pixels represent the dynamic.
To improve the robustness of the DOR filter to different point depths, we use the adaptive
threshold Th∆d = sd · DPk (u, v), where sd is a constant coefficient.

3.3.3. Dynamic Object Validation

It can be seen from DBk that it generates numerous false positive (FP) dynamic pixels
using pixel-by-pixel depth comparison. To handle the above issue, we utilize the label
image to validate the dynamic according to the fact that points originating from the same
object should have the same status label. We denote the pixel number of a segmented object
and the dynamic pixel number as Ni and Nd,i, which can be counted from LPk and DBk ,
respectively. Two basic assumptions generally hold in terms of dynamic points, i.e., (I)
ground points cannot be dynamic; (II) the percentage of FP dynamic pixels in a given object
will not be significant. According to the above assumptions, we can validate dynamic
pixels at the object level:

Nd,i

Ni
≥ ThN & LPk (u, v) 6= 1?

D∆k (u, v) = D∆k (u, v) : 0.
(10)

Equation (10) indicates that only an object that is marked as a non-ground object or have a
dynamic pixel ratio larger than the threshold will be recognized as dynamic. In D∆k , pixels
belonging to dynamic objects will retain the depth differences, while the others will be reset
as 0. As can be observed in the depth difference image shown in the sixth row of Figure 5,
though many FP dynamic pixels are filtered out after the validation, the true positive (TP)
dynamic pixels from the moving pedestrian on the right side are still remarkable. Then, the
binary image DBk is updated by substituting the refined D∆k into Equation (9).

3.3.4. Points Classification

According to DBk , dynamic 3D points in extracted features can be marked using the
mapping function Π[·] : D 7→ P . Since the static feature set is the complement of the
dynamic feature set with respect to the full set of extracted features, the static features can
be filtered by Ps,k = Pk −Pd,k.

3.4. LiDAR Odometry

Given the initial guess T̄k,k−1, extracted features, i.e., downsampled ground and
reflector features PG ′ and PR′, as well as refined edge and facade features PE ′ and PF ′,
are utilized to estimate the optimal estimation of Tk,k−1 and then the LiDAR pose Tw,k in
the global frame is reckoned. The odometry thread corresponds to the green S2S block
in Figure 2 and the pseudocode is shown in Algorithm 1. To improve the performance
of geometric-only scan registration, the proposed LO incorporates reflector features and
estimates relative motion by jointly solving multi-metric nonlinear optimization (NLO).
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Algorithm 1: LiDAR Odometry
Input: Extracted feature points P ′G,k, P ′F ,k, P ′E ,k, P ′R,k, initial transform T̄k,k−1
Output: estimated transform Tk,k−1, reckoned pose Tw′ ,k

1 reference feature points P ′G,k−1, P ′F ,k−1, P ′E ,k−1, P ′R,k−1 and the last LO reckoned pose Tw′ ,k−1

can be loaded from the buffer;
// Main

2 if the system is not initialized then
3 Tk,k−1 ← I4×4;
4 Tw′ ,k ← I4×4;
5 end
6 else
7 for a number of iterations do

// Find feature associations by parallel threads
8 rG , JG ← GroundAssoc(T̄k,k−1, P ′G,k−1, P ′G,k);
9 rF , JF ← FacadeAssoc(T̄k,k−1, P ′F ,k−1, P ′F ,k);

10 rE , JE ← EdgeAssoc(T̄k,k−1, P ′E ,k−1, P ′E ,k);
11 rR, JR ← ReflectAssoc(T̄k,k−1, P ′R,k−1, P ′R,k);

// Update relative transform by the nonlinear optimization
12 T̃k−1,k ← MultiMetricNLO(J, r);

// Convergency

13 convergency← ConvergCond(T̃k−1,k · T̄−1
k,k−1);

// Update parameters
14 Tk,k−1 ← T̃k−1,k;
15 Tw′ ,k ← Tw′ ,k−1 · T−1

k,k−1;
16 if convergency then
17 break;
18 end
19 end
20 end

3.4.1. Constraint Model

As shown in Figure 6, constraints are modeled as the point-to-model intensity dif-
ference (for reflector feature) and the point-to-line (for edge feature)/point-to-plane (for
ground and facade feature) distance, respectively.

ϕ(p̄i)

pi

qj

Target

Source

(a)

Source

pi
qj

Target

nj

(b)

Target

vj

Source

pi

qj

(c)

Source
pi

qj

Target

nj

(d)

Figure 6. Overview of four different types of feature associations. (a) Reflector; (b) Facade; (c) Edge;
(d) Ground feature association.

I. Point-to-line constraint. Let pi ∈ P ′E ,k, i = 1 · · ·NE be an edge feature point. The
association of pi is the line connected by qj, qm ∈ P ′E ,k−1, which represents the closest point
of T̄k−1,k · pi in P ′E ,k−1 and the closest neighbor in the preceding and following scan lines to
the qj, respectively. The constraint equation is formulated as the point-to-line distance:

rE ,i = ‖vj × (Tk−1,k · pi)‖,

vj =
qj − qm

‖qj − qm‖
.

(11)
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The NE × 1 edge feature error vector rE is constructed by stacking all the normalized
edge residuals (Line 10).

II. Point-to-plane constraint. Let pi ∈ P ′F ,k, (P ′G,k), i = 1 · · ·NF(NG) be a facade or
ground feature point. The association of pi is the plane constructed by qj, qm, qn in the
last ground and facade feature points, which represent the closest point of T̄k−1,k · pi, the
closest neighbor in the preceding and following scan lines to qj and the closest neighbor
in the same scan line to qj, respectively. The constraint equation is formulated as the
point-to-plane distance:

rG,i = rF ,i = nj · (Tk−1,k · pi),

nj =
(qj − qm)× (qj − qn)

‖(qj − qm)× (qj − qn)‖
.

(12)

The NF × 1 facade feature error vector rF and the NG × 1 ground feature error vector rG
are constructed by stacking all normalized facade and ground residuals (Line 8–9).

III. Point-to-model intensity difference constraint. The constraint equation is formulated
as Equation (7). The NR × 1 intensity feature error vector rR is constructed by stacking all
reflector features (Line 11).

3.4.2. Transformation Estimation

According to constraint models introduced above, the nonlinear least square (LS)
function can be established for the transformation estimation (Line 12):

T̃k−1,k = argmin
Tk−1,k

(
r>G rG + r>F rF + r>E rE + r>RrR

)
. (13)

The special Euclidean group exp (ξ∧k−1,k) = Tk−1,k is implemented during the nonlinear
optimization iteration. Then, Tk−1,k can be incrementally updated by:

ξk−1,k ← ξk−1,k + δξk−1,k. (14)

where
δξk−1,k =

(
J>J
)−1

J>r,

J =
[
J>G,i · · · J>F ,i · · · J>E ,i · · · J>R,i

]>
,

r =
[
r>G,i · · · r>F ,i · · · r>E ,i · · · r>R,i

]>
.

(15)

The Jacobian matrix of constraint equation with respect to ξk−1,k is denoted as J. Matrix
components are listed as follows.

JG,i =
∂rG,i

∂δξk−1,k
= n>j,m,n ·

∂(Tk−1,kpi)

∂δξk−1,k
,

JF ,i =
∂rF ,i

∂δξk−1,k
= n>j,m,n ·

∂(Tk−1,kpi)

∂δξk−1,k
,

JE ,i =
∂rE ,i

∂δξk−1,k

=
(v∧j,m(Tk−1,kpi))

>

‖v∧j,m(Tk−1,kpi)‖
· v∧j,m ·

∂(Tk−1,kpi)

∂δξk−1,k
,

JR,i =
∂rR,i

∂δξk−1,k

=
∂φ(Tk−1,kpi)

>

∂(Tk−1,kpi)
· ∂(Tk−1,kpi)

∂δξk−1,k
· cq̄i .

(16)
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3.5. LiDAR Mapping

There is always an inevitable error accumulation in the LiDAR odometry, resulting in
a discrepancy ∆Tk between the estimated and actual pose. In other words, the estimated
transform from the LiDAR odometry thread is not the exact transform from the LiDAR
frame {L} to the world frame {W} but from {L} to the drifted world frame {W ′}:

Tw,k = ∆TkTw′ ,k. (17)

One of the main tasks of the LiDAR mapping thread is optimizing the estimated pose
from the LO thread by the scan-to-map registration (green S2M block in Figure 2). The
other is managing the local static map (brown TVF and pink DOR blocks in Figure 2). The
pseudocode is shown in Algorithm 2.

Algorithm 2: LiDAR Mapping
Input: Extracted feature points for registration P ′G,k, P ′F ,k, P ′E ,k, P ′R,k, feature points for

mapping, PG,k, PF ,k, PE ,k, PR,k, estimated transform from LiDAR odometry Tw′ ,k,
scan depth image Dk and labeled image Lk

Output: refined pose Tw,k, static scan points Ps,k
1 the transform drift ∆Tk and scan keyframes can be loaded from the buffer;
// Roughly transform the reckoned pose to the world frame

2 T̄w,k ← ∆Tk · Tw′ ,k;
// Main

3 if skip a number of frames to keep system efficiency then
// construct local points map

4 Mk ← searchSurroundKF(T̄w,k);
5 temporalVoxelFilter(Mk);
6 for a number of iterations do

// Find feature associations by parallel threads
7 rG , JG ← GroundAssoc(T̄w,k, P ′G,k,MG,k);
8 rF , JF ← FacadeAssoc(T̄w,k, P ′F ,k,MF,k);
9 rE , JE ← EdgeAssoc(T̄w,k, P ′E ,k,ME,k);

10 rR, JR ← ReflectAssoc(T̄w,k, P ′R,k,MR,k);
// Update the estimated pose by the nonlinear optimization

11 T̃w,k ← MultiMetricNLO(J, r);
// Convergency

12 convergency← ConvergCond(T̃w,k · T̄−1
w,k);

13 if convergency then
14 break;
15 end
16 end

// Update parameters
17 Tw,k ← T̃w,k;
18 T−1

w′ ,w = Tw,k · T̄w,k;
// Update the local feature map

19 DownsizeFilter(PG,k, PF ,k, PE ,k, PR,k);
20 Ps,k ← DORFilter(Pk,Mk, Dk, Lk, Tw,k);
21 InsertAsKF(Ps,k, Tw,k);
22 end

3.5.1. Local Feature Map Construction

In this paper, the pose-based local feature map construction scheme is applied. In
particular, the pose prediction T̄w,k is calculated by Equation (17) under the assumption
that the drift between ∆Tk and ∆Tk−1 is tiny (Line 2). Feature points scanned in the vicinity
of T̄w,k are merged (Line 4) and filtered (Line 5) to construct the local mapMk. Let Γ(·)
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denote the filter and n ∈ N denote timestamps of surrounding scans. The local map is
built by:

Mk = Γ

(
∑

n∈N
Tw,n · Ps,n

)
. (18)

The conventional voxel-based downsample filter voxelizes the point cloud and retains
one point for each voxel. The coordinate of the retained point is averaged by all points in
the same voxel. However, for the point intensity, averaging may cause the loss of similarity
between consecutive scans. To maintain the local characteristic of the point intensity, we
utilize the temporal information to improve the voxel-based downsample filter. In the
TVF, a temporal window is set for the intensity average. Specifically, the coordinate of
the downsampled point is still the mean of all points in the voxel, but the intensity is the
mean of points in the temporal window, i.e., |tk − tn| < Tht, where tk and tn represent
timestamps of the current scan and selected point, respectively.

3.5.2. Mapping Update

The categorized features are jointly registered with feature maps in the same way as
in the LiDAR odometry module. The low-drift pose transform Tw,k can be estimated by
scan-to-map alignment (Line 7–11). Since the distribution of feature points in the local map
is disordered, point neighbors cannot be directly indexed through the scan line number.
Accordingly, the K-D tree is utilized for nearest point searching and the PCA algorithm
calculates norms and primary directions of neighboring points.

Finally, the obtained Tw,k is fed to the DOR filter to filter out dynamic points in the cur-
rent scan. Only static pointsPs,k are retained in the local feature map list (Line 20–21). More-
over, the odometry reference drift is also updated by Equation (17), i.e., ∆Tk = Tw,kT−1

w′ ,k
(Line 18).

4. Results

In this section, the proposed InTEn-LOAM is evaluated qualitatively and quantita-
tively on both simulated and real-world datasets, covering various outdoor scenes. We first
test the feasibility of each functional module, i.e., feature extraction, intensity-based scan
registration and dynamic point removal. Then, we conduct a comprehensive evaluation for
InTEn-LOAM in terms of positioning accuracy and constructed map quality. We run the
proposed LO system on a laptop computer with 1.8 GHz quad cores and 4 Gib memory, on
top of the robot operating system (ROS) in Linux.

The simulated test environment was built based on the challenging scene provided
by the DARPA Subterranean (SubT) Challenge (https://github.com/osrf/subt, accessed
on 1 October 2022). We simulated a 1000 m long straight mine tunnel (see Figure 7b) with
smooth walls and reflective signs that are alternatively posted on both sides of the tunnel
at 30 m intervals. Physical parameters of the simulated car, such as ground friction, sensor
temperature and humidity are consistent with reality to the greatest extent. A 16-scanline
LiDAR is mounted on the top of the car. Transform groundtruths were exported at 100 Hz.
The real-world dataset was collected by an autonomous driving car with a 32-scanline
LiDAR (see Figure 7a) in the autonomous driving test field, where a 150 m long straight
tunnel exists. Moreover, the KITTI odometry benchmark (http://www.cvlibs.net/datasets/
kitti/eval_odometry.php, accessed on 1 October 2022) was also utilized to compare with
other state-of-the-art LO solutions.

https://github.com/osrf/subt
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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(a) (b)

Figure 7. Dataset sampling platform. (a) Autonomous driving car; (b) Simulated mine car and scan
example. Magenta lazer points are reflected from brown signs in the simulated environment.

4.1. Functional module Experiments
4.1.1. Feature Extraction Test

We validated the feature extraction module on the real-world dataset. In the test,
we set the edge feature extraction threshold as ThE = 0.3, the facade feature extraction
threshold as ThE = 0.1 and the intensity difference threshold as Th∆I = 80 and partitioned
the intensity image into 16× 4 blocks.

Figure 8 shows feature extraction results. It can be seen that edges, planes and
reflectors can be correctly extracted in various road conditions. With the effect of ground
segmentation, breakpoints on the ground (see orange box region in Figure 8a) are correctly
marked as plane, avoiding the issue that breakpoints are wrongly marked as edge features
due to their large roughness values. In the urban city scene, conspicuous intensity features
can be easily found, such as landmarks and traffic lights (see Figure 8b). Though there are
many plane features in the tunnel, few valid edge features can be extracted (see Figure 8c).
In addition, sparse and scattered plant points with large roughness values (see orange box
region in Figure 8d) are filtered as outliers with the help of object clustering.

According to the above results, some conclusions can be drawn: (1) The number
of plane features is always much greater than that of edge features, especially in open
areas, which may cause the issue of constraint-unbalance during the multi-metric nonlinear
optimization. (2) Static reflector features widely exist in real-world environments, which
are useful for the feature-based scan alignment and should not be ignored. (3) The adaptive
intensity feature extraction approach makes it possible to manually add reflective targets in
feature-degraded environments.

4.1.2. Feature Ablation Test

We validated the intensity-based scan registration method on the simulated dataset.
To highlight the effect of intensity features in the scan registration, we quantitatively evalu-
ated the relative accuracy of the proposed intensity-based scan registration method and
compared the result with prevalent geometric-based scan registration methods, i.e., edge
and surface feature registration of LOAM [8], multi-metric registration of MULLS [27] and
NDT of HDL-Graph-SLAM [13]. The evaluation used the simulated tunnel dataset, which
is a typical geometric-degraded environment. The measure used to evaluate the accuracy
of scan registration is the relative transformation error. In particular, differences between
the groundtruth TGT

k+1,k and the estimated relative transformation Tk+1,k are calculated and
represented as an error vector, i.e., rk = vec(TGT

k+1,k · T−1
k+1,k). The norms of translational

and rotational parts of rk are illustrated in Figure 9. Note that the result of intensity-based
registration only utilizes measurements from the intensity channel of the lazer scan, i.e.,
only intensity features are used for intensity matching.



Remote Sens. 2023, 15, 242 15 of 26

A A
B

B

C
C

D

DE

E

F

F

(a)

A
A

B

B

C

C

D D

E
E

F

F

GG

(b)

A

A

B

B
C

C

(c)

A

AB

B
CC

(d)

Figure 8. Feature extraction results in different scenes. (a) Open road; (b) City avenue; (c) Long
straight tunnel; (d) Roadside green belt. (plane, reflector, edge and raw scan points). Objects in the
real-world scenes and their counterparts in lazer scans are indicated by boxes (reflector features, edge
features, some special areas).

The figures show that all four rotation errors of different approaches are less than 0.01◦,
while errors of InTEn-LOAM and MULLS are less than 0.001◦. This demonstrates that
lazer points from the tunnel wall and ground enable one to provide sufficient geometric
constraints for the accuracy of relative attitude estimation. However, there are significant
differences in relative translation errors (RTEs). The intensity-based scan registration
achieves the best RTE (less than 0.02 m), which is much better than the feature-based sort of
LOAM and NDT of HDL-Graph-SLAM (0.4 m and 0.1 m) and better than the intensity-based
weighting of MULLS (0.05). The result proves the correctness and feasibility of the proposed
intensity-based approach under the premise of sufficient intensity features. It also reflects
the necessity of fusing reflectance information of points in poorly structured environments.
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(a)

(b)

Figure 9. Relative error plots. (a) Relative translation error curves; (b) Relative rotation error curves.
(NDT of HDL-Graph-SLAM, feature-based registration approach of LOAM, the proposed intensity-
based registration approach).

4.1.3. Dynamic Object Removal

We validated the DOR module on Seq.07 and 10 of the KITTI odometry dataset. The
test result was evaluated via the qualitative evaluation method, i.e., marking dynamic
points for each scan frame and qualitatively judging the accuracy of the dynamic ob-
ject segmentation according to the actual targets in the real world the dynamic points
correspond to.

Figure 10 exhibits DOR examples for a single frame of lazer scan at typical urban
driving scenes. It can be seen that dynamic objects, such as vehicles crossing the intersection,
vehicles and pedestrians traveling in front of/behind the data collection car, can be correctly
segmented via the proposed DOR approach no matter whether the sampling vehicle is
stationary or in motion. Figure 11 shows constructed maps at two representative areas, i.e.,
intersection and busy road. Maps were incrementally built by LOAM (without DOR) and
InTEn-LOAM (with DOR) methods. We can figure out from the figure that the map built
by InTEn-LOAM is better since the DOR module effectively filters out dynamic points to
help to accumulate a purely static points map. In contrast, the map constructed via LOAM
has a large amount of ‘ghost points’ increasing the possibility of erroneous point matching.

In general, the above results prove that the DOR method proposed in this paper has
the ability to segment dynamic objects for a scan frame correctly. However, it also has some
shortcomings. For instance, (1) the proposed comparison-based DOR filter is sensitive to
the quality of lazer scan and the density of the local points map, causing the omission or
mis-marking of some dynamic points (see the green box at the top of Figure 10a and the
red rectangle box at the bottom of Figure 10b); (2) dynamic points in the first frame of the
scan cannot be marked using the proposed approach (see the red rectangle box in the top
of Figure 10b).
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(a)

(b)

Figure 10. DOR examples for a single frame of lazer scan. (a) Seq.07. Vehicles crossing the intersection
when the data collection vehicle stops and waits for the traffic light (left); The cyclist traveling in
the opposite direction when the data collection vehicle is driving along the road (right). (b) Seq.10.
Followers behind the data collection vehicle as it travels down the highway at high speed (top);
Vehicles driving in the opposite direction and in front of the data collection vehicle when it slows
down (bottom). (facade, ground, edge and dynamics for points true positive, false positive and true
negative for dynamic segmentation boxes.)

(a)

(b)

Figure 11. Comparison between local maps of LOAM and InTEn-LOAM. (a) Map at the intersection;
(b) Map at the busy road. In each subfigure, the top represents the map of LOAM without DOR,
while the bottom represents the map of InTEn-LOAM with DOR.

4.2. Pose Transform Estimation Accuracy
4.2.1. KITTI Dataset

The quantitative evaluations were conducted on the KITTI odometry dataset, which is
composed of 11 sequences of lazer scans captured by a Velodyne HDL-64E LiDAR with
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GPS/INS groundtruth poses. We followed the odometry evaluation criterion from [45] and
used the average relative translation and rotation errors (RTEs and RREs) within a certain
distance range for the accuracy evaluation. The performance of the proposed InTEn-LOAM
and the other six state-of-the-art LiDAR odometry solutions whose results are taken from
their original papers are reported in Table 1. Only LO state-of-the-art items without the
back-end optimization or semantic segmentation or other sensors’ fusion are compared to
ensure fairness. Plots of average RTE/RRE over fixed lengths are exhibited in Figure 12.
Note that all comparison methods did not incorporate the loop closure module for more
objective accuracy comparison. Moreover, an intrinsic angle correction of 0.2◦ is applied to
KITTI raw scan data for better performance [27].

Table 1. Quantitative evaluation and comparison on KITTI dataset. Note: All errors are represented
as average RTE[%]/RRE[◦/100 m]. Red and blue fonts denote the first and second place, respectively.
Denotations: U: Urban road; H: Highway; C: Country road.

Method #00U #01H #02C #03C #04C #05C #06U #07U #08U #09C #10C Avg. Time [s]/Frame

LOAM 0.78/- 1.43/- 0.92/- 0.86/- 0.71/- 0.57/- 0.65/- 0.63/- 1.12/- 0.77/- 0.79/- 0.84/- 0.10
IMLS-SLAM 0.50/- 0.82/- 0.53/- 0.68/- 0.33/- 0.32/- 0.33/- 0.33/- 0.80/- 0.55/- 0.53/- 0.57/- 1.25
MC2SLAM 0.51/- 0.79/- 0.54/- 0.65/- 0.44/- 0.27/- 0.31/- 0.34/- 0.84/- 0.46/- 0.52/- 0.56/- 0.10

SuMa 0.70/0.30 1.70/0.50 1.10/0.40 0.70/0.50 0.40/0.30 0.40/0.20 0.50/0.30 0.70/0.60 1.00/0.40 0.50/0.30 0.70/0.30 0.70/0.30 0.07
LO-Net 0.78/0.42 1.42/0.40 1.01/0.45 0.73/0.59 0.56/0.54 0.62/0.35 0.55/0.35 0.56/0.45 1.08/0.43 0.77/0.38 0.92/0.41 0.83/0.42 0.10

MULLS-LO 0.51/0.18 0.62/0.09 0.55/0.17 0.61/0.22 0.35/0.08 0.28/0.17 0.24/0.11 0.29/0.18 0.80/0.25 0.49/0.15 0.61/0.19 0.49/0.16 0.08
InTEn-LOAM 0.51/0.21 0.63/0.35 0.54/0.28 0.63/0.33 0.37/0.31 0.36/0.25 0.24/0.11 0.34/0.31 0.71/0.29 0.48/0.19 0.45/0.21 0.54/0.26 0.09

(a)

(b)

Figure 12. The average RTE and RRE of InTEn-LOAM over fixed lengths. (a) RTE; (b) RRE.

Figure 12 demonstrates that accuracies in different length ranges are stable and the
maximums of average RTE and RRE are less than 0.32% and 0.22◦/100 m. It also can be seen
from the table that the average RTE and RRE of InTEn-LOAM are 0.54% and 0.26◦/100 m,
which outperforms the LOAM accuracy of 0.84%. The comprehensive comparison shows
that InTEn-LOAM is superior or equal to the current state-of-the-art LO methods. Although
the result of MULLS is slightly better than that of InTEn-LOAM, the contribution of InTEn-
LOAM is significant, considering its excellent performance in long straight tunnels with
reflective markers. InTEn-LOAM costs around 90 ms per frame of scan with about 3 k
and 30 k feature points in the current scan points and local map points, respectively.
Accordingly, the proposed LO method is able to operate faster than 10 Hz on average for
all KITTI odometry sequences and achieve real-time performance.

For in-depth analysis, three representative sequences, i.e., Seq.00, 01 and 05, were
selected. Seq.00 is an urban road dataset with the longest traveling distance, in which
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big and small loop closures are included, while geometric features are extremely rich.
Consequently, the sequence is suitable for visualizing the trajectory drift of InTEn-LOAM.
Seq.01 is a highway dataset with the fastest driving speed. Due to the lack of geometric
features in the highway neighborhood, it is the most challenging sequence in the KITTI
odometry dataset. Seq.05 is a country road sequence with great variation in elevation and
rich structured features.

For Seq.01, it can be seen from Figure 13c that areas with landmarks are indicated
by blue bounding boxes, while magenta boxes highlight road signs on the roadside. The
drift of the estimated trajectory of Seq.01 by InTEn-LOAM is quite small (see Figure 13d),
which reflects that the roadside guideposts can be utilized as reflector features since their
high-reflective surfaces are conducive to improving the LO performance in such geometric-
sparse highway environments. The result also proves that the proposed InTEn-LOAM
is capable of adaptively mining and fully exploiting the geometric and intensity features
in surrounding environments, which ensures the LO system can accurately and robustly
estimate the vehicle pose even in some challenging scenarios. In terms of Seq.00 and 05,
both two point cloud maps show excellent consistency in the small loop closure areas
(see blue bound regions in Figure 13a,e), which indicates that InTEn-LOAM has good
local consistency. However, in large-scale loop closure areas, such as the endpoint, the
global trajectory drifts incur a stratification issue in point cloud maps (see red bound
regions in Figure 13a,e), which are especially significant in the vertical direction (see plane
trajectory plots in Figure 13b,f). This phenomenon is due to constraints in the z-direction
being insufficient in comparison with other directions in the state space since only ground
features provide constraints for the z-direction during the point cloud alignment.

4.2.2. Autonomous Driving Dataset

The other quantitative evaluation test was conducted on the autonomous driving field
dataset, the groundtruth of which refers to the trajectory output of the onboard positioning
and orientation system (POS). There is a 150 m long tunnel in the data acquisition environ-
ment, which is extremely challenging for most LO systems. The root mean square errors
(RMSEs) of horizontal position and yaw angle were used as indicators for the absolute state
accuracy. LOAM, MULLS and HDL-Graph-SLAM were utilized as control groups, whose
results are listed in Table 2.

Both LOAM and HDL-Graph-SLAM failed to localize the vehicle with 34.654 m and
141.498 m positional errors, respectively. MULLS and the proposed InTEn-LOAM are still
able to function properly with 2.664 m and 7.043 m of positioning error and 0.476◦ and
1.403◦ of heading error within the path range of 1.5 km. To further investigate the causes
of this result, we plotted the cumulative distribution of absolute errors and horizontal
trajectories of three LO systems, as shown in Figure 14.

From the trajectory plot, we can see that the overall trajectory drift of InTEn-LOAM
and MULLS are relatively small, indicating that these two approaches can accurately
localize the vehicle in this challenging scene by incorporating intensity features into the
point cloud registration and using intensity information for the feature weighting. The
estimated position of LO inevitably suffers from error accumulation which is the culprit
causing trajectory drift. It can be seen from the cumulative distribution of absolute errors
that the absolute positioning error of InTEn-LOAM is no more than 10 m and the attitude
error is no more than 1.5◦. The overall trends of rotational errors of the other three systems
are consistent with that of InTEn-LOAM. Results in Table 2 also verify that their rotation
errors are similar. The cumulative distribution curves of absolute positioning errors of
LOAM and HDL-Graph-SLAM do not exhibit smooth growth but a steep increase in
some intervals. The phenomenon reflects the existence of anomalous registration in these
regions, which is consistent with the fact that the scan registration-based motion estimation
in the tunnel is degraded. MULLS, which incorporates intensity measures by feature
constraint weighting, presents a smooth curve similar to InTEn-LOAM. However, the
absolute errors of positioning (no more than 19 m) and heading (no more than 2.5◦) are
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both larger than those of our proposed LO system. We also plotted the RTE and RRE of all
four approaches (see Figure 15). It can be seen that the differences in the RRE between the
four systems are small, representing that the heading estimations of all these LO systems are
not deteriorated in the geometric-degraded long straight tunnel. In contrast, the RPEs are
quite different. Both LOAM and HDL-Graph-SLAM suffer from serious scan registration
drifts, while MULLS and InTEn-LOAM are able to position normally and achieve very
close relative accuracy.

(a) (b)

(c) (d)

(e) (f)

Figure 13. Constructed points maps with details and estimated trajectories. (a,c,e) maps of Seq.00, 01
and 05; (b,d,f) trajectories of Seq.00, 01 and 05 (groundtruths and InTEn-LOAM).

Table 2. Quantitative evaluation and comparison on autonomous driving field dataset.

Method Positioning Error (m) Heading Error (◦)

x y Horizontal Yaw

LOAM 29.478 18.220 34.654 1.586
HDL-Graph-SLAM 119.756 75.368 141.498 2.408

MULLS-LO 4.133 5.705 7.043 1.403
InTEn-LOAM 1.851 1.917 2.664 0.476
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(a)

(b)

(c)

Figure 14. Cumulative distributions of absolute state errors and estimated trajectories. (a) Cumulative
distributions of the absolute positioning errors; (b) Cumulative distributions of the absolute rotational
errors; (c) Estimated trajectories. (InTEn-LOAM, LOAM, HDL-Graph-SLAM, groundtruth).

(a)

(b)

Figure 15. The average RTE and RRE of LO systems over fixed lengths. (a) RTE; (b) RRE.
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4.3. Point Cloud Map Quality
4.3.1. Large-Scale Urban Scenario

The qualitative evaluations were conducted by intuitively comparing the map con-
structed by InTEn-LOAM with the reference map. The reference map is built by merging
each frame of the lazer scan using their groundtruth poses. Maps of Seq.06 and 10 are
displayed in Figures 16 and 17, which are the urban scenario with trajectory loops and the
country road scenario without loop, respectively.

Although the groundtruth is the post-processing result of POS and its absolute accu-
racy reaches centimeter-level, the directly merged points map is blurred in the local view.
By contrast, maps built by InTEn-LOAM have better local consistency, and various small
targets, such as trees, vehicles, fences, etc., can be clearly distinguished from the points
map. The above results prove that the relative accuracy of InTEn-LOAM outperforms that
of the GPS/INS post-processing solution, which is very critical for the mapping tasks.

(a) (b) (c)

Figure 16. InTEn-LOAM’s map result on urban scenario (KITTI seq.06): (a) overview, (b) map in
detail of circled areas, (c) reference map comparison.

(a) (b) (c)

Figure 17. InTEn-LOAM’s map result on country scenario (KITTI seq.10): (a) overview, (b) map in
detail of circled areas, (c) reference map comparison.
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4.3.2. Long Straight Tunnel Scenario

The second qualitative evaluation test was conducted on the autonomous driving field
dataset. There is a 150 m long straight tunnel in which we alternately posted some reflective
signs on sidewalls to manually add some intensity features in such registration-degraded
scenario. Maps of InTEn-LOAM, MULLS, LOAM and HDL-Graph-SLAM are shown in
Figure 18. It intuitively shows that both LOAM and HDL-Graph-SLAM present different
degrees of scan registration degradation, while the proposed InTEn-LOAM achieves correct
motion estimation by jointly utilizing both sparse geometric and intensity features, as
shown in Figure 18. Although MULLS is also able to build a correct map since it utilizes
intensity information to re-weight geometric feature constraints during the registration
iteration, its accuracies of both pose estimation and mapping are inferior to the proposed
LO system.

(a) (b)

(c) (d)

Figure 18. LO systems’ map results on autonomous driving field dataset in the tunnel region.
(a) InTEn-LOAM, (b) LOAM, (c) HDL-Graph-SLAM, (d) MULLS.

In addition, we constructed the complete point cloud map for the test field using
InTEn-LOAM and compared the result with the local remote sensing image, as shown in
Figure 19. It can be seen that the consistency between the constructed point cloud map and
regional remote sensing image is good, qualitatively reflecting that the proposed InTEn-
LOAM has excellent localization and mapping capability without error accumulation in
the around 2 km long exploration journey.

(a)

Figure 19. Cont.
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(b)

Figure 19. InTEn-LOAM’s map result on autonomous driving field dataset. (a) the constructed point
cloud map, (b) local remote sensing image and estimated trajectory.

5. Discussion

In this work, we present a LiDAR-only odometry and mapping solution named
InTEn-LOAM to cope with some challenging issues, i.e., dynamic environments, intensity
channel incorporation and feature degraded environments. The efficient and adaptive
image-based feature extraction method, the temporal-based dynamic removal method
and the novel intensity-based scan registration approach are proposed and all of them
are utilized to improve the performance of LOAM. The proposed system is evaluated
on both simulated and real-world datasets. Results show that InTEn-LOAM achieves
similar or better accuracy in comparison with the state-of-the-art LO solutions in normal
environments and outperforms them in challenging scenarios, such as long straight tunnels.
Since the LiDAR-only method cannot adapt to aggressive motion, our future work involves
developing an IMU/LiDAR tightly coupled method to escalate the robustness of motion
estimation.
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