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Abstract: Based on reanalysis data, satellite ozone concentration observations, and a Lagrangian
trajectory simulation, a Rossby wave breaking (RWB) event and its effect on stratosphere–troposphere
exchange (STE) over the Tibetan Plateau in mid-March 2006 were investigated. Results showed that
the increased eddy heat flux from the subtropical westerly jet magnified the amplitude of the Rossby
wave, which contributed to the occurrence of the cyclonic RWB event. The quasi-horizontal cyclonic
motion of the isentropic potential vorticity in the RWB cut the tropical tropospheric air mass into
the extratropical stratosphere, completing the stratosphere–troposphere mass exchange. Meanwhile,
the tropopause folding zone extended polewards by 10◦ of latitude and the tropospheric air mass
escaped from the tropical tropopause layer into the extratropical stratosphere through the tropopause
folding zone. The particles in the troposphere-to-stratosphere transport (TST) pathway migrated both
eastwards and polewards in the horizontal direction, and shifted upwards in the vertical direction.
Eventually, the mass of the TST particles reached about 3.8 × 1014 kg, accounting for 42.2% of the
particles near the tropopause in the RWB event. The rest of the particles remained in the troposphere,
where they moved eastwards rapidly along the westerly jet and slid down in the downstream upper
frontal zone.

Keywords: rossby wave breaking; stratosphere–troposphere exchange; troposphere-to-stratosphere
transport; tropical tropopause layer

1. Introduction

The upper troposphere and lower stratosphere (UTLS) is the key region of stratosphere–
troposphere coupling. There are large spatial gradients of water vapor and ozone in
this area, the concentrations of which will change dramatically during various weather
processes from the troposphere or the stratosphere [1–6]. These weather processes play
important roles in stratosphere–troposphere exchange (STE) [7–10], and then affect the
radiation balance of the global climate system. Therefore, this research field has received
much attention.

There are different scales of STE in the atmosphere corresponding to various transport
processes. For instance, Brewer–Dobson circulation, a large-scale meridional circulation,
can convey tropical materials to the mid and high latitudes; on the warm front conveyor
belt associated with an extratropical cyclone, the air can slide up close to the stratosphere
from the ground; near the upper front related to the tropopause folding zone, stratospheric
air can intrude into the troposphere along isentropic surfaces; and deep convection can
directly or indirectly vertically transport surface-layer air to the stratosphere. In addition,
Rossby wave breaking (RWB) above the subtropical high-level jet can also affect the thermal
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and dynamic structure of the UTLS, and its poleward or equatorward transport can also
cause strong STE [7,11]. According to the direction of transport, STE can be divided
into two types—namely, troposphere-to-stratosphere transport (TST) and stratosphere-to-
troposphere transport (STT).

Due to the large-scale circulation system induced by the dynamic and thermal effects
of the vast local terrain, the STE in the Asian summer monsoon region occupies the largest
proportion of all STE globally [8,12,13]. For example, an anomalous distribution of the
atmospheric composition in the UTLS can be caused by the cut-off low in Northeast Asia,
where the convective transport in front of the cold front mostly belongs to TST [14–16].
However, the type of STE in the lower reaches of the Changjiang river during the Meiyu
period is mainly STT [17]. Under the influence of the small-scale vertical convective
transport and large-scale summertime anticyclonic circulation in the upper troposphere,
the Tibetan Plateau is an active region of TST [18–20]. Moreover, small-scale orographic
gravity waves can be propagated upwards to the UTLS and then broken, which can also
drive the local tropospheric air to the stratosphere, promoting the STE [21]. There are two
types of STE associated with subtropical high-level jets. One is a typical STT in which
stratospheric air intrudes into the troposphere along the isentropic surfaces in the upper
front zone below the jet [11,22,23]. The other is the RWB above the jet, which also has an
important impact on the atmospheric structure and STE in the UTLS. STE induced by RWB
usually occurs on isentropic surfaces in the quasi-horizontal direction. When the airmass
migrates meridionally near the sub-tropospheric tropopause folding zone, the relevant STE
is completed [24–26]. Although the vertical motion in this type of RWB is not significant,
the intensity of the STE cannot be ignored. The regional distribution of RWB is uneven and
the seasonal difference is obvious. Therefore, the STE associated with RWB in some places
is also not yet clear.

The RWB can be identified when a positive-to-negative inversion of the meridional
gradient of the isentropic potential vorticity occurs [27,28]. There are significant regional
and seasonal characteristics for the subtropical high-level westerly jet in the Asia-Pacific
region [29,30]. Specifically, it is stronger in this region than in any other part of the world
in winter and can be maintained until spring. However, it becomes unstable and prone
to synoptic-scale variations, such as fracture, reconstruction, and an east–west swing in
late spring and summer, especially over the northern Tibetan Plateau. The subtropical
high-level jet can be considered as a barrier to the horizontal meridional transport in
the UTLS. The baroclinic instability and RWB are more likely to cause such horizontal
transport and isentropic mixing when the jet is weak. Based on a statistical analysis
of the climatological distribution of RWB on the isentropic surfaces between 350 K and
500 K, Homeyer et al. [26,31] and Kunz et al. [32] pointed out that the poleward transport
caused by RWB across the interruption of the jet is an important channel of STE. Due to the
limitations of observational data, RWB and related STE events have mostly been reported in
Europe and the United States. However, an RWB event did occur over the Tibetan Plateau
in March 2006, and the related STE processes were monitored by several satellites, thus
providing a great opportunity to further understand the characteristics of RWB and the
related STE in this region.

2. Data and Methods
2.1. Data
2.1.1. ERA-Interim Reanalysis Data

The ERA-Interim global reanalysis data [33] of the ECMWF (European Center for
Medium-Range Weather Forecasts) include the geopotential height, temperature, zonal
wind, and potential vorticity. The data are archived on 31 pressure levels spanning from
1000 to 1 hPa with a 1◦ × 1◦ horizontal resolution. ERA-Interim data have been applied
previously to study stratosphere–troposphere interaction [34].
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2.1.2. Aura-HIRDLS Satellite Data

The High Resolution Dynamics Limb Sounder (HIRDLS) onboard NASA’s Aura satel-
lite can observe the global distributions of temperature and several trace species in the
stratosphere and upper troposphere at high vertical and horizontal resolution. It can cover
the globe twice every day. The profile range of the ozone product is from 422 hPa to
0.1 hPa, containing about 110 atmospheric pressure layers, and has a 1 km vertical by
10 km horizontal resolution. The actual vertical resolution above 300 hPa can reach
500 m to 700 m [35]. Therefore, HIRDLS data can be used to investigate fluxes of mass and
chemical constituents between the troposphere and stratosphere.

2.2. Methods
2.2.1. Definition of RWB

When the meridional gradients of the isentropic potential vorticity shift from positive
to negative, an RWB can be identified as mentioned in the references [27,28,36].

2.2.2. Local Eliassen–Palm Flux

Calculating the local Eliassen–Palm flux [37] is an effective way to diagnose the
interaction between transient waves and time-mean flow during RWB. The formulas of
local EP flux and its divergence are as follows:

Eu =

[
1
2

(
v′2 − u′2

)
, − u′v′, f

v′φ′z
s

]
× cos ϕ (1)

∇ · Eu =

(
∂/∂x

→
i + ∂/∂y

→
j + ∂/∂z

→
k
)
· Eu (2)

in which an overbar and a prime indicate the time average and a disturbance, respectively;
u, v, T, Φ, f, ϕ are the zonal wind, meridional wind, temperature, geopotential, planetary
vorticity, and latitude, respectively; S = (∂T)/∂z + (κT)/H, κ ≈ 0.286, and H = 8 km. The
second and third terms in the formula (1) are mainly determined by eddy momentum flux
(u′v′) and eddy heat flux (v′T′), respectively.

2.2.3. Weather Research and Forecasting Model

The Weather Research and Forecasting (WRF) model is a mesoscale forecasting and
assimilation model widely used in modern meteorological research and operations. The
upper boundary of the numerical simulation was set at 20 hPa and there were 70 layers to
greatly improve the vertical resolution of the UTLS. The Grell–Freitas cumulus convection
scheme [38], Rapid Radiative Transfer Model longwave radiation scheme [39], Dudhia
shortwave radiation scheme [40], Yonsei University planetary boundary layer scheme [41],
and National Severe Storms Laboratory two-moment microphysics scheme [42] were the
main schemes used in the simulation. The initial field and boundary conditions were
generated by National Centers for Environmental Prediction FNL (Final) analysis data. The
simulated regional center was at (40◦N, 150◦E), the zonal and meridional grid points were
1500 × 550, and the simulation ran from 0000 UTC 14 March 2006 to 0000 UTC 20 March
2006. The horizontal resolution of the simulation output was 15 × 15 km.

2.2.4. FLEXPART Lagrangian Trajectory Model

FLEXPART is a Lagrangian trajectory transmission and diffusion model for simulating
large-scale atmospheric transmission processes [43]. The high-resolution meteorological
field from the WRF simulation output was used to drive the FLEXPART model to track the
detailed trajectory of the air mass. Euclidean distance clustering was used in this study; the
optimal number of clusters can be confirmed by the maximum variation of total spatial
variance in response to the number of clusters. The effectiveness of this method in studying
STE has been proven [18].
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3. Results
3.1. Dynamic Background of the RWB Event

The evolution of potential vorticity (PV) on the 370-K isentropic surface can indicate
the activity of Rossby waves near the subtropical high-level jet [44]. The amplitude of
Rossby waves characterized by 5–8 PVU contours increased from 12 to 13 March 2006
(Figure 1). On 14 March, air mass with low PV extended to the northwest near 80◦E and
high-PV air mass occupied its south side, and thus there was a negative meridional gradient
of PV instead of the conventional positive one. Hence, a cyclonic RWB event occurred. In
the early stage of RWB, the subtropical high-level westerly jet slowed down and ended
near 30◦N on 13 March. The local Eliassen–Palm flux was used to diagnose the wave–mean
flow interaction during 10–13 March (Figure 2), from which it can be seen there was a
larger center of poleward transient eddy heat flux in the subtropical westerly jet region
(pink contours >10 K·ms−1 in Figure 2), indicating that the baroclinic disturbance energy
from the westerly jet promoted the development of a Rossby wave (also seen in Figure 1
during this period). On the other hand, the convergence of the vertical component of
local Eliassen–Palm flux (black dotted contours in Figure 2, less than −5 m·s−1·day−1 near
30◦N) decelerated the subtropical westerly jet (blue shaded area at 150 hPa in Figure 2, less
than −5 m·s−1·day−1 near 30◦N) according to the matched positions and values of those
two anomalous centers. However, a corresponding relationship between the variation in
the subtropical jet and the development of the Rossby wave was not evident in the eddy
momentum flux (green contours in Figure 2). Hence, in the early stage, the eddy heat flux
played an important role in the baroclinic development of RWB as mentioned by Simmons
and Hoskins [45,46]. However, after the strongest stage of the disturbance, the occurrence
of the RWB, the westerly jet can be strengthened by the energy feedback of the RWB, the
barotropic conversion from eddy kinetic to zonal kinetic [45,46]. From 14 to 15 March, the
subtropical westerly jet in Figure 1 was reconstructed.
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Figure 1. Diurnal evolution of the PV (shaded; unit: PVU, 1 PVU = 10−6 m2·s−1·K·kg−1) and
zonal wind (contours; unit: m·s−1) on the 370-K isentropic surface at (a) 1200 UTC 12 March 2006,
(b) 1200 UTC 13 March 2006, (c) 1200 UTC 14 March 2006 and (d) 1200 UTC 15 March 2006.
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Figure 2. Zonal mean temporal variation of zonal wind (shaded; unit: m·s−1·day−1), eddy heat
flux (pink contours; interval: 10 K·m·s−1), and local Eliassen–Palm flux divergence (green contours
representing the horizontal component and black contours representing the vertical component;
interval: 2 m·s−1·day−1) between 50◦E and 70◦E from 10 to 13 March 2006.

3.2. Evolution of Thermal Structure and Ozone Concentration in the UTLS during the RWB

During the RWB in Asia in March 2006, a relatively complete STE process was de-
tected by the HIRDLS ozone observations from the Aura satellite. On 12 March, there
was a continuous high-level westerly jet greater than 30 m·s−1 on the 370-K isentropic
surface (Figure 1a). The first and second thermodynamic tropopause (tropopause folding)
were found above 35◦–40◦N on the vertical section along the satellite orbit near 70◦E at
the adjacent time, and the tropical tropopause layer (TTL) extended from the tropics to
35◦–40◦N where the discontinuity zones divided the tropospheric ozone-poor air with
static stability less than 14 K·km−1 from the stratospheric ozone-rich air with static sta-
bility greater than 16 K·km−1 (Figure 3a). When the high-level westerly jet slowed on
13 March, the air mass with low PV invaded polewards along the gap of the jet greater
than 30 m·s−1 over the Tibetan Plateau (Figure 1b). In the vertical section, the ozone-poor
air with concentrations between 100 and 400 ppbv and static stability less than 14 K·km−1

intruded polewards from the TTL tropopause to 45◦N at 150–100 hPa, and the second
thermodynamic tropopause extended to 50◦N. The meridional extent of the tropopause
folding zone, indicated by the maximum gradients of ozone concentration and stability,
extended polewards by 10◦ of latitude (Figure 3b). When the meridional gradients between
the 6–8 PVU were reversed on 14 March near (80◦E, 35◦N) where a cyclonic wave-breaking
event occurred, the low PV air with the value of 6–8 PVU invaded the Balkhash Lake region
(Figure 1c) and the high-level jet that had broken off on the previous day was restored.
In the vertical profile, the tropospheric air with ozone concentrations between 200 and
400 ppbv and static stability less than 14 K·km−1 had been transported polewards and
separated from the TTL, and the front edge of the air mass reached 50◦N in the mid-latitude
stratosphere (Figure 3c). After being cut horizontally by the polar high-PV air on the south
side, and after the tropospheric air had been surrounded by stratospheric air (ozone con-
centration greater than 400 ppbv and static stability greater than 16 K·km−1), a large-scale
TST was completed (Figure 3c). On 15 March, the jet was further strengthened following
reconstruction (Figure 1d) and the tropospheric characteristics of the air mass that entered
the mid-latitude stratosphere (ozone concentration and stability) were weakening and
were close to the environmental field including the ozone concentration and stability after
turbulent exchange and mixing (Figure 3d).
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Figure 3. Vertical sections near the RWB along the satellite track on (a) 12 March 2006, (b) 13 March
2006, (c) 14 March 2006 and (d) 15 March 2006 of the ozone concentrations from HIRDLS (shaded;
unit: ppbv), potential temperature (black contours for 330 K, 350 K, 370 K, 390 K, and 410 K) and
its vertical gradients (white contours; unit: K km−1). The black spots represent the positions of the
tropopause defined by the temperature lapse rate.

3.3. Transport Pathway and Equivalent Mass of STE

The temporal and spatial resolution of the ERA-Interim dataset is limited. Although
it could be used to analyze the dynamic mechanism of the large-scale RWB, a higher
spatiotemporal resolution of data was required to accurately evaluate the STE transport
caused by the RWB. Therefore, the WRF model, version 3.8.1, was used to conduct a high-
resolution numerical simulation of the weather process, which particularly improved the
vertical resolution of the UTLS, and a “sponge layer” with a thickness of 5 km was added
to the upper boundary. The previous work of Shi et al. 2017 [20] proved the effectiveness of
this scheme for structural simulation of the UTLS. This RWB case was also well simulated
by the WRF model (figures omitted). When we detect whether an STE occurred for an air
mass, its PV value is compared with the 7-PVU surface selected as the dynamic tropopause
of the extratropical area in the Northern Hemisphere [31].

The WRF model recreated this RWB event well. The position where the RWB occurred
in Figure 4 was situated between the locations in Figure 1c,d due to the differences of the
time in those figures. The air mass between 13 km and 15 km near the tropopause in the
black-framed area in Figure 4 was divided into 10,000 equal volumes of initial particles
for trajectory analysis. According to reference [34], the average mass of each particle
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within a local spatial range was about 9.1 × 1010 kg. The main transport pathways along
the southern or northern channels in the horizontal direction and along the upward or
downward channels in the vertical direction for the particles were found, respectively,
in Figures 5 and 6, based on clustering analysis of the forward trajectory for 42 h. The
particles in the northern branch (green dots in Figure 5) were initially located farther away
from the core of the westerly jet than those in the southern branch (bule), which is also
illustrated by the locations of the two white rectangles in Figure 7c,d. Due to the effect
of cyclonic shearing to the north of the westerly jet core, the particles in the northern
branch (green) broke away from the initial RWB region and migrated polewards. They
were transported eastwards more slowly than those in the southern branch, spanning 40◦

of longitude compared with 85◦ of longitude.
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Figure 5. Horizontal forward trajectories of the released particles determined by cluster analysis from
0600 UTC 15 March 2006 to 0000 UTC 17 March 2006. Green dots and blue dots represent the two
cluster analysis trajectories. Black dots represent the trajectory of the total mass center. The terrain
height (unit: m) is shaded.

In the corresponding vertical profile, the particles in the northern branch (green dots
in Figure 6) migrated from 32◦N to 38◦N and climbed up to 22 km from 14 km during a
period of 42 h, which is also illustrated by the air masses with PV less than 7 PVU in the
upper rectangle in Figure 7d. They were transported from the tropical troposphere to the
extratropical stratosphere by the updrafts above the maximum convergence zone caused
by the ageostrophic wind on the north side of the entrance of the downstream westerly jet
core. Thus, the eastward migration of the particles (green dots in Figures 5 and 6) with the
convergence zone and the updrafts above on the north side of the westerly jet lasted 42 h
(the northern rectangle in Figure 7c,d). After 42 h of forward transportation, 42.2% of the
total 10,000 particles were transported from the tropical troposphere to the extratropical
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stratosphere. According to the average mass of each particle, 9.1 × 1010 kg estimated
by volume, the mass of the TST was about 3.8 × 1014 kg. This result is comparable to a
case study with a TST mass of 4.9 × 1014 kg in a tropopause folding event mentioned by
Lamarque and Hess [47]. Other particles in the southern branch were transported eastwards
to 110◦E and then sank to 12 km in the tropical troposphere along the isentropic surface in
the local upper frontal area (shown in Figure 6 and the lower rectangle in Figure 7d). These
particles remained in the troposphere.
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4. Conclusions and Discussion

Accompanying active and variable high-level jets in East Asia, RWB events often
occur, which can play an important role in STE on synoptic scales. Based on satellite remote
sensing data, numerical weather modeling, and Lagrangian trajectory analysis, we took an
RWB event over the Tibetan Plateau in mid-March 2006 as an example to study the effects
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of RWB on the thermal structure and atmospheric composition near the tropopause and
the features of the STE thereafter.

The increased eddy heat flux from the subtropical high-level westerly jet led to magni-
fication of the amplitude of the Rossby wave, which was the dynamic background of the
occurrence of the RWB event. The quasi-horizontal cyclonic shear of the Rossby wave cut
the tropospheric air mass into the extratropical stratosphere, completing the stratosphere–
troposphere mass exchange. During the RWB event, the tropopause folding zone extended
polewards by 10◦ of latitude and the tropospheric air mass (ozone concentration between
100 and 400 ppbv; static stability less than 14 K·km−1) escaped from the TTL into the
extratropical stratosphere through the tropopause folding zone. The particles migrated both
eastwards and polewards in the horizontal direction, and upwards in the vertical direction along
the TST pathway. Eventually, the total mass of the TST particles was about 3.8× 1014 kg, account-
ing for 42.2% of the particles near the tropopause in the RWB event. The other particles
remained in the troposphere. They moved eastwards faster in the westerly jet and flowed
downslope along the isentropic surface in the downstream of the high-level front.

Although this study was based on an individual case analysis and may not be suffi-
ciently representative, it is nevertheless valuable and reliable that this whole process was
captured by the satellite remote sensing data. In future, we intend to identify more cases to
reveal additional features of RWB and related STE in East Asia.
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