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Abstract: Immediately after an earthquake, rapid disaster management is the main challenge for
relevant organizations. While satellite images have been used in the past two decades for building-
damage mapping, they have rarely been utilized for the timely damage monitoring required for
rescue operations. Unmanned aerial vehicles (UAVs) have recently become very popular due to their
agile deployment to sites, super-high spatial resolution, and relatively low operating cost. This paper
proposes a novel deep-learning-based method for rapid post-earthquake building damage detection.
The method detects damages in four levels and consists of three steps. First, three different feature
types—non-deep, deep, and their fusion—are investigated to determine the optimal feature extraction
method. A “one-epoch convolutional autoencoder (OECAE)” is used to extract deep features from
non-deep features. Then, a rule-based procedure is designed for the automatic selection of the proper
training samples required by the classification algorithms in the next step. Finally, seven famous
machine learning (ML) algorithms—including support vector machine (SVM), random forest (RF),
gradient boosting (GB), extreme gradient boosting (XGB), decision trees (DT), k-nearest neighbors
(KNN), and adaBoost (AB)—and a basic deep learning algorithm (i.e., multi-layer perceptron (MLP))
are implemented to obtain building damage maps. The results indicated that auto-training samples
are feasible and superior to manual ones, with improved overall accuracy (OA) and kappa coefficient
(KC) over 22% and 33%, respectively; SVM (OA = 82% and KC = 74.01%) was the most accurate AI
model with a slight advantage over MLP (OA = 82% and KC = 73.98%). Additionally, it was found
that the fusion of deep and non-deep features using OECAE could significantly enhance damage-
mapping efficiency compared to those using either non-deep features (by an average improvement of
6.75% and 9.78% in OA and KC, respectively) or deep features (improving OA by 7.19% and KC by
10.18% on average) alone.

Keywords: damage mapping; self-supervised; deep learning; unmanned aerial vehicle; earth-
quake management

1. Introduction

In the aftermath of a disaster, assessing damage, managing rescue teams, and resettling
people all require achieving an understanding of the extent of building destruction in
a timely manner [1]. Hence, it is essential to immediately produce building damage maps
for affected regions. In light of rapid acquisition and automatic analysis of large areas,
remote sensing data has gained great attention in the field of earthquake damage estimation
over several decades [2]. Although satellite data has been used for mapping damage in most
previous studies [3–9], the very high resolution of UAV data and their ability to generate
3D data, along with ease of access and cost-effectiveness, have prompted researchers
to utilize drone data to identify earthquake damage in recent years [10]. Moreover, the
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very high spatial resolution of UAV data makes it possible to detect more—and more
detailed—damage levels.

Several studies have examined building damage in the aftermath of an earthquake
using remote sensing images, and are divided into two and three categories in accordance
with event time and method, respectively. An overview of some studies that have used
aerial/UAV data can be found in Table 1. A single-temporal approach using only post-
event data is more practical and preferable to the multi-temporal approach, given that
pre-event images may be lacking, co-registration can be challenging, or geometry may
differ [11,12]. Parallel to this, a majority of studies have applied three types of methodology
to map building destruction: (1) rule-based decision, (2) machine learning, and (3) deep
learning, either object-based image processing (OBIA) or pixel-based. Applying modern
deep learning algorithms for classifying damage has two major shortcomings. The first
weak point is that these models usually require a significant amount of training on a dataset
which are challenging to prepare in time during a disaster [12]. Although deep transfer
learning has been applied [13,14] in other studies, the complexity and variety of seismic
damage poses a serious risk of poor generality to these models [15]. Further, some studies
that have adopted deep object detection methods (e.g., YOLO [16] and SSD [17]) have
demonstrated their disadvantages when they come to detecting damage in dense urban
areas. On the other hand, machine learning methods require fewer training samples and
are faster; however, compared to deep learning methods, they are unable to extract image
features automatically. Unlike the two methods discussed—although designing rules for
this complicated issue is tricky—rule-based approaches can operate more rapidly and
independent of training samples. In addition, the superiority of supervised learning meth-
ods over unsupervised ones has been demonstrated by a number of studies. Despite this
benefit, their dependence on training samples reduces their generality in practical industrial
disaster applications. Consequently, in the past few years, a great deal of attention has
been paid to reduce the number of samples that are required to train supervised algo-
rithms. In this domain, self-supervised learning has received special attention in different
remote sensing applications [13–15,18–20]. In the case of disaster management, Ghaffarian
et al. [20]—by automatic selection of training samples based on pre-event OpenStreetMap
building data—updated the required building database for damage detection.

When it comes to responding to an emergency, time, accuracy, and cost are three crucial
elements that cannot be overlooked. Nevertheless, the processing time of damage mapping
has been little reported in research up to now. To date, a number of different standards have
been introduced for the level of damage arising from an earthquake [21–26]. Among them,
EMS-98 [21] is one of the widely accepted damage standards which, in five degrees, reflects
the ideal detectable damage levels in situ by an agent. Having said this, some studies have
involving only two classes, damaged and undamaged (see Table 1). Accordingly, paying
substantial attention to damage degrees is important for more accurate destruction mapping.
On the other side, the limitation of earth observation in capturing all the information
necessary to determine inherently complex building damage makes it essential to define the
indicated damage degrees in well-known standards based on remote sensing data [10,26].
This is what we called the adaptation of the famous EMS-98 standard [21] to remote
sensing data in this study. Moreover, the amount of automation not only leads to a decline
in processing time and energy consumption but also has a significant impact on cost
reduction. As such, fully automated solutions in rescue operations are definitely highly
preferred. More importantly, as indicated in [10,27], damage mapping in two of the
foremost emergency management services (i.e., EU Copernicus [28] and Charter [29]) are
still limited to visual interpretation of high-resolution remote sensing images.

For these reasons, this study was primarily aimed at assessing the destruction that
occurred after the Sarpol-e Zahab earthquake by striking a balance between the three afore-
mentioned crisis management factors as much as possible. Particularly, the main contribu-
tions of this study are as follows.

1. Adaptation of the EMS-98 standard’s damage levels to very-high-resolution UAV images.



Remote Sens. 2023, 15, 123 3 of 19

2. Proposing a novel method for automatic selection of reliable training data needed for
consecutive supervised damage detection.

3. Presenting a rapid and local-normalized digital surface model (nDSM) for expediting
the damage mapping procedure.

4. Investigating various deep and non-deep features and the fusion of them in the
framework of eight machine/deep learning algorithms.

In the remaining sections, the proposed framework is introduced in Section 3. Next,
experimental results and discussion are reported in Section 4. Finally, Section 5 concludes
this article as well as provide outlooks of this research domain.

Table 1. Studies that have used UAV/aerial imagery to assess earthquake-induced damage, listed
by date.

Damage Level(s) Methodology Data-Resolution (m) Study

Undamaged, minor damage, and collapsed Rule-based—OBIA Arial—0.5 [30]
Intact, damage, and collapsed Machine learning—OBIA UAV—0.5 [31]

Damaged and undamaged Machine learning—OBIA Arial—0.1 [32]
Damaged and undamaged Rule-based—OBIA UAV—0.2/Arial—0.61 [11]
Intact, broken, and debris Deep learning (CNN) Arial—0.67 [33]

Intact, partially collapsed, and collapsed Deep learning
(Deeplab v2) Arial—0.5 [6]

Undamaged and debris Deep learning (SSD) Arial—0.3 [17]
Undamaged, minor damage, and debris Deep learning (CNN) Arial—0.25 [7]
0.025 m: Basically intact, slight damage,

partially collapsed, completely collapsed
0.079 m: Basically intact, partially collapsed,

completely collapsed

Rule-based UAV (orthophoto+
point cloud)—0.025 and 0.079 [34]

Slight damage, moderate damage, and
serious damage

Deep learning
(Inception V3) Arial—0.3 [35]

Collapsed Deep learning
(YOLO V3) Arial—0.5 [16]

Damaged and undamaged Deep learning (ADGAN) UAV—0.02 and 0.06 [36]
A wide range of minor to major damage Deep learning (CNN) UAV—0.09 [37]

Collapsed Faster R (CNN) UAV—0.1 and 0.15 [38]

2. Study Area and Dataset

The region of Sarpol-e Zahab in Kermanshah, Iran, was struck by an earthquake on
12 November 2017 with an intensity of 7.3 Mw. Because of this event, over 620 people were
killed and 7000 people injured. Furthermore, nearly 70,000 people lost their homes [39].
The location map of the study area, UAV-derived orthophoto and DSM, and the produced
reference building damage map encompassing previously mentioned damage levels L1–L4
are shown in Figure 1. In order to detect the earthquake-induced damage levels, about
250 UAV images were processed and two orthophoto images with ground resolution of
2.5 cm and 25 cm were produced. A similar action was carried out to produce digital surface
models (DSMs) with spatial resolution of 5 cm and 25 cm. The achieved orthophoto and
DSM with resolution of 25 cm were used as input of the proposed method while the higher
resolutions ones are used by an expert in reference map production. Further, buildings’
footprint shapefiles were prepared from a manual delineation of the corresponding pre-
event Google Earth images due to the lack of proper and updated vector data from the
Sarpol-e Zahab region. Moreover, Table 2 shows descriptions of the acquired UAV data.
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corresponding reference damage levels.

Table 2. Utilized UAV dataset specification.

UAV Device Phantom 4 Pro

Flight altitude 98.8 m
Camera FC6310

Focal length 8.8 mm
Image dimension 3648 ∗ 5472 pixel

Pixel size 2.41 µm

3. Methods

According to our adaptation of the EMS-98 standard to very-high-resolution UAV
images, four damage levels are considered in this study, including “no visible to slight
damage (L1)”, “minor damage (L2)”, “major damage (L3)” and “collapsed (L4)”. In our
adapted damage scale, L1 and L2 refer to the two first grades among the five indicated
damage grades in EMS-98. The grade L4 is the last grade in EMS-98, as well. In fact, L3
is the combination of “substantial to heavy damage (grade 3)” and “very heavy damage
(grade 4)” in EMS-98. Further information about this adaptation is discussed in Section 3.2.
The proposed method for self-supervised building damage mapping comprises three main
steps. The general framework of the presented damage detection approach is depicted in
Figure 2.
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Figure 2. The general framework proposed for producing the damage map of buildings.

In the first step, three different feature-extraction strategies are carried out to inves-
tigate their suitability for optimal detection of damage levels. These strategies embrace
extracting (1) non-deep features (NDF), (2) deep features (DF), and (3) fused deep and
non-deep features (FF). In the first strategy, in addition to the RGB bands of the orthophoto,
triangular greenness index (TGI) and Laplacian of Gaussian (LOG) are calculated from
those bands. Moreover, a novel local nDSM and black top hat (BTH) are calculated from
input DSM data. In strategy 2, a one-epoch convolutional autoencoder (OECAE) is de-
signed to extract deep features from a stacked form of the orthophoto and DSM. In the last
feature-extraction strategy, non-deep features are fed to the OECAE to achieve fused deep
and non-deep features. Subsequently, mean and standard deviation (SD) of the extracted
features for each feature-extraction strategy are calculated and fed to the classification step
as the final features. In the second step, a fully automatic procedure based on physical
and strict rules is proposed to select training samples of all the building damage levels.
In this step, a novel roof crack index and edge index are presented to facilitate designing
of efficient rules for selection of the training samples. Following that, in order to achieve
damage mapping, some AI-based classifiers—including seven machine learning methods
and a basic deep learning method—are implemented in the final step. Utilizing each of
the three mentioned feature-extraction strategies in each of the eight classifiers resulted in
a total of 24 damage maps. Eventually, the final map is made by conducting a comprehen-
sive analysis of these 24 maps. Detailed explanations of individual steps are given in the
following sections.

3.1. Feature-Extraction Strategies

In the first step, three different strategies are designed and implemented which use
unique and novel features. The list of implemented features is presented in Table 3. In
strategy 1 (NDF), RGB bands of the input orthophoto are directly considered as three
non-deep features. Additionally, according to Equations (1) and (2), TGI and BTH are
obtained from input orthophoto and DSM, respectively. In Equation (2), ‘I’ and ‘s’ refer,
respectively, to input DSM and morphological structuring element [40–42]. BTH is based on
closing morphological operations and highlights damaged areas which have instinctively
lower height than their adjacent neighborhood regions. Since a grayscale image is usually



Remote Sens. 2023, 15, 123 6 of 19

needed to extract textural features, we used Equation (3) [41] to create a panchromatic band
from our RGB image before computing LOG of the orthophoto. LOG is one of the most
robust methodologies which detects edges by identifying zero-crossing through applying
the Laplacian filter after the Gaussian filter [42]. For an image f(x, y), the final equation
of LOG can be found in Equation (4), where σ is the standard deviation of the Gaussian
function. Equation (5) defines how the nDSM feature can be calculated by subtracting DTM
from DSM, in which DTM is bare earth of the study area. Various filtering algorithms such
as Sohn filtering [43] and Axelsson filtering [44] can be implemented to obtain DTM from
DSM. In this study, alternatively, instead of using DTM for nDSM calculation, a novel local
nDSM is proposed to dedicatedly better highlight local and relative height differences in
damaged regions.

TGI= −0.5 (190 (Red − Green) − 120 (Red − Blue)) (1)

BTH(I) = closing (I, s) − I (2)

Pan = 0.2989 Red + 0.587 Green + 0.114 Blue (3)

LoG(x, y) =
−1
πσ4

[
1 − x2 + y2

2σ2

]
e(−

x2+y2

2σ2 ) (4)

nDSM = DSM − DTM (5)

Table 3. Applied features in each strategy.

Utilized Features Features Type Strategy No.

RGB bands of orthophoto, TGI, BTH_DSM,
LOG_orthophoto, novel local nDSM Non-deep features (NDF) 1

OECAE-based deep features extracted from
stacked input orthophoto and DSM Deep features (DF) 2

OECAE-based deep features extracted from
non-deep features of strategy 1

Fused non-deep/deep
features (FF) 3

Figure 3 shows the flowchart of the proposed novel local nDSM algorithm. In this
regard, it should be noted that, due to fact that only building damages is our objective, we
simply developed a fast method to calculate nDSM in these areas. For each building from
the vector map, a buffer zone is created. The associated buffering distance is equal to the
size of the average road width surrounding the corresponding building which, in our study
area, is about 10 m. Following this, we masked DSM with these buffers and then computed
the minimum value of DSM in each building. Eventually, in each building, for building
interior pixels, nDSM values are calculated by subtracting minimum values of DSM pixels
from DSM values. Consequently, we calculated nDSM locally by involving the DSM values
in buffer polygons around each building. The dominant advantage of our local nDSM
over the traditional way is preventing negative nDSM values, as well as not requiring to
calculation of DTM. Thus, the proposed local nDSM is expected to be much faster than
the existing time-consuming nDSM production process. As a result, the proposed novel
nDSM would lead to achieving more practical and operational emergency responses in
crisis management. In Section 4.1, we discuss the local nDSM in detail and compare it with
that obtained from the LiDAR extension of ENVI software.
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Contrary to non-deep features, the emergence of state-of-the-art deep neural networks
has made it possible to extract deep features (DF) automatically and more directly [45–49].
Autoencoders (AEs) are common unsupervised networks in deep learning algorithms
that basically compress the input data into a relatively lossy latent-space representation
automatically (encode part), then reconstruct the input from this representation through
the decode part [48]. In the literature, autoencoders have been used in various applications
in the field of remote sensing imagery. For instance, AE is used for speckle denoising
of synthetic aperture radar (SAR) data [50–52], target recognition [53,54], change detec-
tion [55–57], and as a non-linear dimensionality reduction technique in hyperspectral image
processing [58,59]. In recent studies, AE has received attention as an automatic feature
extractor, without any labeled training data for clustering/classification tasks required [58].
Actually, in this application, the decoder section of AE is ignored. That is why we designed
a convolutional autoencoder to extract deep features in the second strategy (DF) from the
stacked orthophoto and DSM. In addition, we should point out here that in order to speed
up the feature-extraction procedure, the number of epochs in our CAE has been set equal
to just one. Moreover, in the third feature-extraction strategy (FF), as the potential of fusing
non-deep and deep features in accuracy improvement has been confirmed in a number of
recent studies [60–62], we fed non-deep features introduced in strategy 1 through the same
AE network used in strategy 2 to get fused non-deep/deep features.

3.2. Automated Selection of Training Samples

In order to automatically select the required training samples in the four aforemen-
tioned damage degrees, a set of strict and simple rules was designed based on the adap-
tation of UAV data with the EMS-98 standard (see Table 2). First of all, since pancake
buildings are low in average height by nature and, on the other hand, have heaps of debris
which lead to considerable edges on the orthophoto, we selected training samples of the
“collapsed” class (including pancake and heap of debris) by applying a 3 m threshold
to the median of the presented local nDSM as well as a 90% threshold to the proposed
edge index. As depicted in Figure 4a, our presented edge index is based on applying the
canny edge detection operator to orthophoto in conjunction with the mean shift filter and
morphological erosion to detect more strong edges. Furthermore, since edge pixels have
a skeleton form, the OpenCV module in Python was used to highlight them. Ultimately, the
percentage of edge pixels in each building was regarded as the edge index. After that, as
anomaly in height can frequently result from noticeable damage, the remaining buildings
with a standard deviation of nDSM above 0.3 were confidently considered as having “major
damage”. Further, picking the training samples of the destruction map becomes more
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challenging when it comes to the “minor damage” class as well as the “no visible/slight
damage” for the following reasons:

• Minor damage to buildings can predominantly be seen as a noticeable amount of roof
surface cracking. Based on our examination, these cracks do not result in tangible dif-
ferences in height. In light of this, optical data should be incorporated since elevation
information of DSM is not appropriate for distinguishing L2 damage levels from L1.

• Buildings in Iran often have cracks appearing in brown spots due to roof elements
peeling away, commonly bituminous waterproof layers. The important point to be
noted here is that the resemblance of shadows and crack spots in terms of having low
orthophoto digital number value results in identifying shadows besides cracks in most
crack-detection algorithms. Therefore, because of the mentioned fact, an actually intact
building which has shadows in the image according to the illumination conditions
can be identified as crack spots by mistake. Hence, the shade of a building acts as
a destructive factor in determining minor damage to buildings.
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Figure 4. (a) The flowchart of the presented edge index, (b) the flowchart of the developed roof
crack index.

To address the problems outlined above, we put forward a novel crack index that miti-
gates the stated negative effect of shadow. For this purpose, according to our experiments,
by converting the RGB color space to the YCrCb one, cracks and shadows respectively
become lighter and darker than the majority value in the Cr band. Thus, this color space
transformation, by creating differences between shadows and crack spots, helps in identi-
fying the real cracks. So, the crack index is calculated by first converting RGB to YCrCb
and then calculating the percentage of pixels with values above the dominant value in
the Cr band plus a threshold (α) for each building (Figure 4b). Because our UAV image is
an eight-bit integer, α is taken as equal to four, which differs only a little from the majority
value. Consequently, using this novel crack index, pixels that have a negligible height
difference—i.e., their normalized SD of nDSM—between 0 and 1—is less than 0.05—but
have a perceptible amount of crack index (10%) are selected as training samples for L2
damage class, while buildings with insignificant crack index values (less than 5%) are
chosen for the L1 damage degree. Table 4 summarizes the previously mentioned rules for
auto-training samples.
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Table 4. Rules for automated selection of training samples.

Selection Rule(s) Damage Level (in Order)

Median(nDSM) < 3 and Edge Index > 90% Collapsed
Normalized_SD (nDSM) ≥ 0.3 Major Damage

Normalized_SD (nDSM) < 0.05 and Crack Index < 5% No Visible to Slight Damage
Normalized_SD (nDSM) < 0.05 and Crack Index > 10% Minor Damage

3.3. AI-Based Classification of Building Damage

In this research, seven machine learning methods as well as a basic deep learning
method have been used for classification, which are as follows: (1) SVM, (2) random
forest, (3) gradient boosting, (4) extreme gradient boosting, (5) decision tree, (6) k-nearest
neighbors, (7) adaBoost, and (8) a four-layer MLP. The multilayer perceptron is a basic
deep learning network, and the rest of them are machine learning algorithms. Additionally,
among the mentioned machine learning methods, decision trees, random forests, gradient
boosting, extreme gradient boosting, and adaBoost are kinds of ensemble learning. After
extracting features as well as an automated selection of the training samples, the mentioned
machine/deep learning methods were used to generate the building damage maps. It is
worth mentioning that, for the sake of speeding up the generation of damage map, only
the mean and standard deviation of calculated features in each building polygon were
involved in classification and obtaining of damage level maps.

4. Results and Discussion

The implementation of proposed damage detection method includes three main
steps: feature extraction, automatic training sample selection, and optimal damage map
production. In the first step, the mentioned features are produced, among which the
proposed local nDSM plays a key role. Therefore, its performance and comparison with
a widely used nDSM based on conducting point cloud filtering in ENVI LiDAR software is
presented and discussed. Afterwards, performance of automatic training sample selection
is evaluated in the second part along with a discussion of the effect of the proposed local
nDSM on it. The last subsection of this part comprises the resultant damage maps, followed
by assessing the accuracy of them. The produced damage maps were validated using
popular accuracy evaluation criteria derived from the confusion matrix, including overall
accuracy, kappa coefficient, user accuracy (UA), and producer accuracy (PA). Moreover,
evaluation of damage mapping in terms of feature-extraction strategies (NDF, DF, and
FF) and type of classification algorithm is also presented in this step. Furthermore, since
this study relies on automated training samples, a comparison of the accuracy of these
automated training samples against manually selected ones is presented at the end of this
section. All of the implementations were accomplished using the Python language and
TensorFlow framework on a system with a Core (TM) i7-10870H CPU running at 2.20 GHz
and 16GB RAM.

4.1. Features Production

With the aim of evaluating the impact of the feature extraction method on damage
mapping, required features for classification were extracted using three strategies embrac-
ing non-deep features (NDF), deep features (DF), and fused non-deep/deep features (FF).
During NFD extraction, a disk kernel with a 7-pixel radius was used to calculate BTH of
DSM. For LOG computing, a 3-by-3 window size was used for the Gaussian filter. For
local nDSM, we considered buffer size equal to 10 m based on the average road width
of our study area. Additionally, we evaluated the time efficiency and accuracy of our
proposed local nDSM against nDSM derived in ENVI LiDAR software, version 5.3. For
this purpose, we produced the DTM by first filtering sparse point clouds of the study area
(density = 94.49 points per square meter), and then gridding it in Global Mapper software
using the “DTM” gridding method. Subsequently, nDSM was produced according to (5).
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We applied “Urban Area Filtering” as well as “Height at Average Roof” modes for filtering
UAV-derived point clouds in ENVI LiDAR, while other parameters were left as default.
Our empirical results indicated that nDSM generation based on ENVI LiDAR takes 65.7 s,
whereas the proposed local nDSM produces it in only 5.6 s. As such, our method has
been able to speed up nDSM production by 91.47%. Figure 5 compares these two nDSM
production strategies, demonstrating the superiority of our local nDSM over ENVI. It can be
seen that ENVI nDSM mostly deformed height changes in some areas and mostly removed
debris areas, whereas local nDSM highlights debris and has a similar elevation form to
DSM. Moreover, despite the fact we generally expect negligible height variance for intact
buildings, ENVI nDSM caused elevation difference for some “no damage” buildings such
as zoomed building 2 in Figure 5c. According to Figure 5c, in comparison with ENVI nDSM,
the proposed local nDSM normalizes elevation more closely to DSM and yields a more
reliable elevation difference in all damage levels. Hence, from the perspective of being both
time-efficient and highly accurate, the novel local DSM can have an enormous impact on
damage mapping. Therefore, it can be deduced that the proposed local nDSM is well-suited
to produce an efficient height feature in order to enhance the damage detection process.
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In addition, according to Section 3.1, we designed a one-epoch autoencoder network
for DF and FF feature-extraction strategies. Utilized hyperparameters can be found in
Table 5.

Table 5. The set hyperparameters for the designed convolutional autoencoder in feature extrac-
tion part.

Hyperparameter Value

Optimizer Adam
Loss Mean Squared Error (MSE)

Learning rate 0.001
Number of epochs 1

Batch size 128

The detailed structure of OECAE is represented in Table 6, in which N refers to the
number of images that the stacked form of which are fed into CAE. According to Table 3, N
is equal to 4 and 7 for DF and FF, respectively. In addition, the batch size hyperparameter
is considered to be 128. In this network, Batch Normalization (BN) layers are employed
to accelerate the process of network learning [61]. Additionally, dropout regularization
layers with a value of 30% are applied which, by ignoring random connections, reduces
overfitting and promotes the generalization ability of our OECAE [62].

Table 6. The configuration of the designed convolutional autoencoder for feature extraction.

Block Unit Input Shape Kernel Size Output Shape

Encoder

Conv2D+ReLU+BN+Droput
Conv2D+ReLU+BN+Droput

Flatten
Dense

8 × 8 × N
4 × 4 × 32
2 × 2 × 64

1 × 1 × 256

3 × 3
3 × 3
2 × 2
1 × 1

4 × 4 × 32
2 × 2 × 64

1 × 1 × 256
1 × 1 × 15

Decoder

Dense
Reshape

Conv2D+ReLU+BN
Conv2D+ReLU+BN

Conv2+Dropout+Sigmoid

1 × 1 × 15
1 ×1 × 256
2 ×2 × 64
4 × 4 × 64
8 × 8 × 32

1 ×1
2 × 2
3 × 3
3 × 3
1 × 1

1 × 1 × 256
2 × 2 × 64
4 × 4 × 64
8 × 8 × 32
8 × 8 × N

4.2. Implementation of Automatic Training Samples Selection

Figure 6a shows the automated selected training samples in four damage levels
derived by using local nDSM and the designed strict rules according to Table 4. The chosen
training samples consist of 101 buildings out of 200. The accuracy of selected training
samples is evaluated regarding the prepared ground truth of damage levels (Figure 1d).
Figure 6c, reveals that the combined use of designed simple rules and local nDSM results
in a satisfactory 93.07% overall accuracy and 88.61% kappa coefficient in selecting training
samples automatically. In other words, the proposed strict rules have been able to detect
the damage level of about half of the buildings with high accuracy. Notably, we will use
these buildings as training samples to identify the damage class of the rest buildings, which
are in the “none” class in Figure 6a, by utilizing AI-based classification algorithms. In fact,
instead of pixel-level labels, our labels are polygon-level, which are faster at processing
and easier to obtain, but may lose some information as a result. In addition, in terms of
class accuracy, the opted strategy has reached 100% user accuracy for both “minor damage”
and “major damage”. In addition, the produced accuracies of two other damages of “no
visible to slight damage” and “collapsed damage” are 100%. So, L4 and L1 are, in order,
the most and the least accurate damage levels which are selected automatically. The fact is
that “collapsed” buildings are the most distinguishable and easily recognizable due to their
distinct characteristics—either less median nDSM or heap of debris. On the other hand, as
discussed in Section 3.2, detection of “no visible damage level” is challenging due to its
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nature. On top of these, as nDSM-based elevation information—median and SD—were
majorly applied in training sample selection, we examined the effect of novel local nDSM
on it against to ENVI nDSM. Broadly speaking, with regard to Figure 6b,c, selected training
samples based on local nDSM were by far more accurate than ENVI nDSM. Indeed, using
ENVI LiDAR-derived nDSM in place of proposed local nDSM in this application could
result in a substantial drop in overall accuracy of 34.51% as well as a sharp decrease in
kappa coefficient by 19.62%. More surprisingly, no training samples for the “minor damage”
level is chosen when applying ENVI nDSM, as can be seen in Figure 6b,c.
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Figure 6. Automated selection of training samples: (a) detected training samples with applying novel
local nDSM, (b) selected training samples with applying ENVI LiDAR nDSM, (c) accuracy assessment.

4.3. Damage Mapping and Evaluation

After features extraction and preparing training samples automatically and with the
assistance of local nDSM, we examined eight AI-based learning algorithms on damage level
detection. Table 7 indicates the hyperparameters used for each classification algorithm. It is
worth noting that these parameters are set experimentally, and also that other parameters
are left as are by default of the Sklearn library in Python. Consequently, 28 damage maps
in four levels, L1–L4, were achieved, of which the optimal and the worst per three feature
strategies are illustrated in Figure 7. Further, the accuracy of the produced building damage
maps based on four reputable criteria, including OA, KC, UA, and PA, are represented in
Figure 8.
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Table 7. The set hyperparameters for each learning method.

Learning Algorithm Hyperparameters

SVM C = 100, kernel = ‘poly’, degree = 2, gamma = ‘auto’, coef0 = 0.1, random_state = 0
RF n_estimators = 200,max_depth = 10, random_state = 0
GB n_estimators = 5000, learning_rate = 0.1, max_depth = 1, random_state = 0

XGB n_estimators = 5000, max_depth = 10
DT max_depth = 2, random_state = 0, min_samples_leaf = 5

KNN n_neighbors = 2
AB n_estimators = 5000, random_state = 0, learning_rate = 0.1

MPL hidden_layer_sizes = (20,15), random_state = 0, verbose = True, learning_rate_init = 0.03, max_iter = 5000
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Based on the Mean Squared Error (MSE- (6)) loss function, the loss of designed CAE
reached 0.02 in both DF and FF feature-extraction strategies. In Equation (6), n: number of
data points, yi: observed values, and ŷi: predicted values.

MSE =
1
n ∑n

i=1(yi − ŷi)
2 (6)

Darker graphs in Figure 8a refer to the overall accuracy and lighter ones are connected
to the kappa coefficient. Figure 8a,b vividly demonstrates the higher OA and KC of
fused non-deep/deep features (FF) over the two other feature-obtaining strategies for all
eight classification methods. In other words, in comparison to NDF, FF is able to produce
more accurate damage maps of buildings with an average improvement of 6.75% and 9.78%
in OA and KC, respectively. On top of this, feature fusion has improved the OA and KC of
damage level detection by, respectively, 7.19% and 10.18 % on average compared to using
non-deep features alone. So, combining deep and non-deep features could strengthen the
damage mapping accuracy more rather than specifically and merely employing pure deep
features. In spite of this result, deep and non-deep features both show unstable patterns
of accuracy improvement over AI-based predictors. Another striking finding is that the
performance of adaBoost was the lowest across all three scenarios of feature extraction. Over
and above that, SVM and MLP both exhibited the highest overall accuracy when fusing
non-deep and deep features (82%). Additionally, their kappa coefficients were too close,
74.01% for SVM and 73.98% for the other. Hence, among eight classification algorithms,
SVM is the most accurate method with a slight superiority over MLP. This implies that
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a simpler machine learning algorithm such as SVM, in this case, can correspond to a more
sophisticated deep learning classifier, of which MLP is one of its basic methods. Moreover,
since the SVM algorithm achieved the most accurate damage map, we calculated both the
user’s accuracy and the producer’s accuracy merely for three damage maps associated
with this learning method to determine the effect of the feature-extraction strategy on
detecting each level of damage. So, according to Figure 8c, the general trend of UA and PA—
except for producer accuracy of L1 and L4—proves the dramatic damage class accuracy
escalation that is achieved by fusing non-deep and deep features (FF) against NDF and DF
feature-extraction strategies.

Additionally, similar to what was concluded and examined in Section 3.2, in all
three feature-extraction strategies, L4 and L1 had the most and the least user and producer
accuracy. In addition, taking into account all results prove that merely employing the mean
and SD of each feature’s value in lieu of engaging all of them can result in hopeful accuracy
in addition to quicker processing. Aside from that, the efficiency of setting just one epoch
for deep feature extracting (DF and FF strategies) can be concluded.

Elapsed time for the self-supervised damage mapping methodology put forward can
be found in Table 8. As this table shows, while extracting non-deep features only takes only
up to 10 s, deep features and fused features require more time. Therefore, regarding the FF
as well as SVM which are, respectively, the most accurate feature strategy and classification
method based on experimental results, the proposed damage level detection framework
takes 4 min and 20.6 s in total. As this time is related to CPU processing by a normal laptop
with the previously stated characteristics, the processing time of the developed damage
mapping method could be reduced by GPU processing. Furthermore, regardless of feature-
extraction strategy, the automatic selection of training samples plus the classification of
damage degrees accounts for only 18.6 s of the damage mapping procedure. This result
arises from simplicity of the designed strict selection rules for training samples as well as
utilizing only mean and SD of features in each building polygon.

Table 8. Processing time of proposed self-supervised method for mapping building damage for each
feature-extraction strategy.

Automated Training
Samples Selection
and Classification

Feature-Extraction Strategy

18.6 s FF = 4 min 2 s DF = 2 min 55 s NDF = 9.8 s

4.4. Automatic vs. Manual Training Samples

Since we selected all the required training samples with any supervision, the proposed
approach has a high level of automation. In this regard, it is worth exploring the impact of
the type of training sample. Considering this, we compared the efficiency of the automated
training samples with manual ones. As the combination of FF feature extraction and SVM
gained the optimal damage map (see Figure 8a,b), we used this approach and considered
four different train/test ratios of manual training data, including 50/50%, 60/40%, 70/30%,
and 80/20%. The manual training samples were selected randomly from ground truth data.
We iterated damage mapping with random manual training samples 50 times, and report
the median of accuracies in Table 9.

Table 9. Comparison of automated training samples with manual ones.

Manual Training Samples
(Train/Test Ratio %)

Automated
Training Samples

50/50 60/40 70/30 80/20

OA (%) 64 65.85 65.57 60 82
KC (%) 49 50.86 51.36 40.79 74.01
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According to Table 9, it is evident that, compared to the manual selection of training
samples, the automatic selection of samples has dramatically improved the overall accuracy
and kappa coefficient of damage mapping by over 22% and 33%, respectively. This result
reflects the considerable ability of the designed strict rules in opting for more discriminant
samples which result in more inter-class variances over the four mentioned damage degrees.
As a result, the automated training samples scenario outperforms manual training data
with all train/test ratios. Essentially, data annotation for prediction is an elaborate and time-
consuming part of supervised classification, particularly in large-scale studies. Addressing
this issue would be more vital when it comes to time-sensitive actions such as damage
assessment. This issue will even be intensified if more class numbers are added, which
makes self-supervised damage level detection more intricate. Another point is the high
variance within classes caused by the wide variety of possible damage to buildings, making
damage mapping more cumbersome. That is why we test and validate the capability
of auto-training samples for damage mapping in this section. In conclusion, the results
in this section clarify that our suggested method for generating the damage map after
an earthquake, based on auto-training samples and fusing deep and non-deep features
using the OECAE network, is time-efficient, accurate, and cost-effective. It is for this reason
that the proposed approach in this study could have a large contribution to bridging the
gap of applying remote-sensing-based damage detection for timely hazard management
and rescue processes.

5. Conclusions and Future Research

Practically speaking, there are few studies that have investigated post-earthquake
building damage detection. From an operational perspective, a damage mapping method
should be efficient in terms of time, accuracy, and cost. Our proposed method boosted
the automation of damage detection through the automatic selection of training samples,
with an overall accuracy of 93.07%, using physical characteristics of damage degrees with
respect to the reputable EMS-98 damage standard. Furthermore, we designed a one-epoch
autoencoder network that showed promising results in prompting feature extraction. All in
all, we generally explored the effect of the following factors on building damage mapping
after an earthquake: (1) feature type, (2) learning method, and (3) method used to select
training samples (by the user or automatically). Our results verified that the fusion of
non-deep and deep features can significantly enhance the accuracy of the damage map.
The remarkable near-accuracy of simple machine learning methods, such as SVM, to
deep MLP algorithms was also revealed, both with an overall accuracy of 82%. For these
reasons, our solution allows for more actionable damage mapping by following three steps:
(1) automatic selection of required training samples, (2) feature extraction by synergic
use of deep and non-deep features, and (3) detecting damage level by means of a simple
classification algorithm such as SVM or MLP. Similar to many previous related studies, we
conducted an accuracy assessment based on legendary accuracy indices. As these indices
are merely mathematical, novel adapted accuracy indices should be developed in future
studies for the practical evaluation of different damage mapping methods. The probability
of various forms of damage occurring to buildings, itself being associated with the natural
complexity of earthquake damage, leaves abundant space for further progress in this field.
To begin with, further studies with more focus on tackling destructive objects in damage
detection—especially trees, chimneys, and shadows—need to be undertaken for more
accurate mapping. In addition to this, since the inner extent of building polygons was
analyzed for damage detection, a damaged building may appear with any damage sign
on the orthophoto; thus, it would be beneficial to use heaps of debris around individual
buildings in the post-processing of damage maps. Last but not least, it would be a great idea
to apply and evaluate the proposed self-supervised methodology to other geographical
locations as well as boost the designed rules for automated training samples selection
if needed.
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