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Abstract: The accurate classification of tree species is essential for the sustainable management of
forest resources and the effective monitoring of biodiversity. However, a literature review shows
that most of the previous unmanned aerial vehicle (UAV) light detection and ranging (LiDAR)-based
studies on fine tree species classification have used only limited intensity features, accurately identi-
fying relatively few tree species. To address this gap, this study proposes developing a new intensity
feature—intensity frequency—for the LiDAR-based fine classification of eight tree species. Intensity
frequency is defined as the number of times a certain intensity value appears in the individual tree
crown (ITC) point cloud. In this study, we use UAV laser scanning to obtain LiDAR data from urban
forests. Intensity frequency features are constructed based on the extracted intensity information,
and a random forest (RF) model is used to classify eight subtropical forest tree species in southeast
China. Based on four-point cloud density sampling schemes of 100%, 80%, 50% and 30%, densities
of 230 points/m2, 184 points/m2, 115 points/m2 and 69 points/m2 are obtained. These are used to
analyze the effect of intensity frequency on tree species classification accuracy under four different
point cloud densities. The results are shown as follows. (1) Intensity frequencies of trees are not
significantly different for intraspecies (p > 0.05) values and are significantly different for interspecies
(p < 0.01) values. (2) The intensity frequency features of LiDAR can be used to classify different tree
species with an overall accuracy (OA) of 86.7%. Acer Buergerianum achieves a user accuracy (UA) of
over 95% and a producer accuracy (PA) of over 90% for four density conditions. (3) The OA varies
slightly under different point cloud densities, but the sum of correct classification trees (SCI) and
PA decreases rapidly as the point cloud density decreases, while UA is less affected by density with
some stability. (4) The priori feature selected by mean rank (MR) covers the top 10 posterior features
selected by RF. These results show that the new intensity frequency feature proposed in this study can
be used as a comprehensive and effective intensity feature for the fine classification of tree species.

Keywords: tree species classifications; unmanned aerial vehicle (UAV); LiDAR; point cloud;
intensity frequency

1. Introduction

The classification of tree species for research on forest inventory [1], carbon storage
assessment [2], habitat [3], and ecosystem changes [4] is crucial. Remote sensing data have
characteristics such as simultaneous monitoring and repeatability over large areas, which
can provide landscape-scale perspectives and forest structure information [5], offering an
excellent advantage for large-scale tree monitoring, mapping, and assessment. Therefore,
remote sensing technology has become essential for interpreting biodiversity information.
How to classify tree species from remote sensing data has been a trending research topic
both in China and abroad.
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Obtaining forest tree species information through remote sensing usually requires
direct and indirect methods [6]. The direct methods directly classify species, community
types, and abundance with data based on high spatial or spectral resolution. The spatial
resolution of the data often reaches the individual tree scale or even the leaf scale to perform
ITC detection [7–9]. Studies have shown that tree species classification accuracy of more
than 80% can be achieved by using data with spatial resolution at the leaf scale and spectral
resolution of 3–10 nm [8,10]. The indirect methods refer to the acquisition of derived
variables such as the normalized difference vegetation index (NDVI) and the enhanced
vegetation index (EVI) from remote sensing data [11]. The variables are then combined
with field data to construct models to classify tree species. Light detection and ranging
(LiDAR) is a remote sensing technology that can be employed to obtain the three-dimensional
geographic coordinates of a research object, especially information relating to vertical struc-
ture, directly, quickly and accurately [12]. It can also guarantee the efficient and accurate
monitoring of a target from different spatial scales [13]. LiDAR works by recording the
transmitted and echoed signals of high-frequency pulses capable of penetrating the vege-
tation canopy gaps [13]; these signals are then compared and appropriately processed to
obtain parameters such as the distance, coordinates, and height of the target [14]. Therefore,
LiDAR can be used for studies on tree height [15], canopy density [16], leaf area index [17],
individual tree detection [18,19] and tree species classification [20].

From a sensor perspective, there are three common approaches to tree species classifi-
cation when using LiDAR: using a single LiDAR to extract features such as structure and
intensity to classify tree species; using multiple LiDAR to extract structural and intensity
features, vegetation index features, etc., to classify tree species; and using LiDAR with other
sensors (e.g., multispectral, hyperspectral) to extract structural features, spectral features,
vegetation index features, etc., to classify tree species. The first data processing approach
is relatively simple, and the potential errors in data caused by sensor differences can be
avoided, but the classification accuracy is limited. For example, Ørka et al. (2007) [21]
constructed mean intensity features and intensity standard deviation features of ITC based
on multi-echo data from a single LiDAR and classified tree species by principal compo-
nent analysis and linear discriminant analysis with a classification accuracy of 68–74%.
Vaughn et al. (2012) [22] used a support vector machine (SVM) to classify five tree species
in the Pacific Northwest of the United States based on the structural information and
average intensity information provided by discrete point LiDAR data, with an overall
accuracy of 79.2% (kappa = 0.74). Hamraza et al. (2019) [23] also used LiDAR intensity
information to classify needles and broadleaf trees, and their classification accuracy was
65–90%. The second approach, i.e., based on a combination of multiple LiDAR data, has
greater potential for accuracy and quantity of tree species classification but also suffers
from relatively cumbersome data collection and processing, in addition to potential errors
due to discrepancies in data from different sources. For example, Korpela et al. (2010) [24]
realized the classification of three tree species in Finland based on two kinds of LiDAR data,
with an accuracy of 88–90%. Vaughn et al. (2012) [22] combined airborne waveform LIDAR
with discrete point LIDAR to improve the overall accuracy from 79.2% (kappa = 0.74) to
85.4% (kappa = 0.817) for five species. Brindusaet (2018) [25] constructed intensity features
and vegetation index features to classify ten tree species based on intensity information
from LiDAR at 1550 nm, LiDAR at 1064 nm, and LiDAR at 532 nm with an accuracy
of 57.6–90.6%. The third approach uses LiDAR with other sensors (e.g., multispectral,
hyperspectral) to classify tree species [26]. This method can fully obtain vegetation spectral
and structural information to classify tree species accurately. However, LiDAR data are
often used as secondary information. Combining the homo-spectral and hetero-spectral
features of optical remote sensing data limits the accuracy of tree species classification
to some extent. For example, Shi et al. (2018) [27] used a random forest classification
model to classify 15 common urban tree species by combining structural parameters ex-
tracted from LiDAR data and a vegetation index extracted from hyperspectral data, with
an overall accuracy of 70%. Kukkonen et al. (2019) used multispectral and airborne LiDAR
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data to predict three tree species in eastern Finland, with an overall accuracy of 88.2%
(kappa = 0.79) [28]. Moreover, hyperspectral sensors are expensive compared with LiDAR
sensors, and data processing is more complicated.

In addition to precise 3D coordinates, most LiDAR systems also record “intensity”,
loosely defined as the strength of the backscattered echo for each measured point. LIDAR
intensity data have proven beneficial in species community classification and richness
estimation because they are related to surface parameters such as reflectance [29,30]. How-
ever, a literature review shows that most previous studies on the fine classification of tree
species based on UAV LiDAR based on limited intensity features and fewer tree species.
Korpela et al. (2010) [24] and Heinzel and Koch (2011) [31] derived intensity features such
as Imean, Istd, Iskewness and Ikurtosis, which represent the mean, standard deviation,
skewness and kurtosis of the intensity values for all of the laser points within a crown.
Tomohiro et al. (2017) [32] derived intensity image features, which represent RGB images
generated using LiDAR intensity. Brindusaet et al. (2018) [25] derived PE, IR, D1_2, RM,
and NDIR, which represent the intensity value at percentiles, the standard deviation of the
mean intensity of each ring after dividing the tree point cloud into rings, the difference
of intensity between the first and second returns of the same pulse in the same channel,
the ratio between different statistics, and the infrared normalized difference vegetation
index. Therefore, how to use LiDAR intensity for fine tree species classification is a problem
worth studying. To further explore the intensity of data-based tree species classification, we
propose the concept of intensity frequency. Intensity frequency is defined as the number of
times a certain intensity value appears in the ITC point cloud.

Currently, the single-echo scanning speed for mainstream commercial LiDAR ranges
between 100,000 and 500,000 points/s. Reducing the number of laser points emitted per
second can reduce the power consumption per unit time and improve the efficiency of data
acquisition, but it will affect the intensity frequency of ITC.

In this study, eight major tree species in the study area are used as objects, and
147 intensity frequency features are constructed based on unmanned aerial vehicle laser
scanning (UAV) data for tree species classification using a random forest (RF) model. The
accuracy of tree species classification at four different point cloud densities is analyzed.

Our overall aim was to gain an understanding of the species discrimination potential
of intensity frequency features. The specific research aims were to:

1. Describe the differences of intensity frequency between interspecies and intraspecies;
2. Demonstrate the ability of intensity frequency feature in tree species classification;
3. Quantify the effects of point cloud density in species classification;
4. Examine the consistency between feature selected by MR and feature selected by RF.

2. Study Area and Method
2.1. Study Area

The study area is located on the East Lake campus of Zhejiang A&F University,
Lin’an District, Hangzhou City, Zhejiang Province, China, as shown in Figure 1. The
East Lake campus covers an area of 1.3 km2. The main tree species include Ginkgo Biloba,
Acer Buergerianum Miq, Cinnamomum Camphora, Magnolia Grandiflora, Celtis Sinensis Pers,
Glyptostrobuspensilis, Michelia Figo, and Salix Babylonica, which are common green tree
species in cities in subtropical regions.



Remote Sens. 2023, 15, 110 4 of 22Remote Sens. 2023, 15, 110 4 of 22 
 

 

 

Figure 1. (a,b) show the geographical location of the study area. (c) is the distribution of the eight 

tree species. (d) is the diagram of LiDAR data acquisition, and (e) is a schematic diagram of the 

LiDAR slices of G.B. 

2.2. Field Data 

An urban forest is mainly characterized by blocks, strips, and individual trees, with 

a fragmented distribution and heterogeneous understory, which is very different from a 

large and continuously distributed forest in the general sense [33,34]. In this study area, 

there are more trees in a strip distribution, and the understory vegetation is mostly low 

shrubs and herbaceous plants. Based on the above characteristics, 19 sample strips were 

established in the study area for ground surveys using a UAV. The ground survey classi-

fied 1106 trees and eight species, namely, Ginkgo Biloba (G.B: n = 489), Michelia Figo (M.F: 

n = 91), Cinnamomum Camphora (C.C: n = 191), Celtis Sinensis Pers (C.S: n = 56), Acer Buer-

gerianum Miq (A.B: n = 73), Salix Babylonica (S.B: n = 91), Glyptostrobuspensilis (G.L: n = 68), 

and Magnolia grandiflora (M.G: n = 47). Standing trees with a diameter at breast height 

(DBH) greater than 5 cm were measured in each strip. Measurements included individual 

tree position, species, height, canopy height, and crown radius due north and south. The 

DBH of the individual trees was measured using a DBH ruler. We use two real time kin-

ematics (RTKs) of the same model (CHC i70), one as a reference station and one as a mo-

bile station to measure the position of the tree. Treetop height was measured using a 

Blume–Leiss altimeter. Since UAV observations are carried out from top to bottom, there 

is a small probability that individual trees in the middle and low layers will be detected 

by a single-echo UAV [35,36]. The lower and middle vegetation is often not the same spe-

cies as those studied here, which will directly increase the intensity complexity and make 

tree species classification more difficult. Therefore, these individual trees were automati-

cally excluded from the data analysis and tree species classification process of this study. 

2.3. LiDAR Data Acquisition and Processing 

In this study, a DJI Matrice 600 Pro six-rotor UAV was used as the remote sensing 

platform, equipped with a lightweight Velodyne Puck LITE™ LiDAR sensor and com-

bined with a ground CHC i70 RTK receiver measurement system for data acquisition, as 

shown in Figure 1d. Due to equipment constraints, the main LiDAR data were obtained 

on 17 April 2021, and supplements were obtained on 15 May 2021. The tree species G.B, 

M.F, C.C, A.B, S.B, G.L, and M.G are segmented as ITC using LiDAR data from 17 April; 

C.S is segmented as ITC using LiDAR data from 15 May. During the flight, the UAV had 

Figure 1. (a,b) show the geographical location of the study area. (c) is the distribution of the eight tree
species. (d) is the diagram of LiDAR data acquisition, and (e) is a schematic diagram of the LiDAR
slices of G.B.

2.2. Field Data

An urban forest is mainly characterized by blocks, strips, and individual trees, with a
fragmented distribution and heterogeneous understory, which is very different from a large
and continuously distributed forest in the general sense [33,34]. In this study area, there are
more trees in a strip distribution, and the understory vegetation is mostly low shrubs and
herbaceous plants. Based on the above characteristics, 19 sample strips were established in
the study area for ground surveys using a UAV. The ground survey classified 1106 trees and
eight species, namely, Ginkgo Biloba (G.B: n = 489), Michelia Figo (M.F: n = 91), Cinnamomum
Camphora (C.C: n = 191), Celtis Sinensis Pers (C.S: n = 56), Acer Buergerianum Miq (A.B: n = 73),
Salix Babylonica (S.B: n = 91), Glyptostrobuspensilis (G.L: n = 68), and Magnolia grandiflora
(M.G: n = 47). Standing trees with a diameter at breast height (DBH) greater than 5 cm were
measured in each strip. Measurements included individual tree position, species, height,
canopy height, and crown radius due north and south. The DBH of the individual trees
was measured using a DBH ruler. We use two real time kinematics (RTKs) of the same
model (CHC i70), one as a reference station and one as a mobile station to measure the
position of the tree. Treetop height was measured using a Blume–Leiss altimeter. Since UAV
observations are carried out from top to bottom, there is a small probability that individual
trees in the middle and low layers will be detected by a single-echo UAV [35,36]. The
lower and middle vegetation is often not the same species as those studied here, which will
directly increase the intensity complexity and make tree species classification more difficult.
Therefore, these individual trees were automatically excluded from the data analysis and
tree species classification process of this study.

2.3. LiDAR Data Acquisition and Processing

In this study, a DJI Matrice 600 Pro six-rotor UAV was used as the remote sensing
platform, equipped with a lightweight Velodyne Puck LITE™ LiDAR sensor and combined
with a ground CHC i70 RTK receiver measurement system for data acquisition, as shown
in Figure 1d. Due to equipment constraints, the main LiDAR data were obtained on
17 April 2021, and supplements were obtained on 15 May 2021. The tree species G.B, M.F,
C.C, A.B, S.B, G.L, and M.G are segmented as ITC using LiDAR data from 17 April; C.S
is segmented as ITC using LiDAR data from 15 May. During the flight, the UAV had an
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average flight height of 60 m, an average flight speed of 8 m/s, and a flight path spacing
of approximately 25 m, and the lateral overlap rate of data sampling was approximately
50%. The sensor recorded a laser pulse wavelength of 903 nm, maximum scanning angle of
±15◦, scanning frequency of 20 Hz, and scanning speed of 300,000 points/s. Considering
that the multiple echoes of LIDAR may cause interference in the intensity frequency, we
only selected the first echo information. The average point cloud density was obtained
using the total number of point clouds after denoising, divided by the area, which was
230 points/m2. The detailed LiDAR parameters are listed in Table 1.

Table 1. Summary of remote sensing data acquisition information.

Parameters Information Parameters Information

Sensor Velodyne Puck LITE ™ Ranging Accuracy 3 cm
Date of Acquisition 2021.4.17, 2021.5.15 Mean Point Density 230 points/m2

Height 60 m Wavelength 903 nm

As shown in Figure 2, the preprocessing of LiDAR data includes the original point
cloud decomposition, denoising, separation of ground points, and normalization. The
process is as follows: The LiDAR data, GNSS antenna data, and ground CHC i70 RTK data
are processed in the accompanying commercial software Inertial Explorer, and then the
LAS point cloud is exported in ZtLiDAR V2.2.0 software. In this paper, the point cloud
format is LAS1.4. Then, the noises were denoised, including the very high point caused
by other low-flying UAVs or birds and the very low point formed by the computational
anomalies, and then the denoised point clouds were separated from the ground points and
normalized in the LiDAR360 software.
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Figure 2. (a) Slice of the point cloud after decoding the raw data; (b) slice of the point cloud after
denoising; (c) slice of the separated ground point cloud; and (d) slice of the normalized point cloud.

2.4. ITC Information Acquisition
2.4.1. Extraction of ITC

In this study, the point cloud segmentation (PCS) algorithm was used for ITC
extraction [37]. It is a top-to-bottom region-growing approach used to segment trees
individually and sequentially from the point cloud [8]. The algorithm starts from a tree top
and “grows” an individual tree by including nearby points based on the relative spacing.
Points with a spacing smaller than a specified threshold were classified as the target tree,
and the threshold was approximately equal to the crown radius [8]. Additionally, the
shape index (SI) was added to improve segmentation accuracy by avoiding the elongated
branch. The PCS algorithm was implemented using LiDAR360 software, and the space
threshold was set as the corresponding average crown diameter of each tree species. The
segmentation result was a single point cloud cluster tree, and each point cloud in the same
cluster tree had the same tree ID. Finally, the crown of each tree was obtained by filtering
ground points and low vegetation points through height filtering, and the height filtering
threshold was set to 2 m.
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The accuracy of segmentation is evaluated by using the following three metrics: recall
(r represents the tree detection rate in Equation (1)), precision (p represents the precision of
detected trees in Equation (2)), and F1-score (F1 presents the overall accuracy taking both
omission and commission into consideration in Equation (3)).

r =
Nt

Nt + No
(1)

p =
Nt

Nt + Nc
(2)

F1 = 2× r× p
r + p

(3)

where Nt is the number of objects correctly identified as trees, No is the number of trees
omitted by the PCS algorithm, and Nc is the number of objects wrongly identified as trees.

2.4.2. Intensity Correction of ITCs and Resampling

The LiDAR intensity depends on the power of the backscattered laser pulse measured
by the sensor [38]. According to the radar equation, during transmission, the LiDAR inten-
sity is mainly affected by the spectral reflectance of the surface (ρ), the sensor receiving the
emitted laser power (PE), the LiDAR optical transmission characteristics (ηsys), the distance
(R), the angle of incidence (θ), the receiver aperture diameter (D), and the atmospheric
attenuation (ηatm) [39]. To reduce the intensity errors in the transmission process caused
by the above factors, we model the relationship between the intensity values and the
system variables from the LiDAR equation. For the extended Lambert scatterer, the LiDAR
equation can be simplified to Equation (4) [40].

Pr =
πPEρD2

(4R2)
ηatmηsys|cos θ| (4)

where ρ is the spectral reflectance of the surface. PE, D, ηsys, and ηatm are assumed to be
constant C during the same flight [41]. This leads to Equation (5).

Pr = C
ρ

R2 |cos θ| (5)

C =
πPED2

16
ηatmηsys (6)

From Equation (5), the LiDAR equation relates the received power Pr to the system
variables (R, θ), so the relationship between the intensity value I and the system variables
can be converted into the relationship between the intensity value and the received power Pr.
Inside the LiDAR receiver, Pr is finally converted into a calibrated integer (digital number,
DN), and this integer is the intensity value I in raw point cloud data. The logarithmic
correction model of the laser intensity value proposed by Tan et al. (2014) [40]. To modify
the influence of different incident angles at different distances on the LiDAR intensity the
logarithmic correction model is selected. The logarithmic model assumes that the receiver
converts the received power logarithmically and then converts it to the laser intensity value,
as in Equation (7):

I + τ = K1lnpr + K2 (7)

where I is the uncorrected intensity value and K1 and K2 are model coefficients.
The purpose of the intensity correction is to correct the intensity for the variables (R,

θ), so that this value depends only on the target property information (ρ); therefore, from
Equation (7), Pr can be replaced by cos θ/R2, and Equation (7) can be written as Equation (8)

I + τ = K1 ln
|cos θ|

R2 + K3 (8)
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where τ is the observation error; K3 = K2 + lnC.
After the logarithmic change of Equation (8), the logarithmic correction model of the

LiDAR intensity value can be obtained as Equation (9):

Is = (I− K3)
ln
∣∣cos θs

∣∣− ln
(

R2
s
)

ln|cos θ|− ln R2 + K4 (9)

where Rs is the reference distance and Is is the corrected intensity value, K4= K3 + τ.
In this study, the reference distance was set as the average flight altitude of the

UAV of 60 m, and the reference incident angle was set to 0◦. Since 0 has no logarithm,
when the incident angle θ equals 90◦, cos θ is set to 1−150. The laser ranging value R is
( f light height− z)/ cos θ with flight height equal to 60; K1 and K2 are model coefficients
obtained by fitting the least square method using I, R, θ.

The number of points in an ITC point cloud varies greatly for the same tree species
due to the different ITC shapes. This can affect the intensity frequency. To reduce the effect
of the number of points in an ITC point cloud on the intensity frequency, the frequency
value associated to the intensity value is multiplied by a weight. This weight is computed
using the inverse distance weighting (IDW) according to Equation (10).

ϕi =

1
pi

∑n
i=1

1
pi

(10)

where ϕi represents the weight of the number of the i-th ITC point cloud, pi represents the
number of points in the i-th ITC point cloud, and n is the number of ITCs.

To analyze the influence of canopy intensity frequency on tree species classification
accuracy under different point cloud densities, this study set three sampling rates of 80%,
50%, and 30% to resample the D1 data set by the random thinning method [42]; this
can be helpful in estimating the most adequate number of features, and thus reducing
the complexity and decreasing the computational time. The point density of the three
resampled point clouds, D2, D3, and D4 as well as D1 are shown in Table 2.

Table 2. Density of point clouds.

Data Set Name Sampling Rate Mean Point Density

D1 100% 230 points/m2

D2 80% 184 points/m2

D3 50% 115 points/m2

D4 30% 69 Points/m2

2.5. Intensity Frequency Feature Calculation and Difference Analysis

The intensity frequency feature process obtained from the ITC point cloud is shown in
Figure 3. First, the already-corrected intensity of the ITC point cloud is assessed to obtain
the intensity frequencies. Then, an intensity frequency value is assigned to an intensity
frequency feature. For example, suppose an ITC point cloud of G.B with intensity values
from 3 to 150, where the number of times the point with intensity 3 appears in this ITC point
cloud is 10, is said to be IF3 = 10. After multiplying by ϕi and rounding, IF3 is considered
as an intensity frequency feature. This study acquired 147 intensity frequency features
from IF3 to IF150.
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Figure 3. Intensity frequency feature acquisition schematic.

As shown in Figure 4, the Savitzky-Golay (S-G) filter (Savitzky, 1964) was selected for
data stream smoothing [43] to enhance the characteristics of each ITC intensity frequency
curve. The S-G filter is a filtering method based on a local polynomial least squares fit. The
most important feature of this filter is that the shape and width of the signal can be kept
constant while filtering the noise. This process is implemented by calling ‘scipy. signal’ in
Python, where the smoothed window length M is taken as 51, the polynomial order is set
to 3, and the fill signal of the filter is set to the nearest mode.
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Figure 4. A before-and-after diagram of the Savitzky-Golay (S-G) filter; the numbers in the legend
are the serial numbers of the 16 ITC point clouds with the tree species G.B; the line colors indicate the
intensity frequencies of the different number of ITC point clouds.

To test the hypothesis that intensity frequencies differ significantly among tree species
and not significantly among the same tree species, a nonparametric Kruskal-Wallis (KW)
test [44] was used, followed by a comparison of the individual tree species intensity
frequency features using the mean rank (MR). Post hoc analyses for KW and MR were
performed using SPSS (IBM v.26).

2.6. Random Forest and Tree Species Classification

A random forest (RF) is a combination model with many decision trees [45]. The
classification process is as follows: bootstrapping is used to form N bootstrap samples, a
classification tree model is established for each bootstrap sample, and the sample corre-
sponds to all the training data and test data of the classification tree model. Finally, the
model of N classification tree results is taken as the final classification result.

For training sample data with a large number of differences, a sample with a dominant
number will have a greater impact on the random forest. The attribute weights produced
by an RF on this kind of data are not credible. To maintain a relatively balanced number
of tree species, 446 samples were taken in the study to use in the classification of the
following tree species: Ginkgo Biloba (G.B: n = 86), Michelia Figo (M.F: n = 52), Cinnamomum
camphora (C.C: n = 64), Celtis Sinensis Pers (C.S: n = 27), Acer Buergerianum Miq (A.B: n = 71),
Salix Babylonica (S.B: n = 78), Glyptostrobuspensilis (G.L: n = 41), and Magnolia grandiflora
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(M.G: n = 27). The training and testing data sets were divided into 313 and 133 samples at a
ratio of 7:3. The number of decision trees was set to 500 to ensure that each sample was
classified more than once. A total of 147 intensity features were input into the RF model.
The RF was performed in Python.

2.7. Tree Species Classification Process

In summary, the flow chart of this research is shown in Figure 5. First, the raw data are
decoded to LAS format point clouds. Then, the LAS point clouds are denoised, normalized,
and segmented to the ITC point clouds. ITC point clouds are labeled as tree species using
field data in ArcGIS. Then, intensity correction data set (100%) were resampled as other
three density data sets and the 147 intensity frequency features of each ITC of each data set
are obtained. Finally, four data sets are classified with RF and then assessed.
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2.8. Accuracy Evaluation

The measures of the per-tree species classification include producer accuracy (PA,
Equation (11)), user accuracy (UA, Equation (12)), commission errors (CE, Equation (13)),
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and omission errors (OE, Equation (14)). The measure used for the all-tree species classifi-
cation is the overall accuracy (OA, Equation (15)).

PA =
Nrr

Nrr + Nrn
(11)

UA =
Nrr

Nrr + Nnr
(12)

CE =
Nnr

Nrr + Nnr
= 1−UA (13)

OE =
Nrn

Nrr + Nrn
= 1− PA (14)

OA =
Ncorr

Ntotal
=

Nrr

Nrr + Nnr + Nrn
(15)

where for a given tree species, Nrr represents the number of correctly classified samples,
Nrn represents the number of samples of that species wrongly classified, and Nnr represents
the number of samples of another tree species wrongly classified as the given species. The
OA is the total number of samples of any tree species classified correctly (Ncorr) divided by
the total number of validation samples (Ntotal).

3. Results
3.1. ITC Extraction Results

Figure 6a gives an example of G.B point clouds and Figure 6b shows the ITC detected
with the PCS algorithm. As seen in Figure 6b, the PCS algorithm is able to detect ITC
successfully. A total of 987 trees were correctly detected within the eight tree species using
the PCS algorithm, accounting for 89.2% of the total trees surveyed; 123 (11.8%) ITCs were
not detected, and the number of ITCs that were not present by incorrect detection was
139 (13.6%). Table 3 shows the ITC detection precision relative to the eight tree species. As
can be seen from Table 3, the detection accuracy of ITC is promising, with M.F having the
highest detection accuracy of 93.4%, followed by C.S with an accuracy of 91.1%, and G.L
with a relatively low detection accuracy of 82.4%.
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Table 3. ITC segmentation accuracy assessment. The darker color indicates higher accuracy.

Tree Species Nt No Nc R (%) P (%) F (%)
M.F 85 6 10 93.4% 89.5% 91.4%
C.C 167 24 19 87.4% 89.8% 88.6%
C.S 51 5 7 91.1% 87.9% 89.5%
S.B 81 10 8 89.0% 91.0% 90.0%
A.B 62 11 13 84.9% 82.7% 83.8%
G.B 435 54 67 89.0% 86.7% 87.8%
M.G 39 8 11 83.0% 78.0% 80.4%
G.L 56 12 15 82.4% 78.9% 80.6%

3.2. Intensity Correction Results

The average intensity frequencies of each tree species extracted based on
Equations (4)–(10) are shown in Figure 7. The average intensity frequency of a tree species
is the average intensity frequency of all ITC point clouds of this species. Figure 7a shows
that the average ITC intensity frequency of the eight species is different, among which
C.S is the highest and G.B is the lowest. These differences provide the conditions for the
classification of tree species.
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Figure 7. (a) Average intensity frequency of each species; (b) mean standard deviation of the intensity
frequency of each species.

Figure 7b shows the standard deviation of each tree species’ average intensity frequency
after intensity correction. The mean standard deviation of the intensity of a tree species
is the average of the standard deviation of the intensity values of all ITC point clouds for
this species. The average standard deviation after correction is reduced relative to before
correction, and this is likely to be because of the logarithmic correction model. This model
reduces the error in intensity caused by the laser beam range and incident angle, and it
produces an intensity value that is mainly a function of the target reflectance characteristics.

3.3. Results of Intensity Frequency of Different Species

Figure 8a shows a diagram of point clouds with sampling rates of 100%, 80%, 50%,
and 30% for the eight tree species. As seen in Figure 9a, from top to bottom, the point cloud
gradually becomes sparse as the sampling rate decreases, but the canopy outline and key
points remain relatively intact, which is expected because the segmentation was carried out
with the full density point cloud D1. From left to right, the canopy shape, canopy point
cloud imaging, and point cloud density of different tree species vary. For example, the
point cloud of G.B is relatively sparse compared with the other seven species, which may
result from the fact that G.B itself has smaller leaves and a large gap between leaves and
does not form a tightly expanded canopy shape, thus resulting in a smaller number of point
clouds. This shows that point clouds can reflect the differences in leaf shape and canopy
structures of different trees.
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Figure 8. (a) Pointclouds of different densities of the eight tree species; the vertical coordinate of (b)
is the maximum intensity frequency value among all the detected ITC per species. The 8 different
colored bars above the same IF feature indicate the MR of the 8 tree species.
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Figure 9. (a,b) Mean rank (MR) histogram of 147 intensity features of 8 tree species. Different tree
species are indicated by different colors. the values of MR represent the differences in IF features
among the eight tree species.

Figure 8b shows the intensity frequency curves of point clouds at different densities of
the eight tree species. From left to right, the characteristics of the intensity frequency curve
of each tree species are different, such as peak value, wave peak number, and maximum fre-
quency, providing conditions for the classification of tree species using intensity frequency.
For a given tree species, the shape of the curve is similar as the sampling rate decreases,
but the troughs show an overall decreasing trend. This may be due to the fact that the
trough itself is small, and the relative number decreases more after random sampling, so
the curve shows a downward trend of the trough. The decrease in sampling rate, i.e., the
decrease in point cloud density, causes the curve to lose some details, which may lead to a
decrease in the correct classification rate of tree species and may lead to the misclassification
of tree species. As an example, when the sampling rate is 30% for C.S, the second wave
of its frequency curve disappears. The shape and peak of the intensity frequency curve
are similar to those of S.B and G.L, which may lead to C.S being misclassified as S.B and
G.L. This further indicates that the ability of point cloud intensity frequencies to represent
differences in tree species is influenced by point cloud density.

3.4. Intensity Frequency Difference Analysis Results

The results of the intensity frequency difference analysis are shown in Table 4. Table 4
shows that the p values of the Kruskal–Wallis H-test of the intraspecies intensity frequencies
of the eight trees are all greater than 0.05, while the interspecies p values are all less
than 0.01, indicating that the intraspecies differences in the intensity frequency are not
significant, but the interspecies intensity frequency differences are significant. This provides
a theoretical basis for distinguishing eight tree species based on intensity frequency. In
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addition, Table 4 also shows the impact of intensity frequency sampling on tree species
classification differences. The analysis shows that the interspecies statistic H(K) decreases
gradually with the decrease in sampling rate, while the intraspecies p and H(K) remain
unchanged. This may indicate that the overall statistical variation of interspecies intensity
frequencies decreases as the number of points in the point clouds decreases; the statistical
variation of intraspecies intensity frequencies remains constant with some stability.

Table 4. Kruskal-Wallis H test results of intraspecies and interspecies.

Sampling Rate
100% 80% 50% 30%

p H(k) p H(k) p H(k) p H(k)

Intraspecies

M.F 0.474 51 0.474 51 0.474 51 0.474 51
C.C 0.476 63 0.476 63 0.476 63 0.476 63
C.S 0.462 25 0.462 25 0.462 25 0.462 25
A.B 0.478 70 0.478 70 0.478 70 0.478 70
S.B 0.479 77 0.479 77 0.479 77 0.479 77
G.L 0.470 40 0.470 40 0.470 40 0.470 40
M.G 0.463 26 0.463 26 0.463 26 0.463 26
G.B 0.480 85 0.480 85 0.480 85 0.480 85

Interspecies <0.01 181.590 <0.01 133.241 <0.01 106.956 <0.01 87.638

Figure 9 shows the MR histogram of each tree species under 147 features. There are
eight bars above each feature, indicating eight tree species. The height of the bars represents
the mean rank (MR) of that tree species under this feature. Statistically, if the MR differs
significantly, the population to which the two groups of samples belong is considered
significantly different. By looking at the bars with significant differences in height, it is
possible to initially see which tree species are more different from other species in terms
of features. In this study, 4% of the mean MR was used as the threshold [46] to screen the
most relevant features of various tree species, as summarized in Table 5.

Table 5. Most relevant intensity frequency features for each species selected by MR in D1. ‘IFa–IFb’
means that all from IFa to IFb were selected.

Tree Species Important Intensity Frequency Features in D1

M.F IF3, IF8−IF13, IF18, IF21, IF45, IF41−IF64, IF66−IF115, IF117−IF121, IF132, IF133, IF140, IF142−IF144

C.C IF4, IF6, IF8−IF16, IF44, IF49, IF50, IF55, IF60, IF63, IF64, IF70, IF73, IF74, IF76, IF101, IF106, IF110,
IF113, IF116, IF118−IF131

C.S IF12−IF15, IF18−IF53, IF55−IF57, IF59, IF61−IF63, IF65−IF68, IF70−IF84, IF95, IF97−IF107, IF109,
IF112, IF114, IF116, IF119−IF121

A.B IF3−IF5, IF7, IF9−IF19, IF25, IF27, IF29−IF32, IF36, IF43−IF118, IF120−IF125, IF127, IF129

S.B IF4, IF6, IF8−IF10, IF15, IF18−IF20, IF22−IF27, IF30, IF35, IF39, IF49, IF54, IF57, IF64, IF66, IF70, IF104,
IF105, IF109, IF113−IF116, IF120−IF133

G.L IF11−IF14, IF16, IF24, IF25, IF27, IF29, IF34, IF44, IF47, IF54, IF60, IF66, IF76, IF78, IF97−IF99, IF103, IF106,
IF109, IF111, IF119, IF121−IF123, IF131, IF134, IF135, IF143, IF145

M.G IF4, IF5, IF9, IF11−IF24, IF28, IF30, IF34, IF37, IF39, IF46, IF49, IF55, IF57, IF60, IF62−IF86, IF88, IF89,
IF91−IF96, IF100−IF103, IF106−IF109, IF113−IF121, IF126, IF129, IF137, IF140, IF142, IF145, IF146

G.B IF4, IF6, IF9, IF11−IF13, IF19, IF21−IF23, IF25−IF30, IF120−IF125, IF146

3.5. Screening Results of Important Random Forest Features

Figure 10 shows the top 10 features with the most relevant importance for tree classi-
fication of the eight tree species using the RF model in D1. As seen in the figure, the top
10 most relevant features of the eight tree species accounted for more than 34% of the total
147 features. Among them, the most relevant of the top 10 features of A.B accounted for 88%.
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Comparing Figure 10 and Table 5, it can be seen that the priori feature selected by
MR covers the top 10 posterior features selected by RF. This can provide a reference for
selection of the most relevant features using the MR before classification in the future.

For M.F and G.L, the proportions of the top 10 features are 34% and 36%, respectively,
consistent with the classification results in Section 3.6. A.B is stable and has the high UA
and PA among all species, indicating that the top 10 features are relevant, the tree species
have prominent features, and the classification accuracy is high.

3.6. Tree Species Classification Results

The results of tree species classification with an RF model based on 147 intensity fre-
quency features are shown in Table 6. As seen in Table 6, the UA of tree species classification
can range from 100% down to 82.6%. The PAs of three tree species reached more than 90%,
three species reached more than 85%, and two species had PAs of 75.0%. The lowest CE is
0%, and the lowest OE is 4.8%. AU is higher than PU, and CE is lower than OE. This shows
that intensity frequency can provide effective information for tree species classification.
The accuracy of tree species classification using intensity frequency features is high.

Table 6. Tree species classification results (D1, sampling rate 100%), where Num refers to the number
of these species in the validation set. The sum of correct classification trees (SCI) is the number of
correctly classified trees in a validation set of 133.

Name M.F
n = 16

C.C
n = 19

C.S
n = 8

A.B
n = 21

S.B
n = 23

Gl.
n = 12

M.G
n = 8

G.B
n = 26

UA (%) CE
(%)Num.

M.F 12 0 1 0 0 0 0 1 85.7 14.3
C.C 1 19 1 0 2 0 2 0 82.6 17.4
C.S 0 0 7 0 0 0 0 0 100.0 0
A.B 0 0 0 20 0 0 0 0 100.0 0
S.B 3 0 2 0 21 0 0 0 100.0 0
Gl. 0 0 0 0 0 9 0 1 90.0 10.0

M.G 0 0 0 0 0 0 6 0 100 0
G.B 1 0 0 0 0 2 1 23 85.1 14.9

PA (%) 85.7 95.0 87.5 95.2 91.3 75.0 75.0 88.5 OA: 86.7%
OE (%) 14.3 5.0 12.5 4.8 8.7 25.0 25.0 11.5 SCI: 117
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As shown in Tables 6–9, the sum of correct classification trees (SCI) decreases as the
sampling rate decreases: SCI equals 117 at D1 data set, 97 in D2, 74 in D3, and 65 in D4.
The largest decrease in SCI occurs between the D2 and D3. This is probably because the
sampling rate decreases the most (by 30%) from D2 to D3. The number of point clouds is
reduced more, and more key points that reflect the differences in intensity frequencies of
each tree species may be lost, leading to a decrease in classification accuracy. Therefore,
the SCI at an 80% sampling rate differs the most from 50% relative to the other two
cases, indicating that the point cloud density positively correlates with the sum of correct
classification trees (SCIs) in this study.

Table 7. Tree species classification results (D2, sampling rate 80%), where Num refers to the number
of these species in the validation set. The sum of correct classification trees (SCI) is the number of
correctly classified trees in a validation set of 133.

Name M.F
n = 16

C.C
n = 19

C.S
n = 8

A.B
n = 21

S.B
n = 23

Gl.
n = 12

M.G
n = 8

G.B
n = 26

UA (%) CE
(%)Num.

M.F 10 1 1 0 0 1 0 0 76.9 23.1
C.C 1 15 0 0 0 0 0 0 93.3 6.7
C.S 0 1 4 0 0 0 0 0 80.0 20.0
A.B 0 0 0 19 0 0 0 1 95.0 5.0
S.B 1 0 0 0 17 1 0 0 88.0 12.0
Gl. 1 0 0 0 0 7 0 3 63.6 56.4

M.G 0 1 0 0 0 0 6 0 85.7 14.3
G.B 0 0 0 0 0 1 0 19 95.0 5.0

PA (%) 62.5 78.9 50.0 90.5 95.7 58.3 75.0 84.6 OA: 87.4%
OE (%) 37.5 21.1 50.0 9.5 4.3 41.7 25.0 15.4 SCI: 97

Table 8. Tree species classification results (D3, sampling rate 50%), where Num refers to the number
of these species in the validation set. The sum of correct classification trees (SCI) is the number of
correctly classified trees in a validation set of 133.

Name M.F
n = 16

C.C
n = 19

C.S
n = 8

A.B
n = 21

S.B
n = 23

Gl.
n = 12

M.G
n = 8

G.B
n = 26

UA (%) CE
(%)Num.

M.F 7 0 0 0 0 0 0 1 87.5 12.5
C.C 3 12 1 0 0 0 0 2 66.7 33.3
C.S 1 0 3 0 0 0 0 0 75.0 25.0
A.B 0 0 0 20 0 0 0 1 100.0 0
S.B 1 0 0 0 8 0 0 0 88.0 12.0
Gl. 1 0 0 0 0 3 0 0 75.0 25.0

M.G 0 0 0 0 0 0 4 1 80.0 20.0
G.B 0 1 1 0 0 1 0 17 85.0 15.0

PA (%) 62.5 63.2 37.5 95.2 34.7 25.0 50.0 65.4 OA: 84.1%
OE (%) 37.5 36.8 62.5 4.8 65.3 75.0 50.0 34.6 SCI: 74
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Table 9. Classification results of tree species (D4, sample rate 30%), where Num refers to the number
of these species in the validation set. The sum of correct classification trees (SCI) is the number of
correctly classified trees in a validation set of 133.

Name M.F
n = 16

C.C
n = 19

C.S
n = 8

A.B
n = 21

S.B
n = 23

Gl.
n = 12

M.G
n = 8

G.B
n = 26

UA (%) CE
(%)Num.

M.F 3 1 0 0 0 0 0 0 75.0 25
C.C 0 7 0 0 0 0 0 2 77.8 22.1
C.S 0 2 4 0 0 0 0 0 66.7 33.3
A.B 0 0 0 19 0 0 0 1 100.0 0
S.B 0 0 2 0 11 0 0 0 84.6 15.4
Gl. 1 0 0 0 0 1 0 0 50.0 50.0

M.G 0 1 0 0 0 0 4 0 80.0 20.0
G.B 1 0 0 0 0 0 0 16 94.1 5.9

PA (%) 18.8 63.2 37.5 90.4 47.8 25.0 8.3 61.5 OA: 85.5%
OE (%) 81.2 36.8 62.5 9.6 52.2 75.0 91.7 38.5 SCI: 65

UA remains relatively stable across the four sampling rates in the data set. The
reason may be because most of the classified samples after random sampling still provide
the critical information required by RF for successful classification. The UA remains
relatively stable, which is consistent with the implication shown in Figure 8 that the
intensity frequency curve retains its basic shape after resampling, but the details change.
This indicates that the intensity frequency feature can maintain a relatively robust UA at
different point cloud densities in this study. The PA decreases with decreasing sampling
rate, potentially because as the sampling rate decreases, some of the intensity frequency
features can no longer provide the information needed for RF to classify tree species,
leading to an increase in the number of true samples classified as other (Nrn).

Finally, the overall accuracy (OA) is above 84% for all four data sets, with the highest
being the D2 data set (OA = 87.4%), slightly higher than that of the D1 data set. The reason
could be that as the sampling rate decreases, some intensity frequency features of ITC,
although able to be classified by RF at a 100% sampling rate, have a high error rate. RF
can no longer classify them at an 80% sampling rate, which leads to an increase in Nrn
since the overall accuracy = (Nrr)/(Nrr + Nnr + Nrn). While the Nrr at an 80% sampling
rate decreases, the Nrn also decreases. The numerator decreases less than the denominator,
resulting in a slight increase in overall precision.

In summary, the intensity frequency features of four data set have promising results
on UA, PA, CE, OE, OA, and SCI. This indicates that the intensity frequency features of the
ITC point cloud of eight tree species obtained from this study can accurately perform tree
species classification.

4. Discussion

The results show that the LiDAR intensity frequency, combined with the PCS and RF
algorithms, can achieve high-precision classification of eight urban forest tree species in the
study area.

Previous studies have shown that intensity data can realize surface classification and
object detection [30,47]. The target water content significantly influences the intensity [48,49].
Both the reflectivity and the structural characteristics of ITC would influence the inten-
sity of the intensity of point clouds acquired by UAV-LiDAR [49]. Different tree species
may have different water contents, canopy structures, and physiological and biochemical
characteristics of leaves [50]. Therefore, the intensity features of LiDAR have promising
potential for tree species classification.

LiDAR intensity data have some advantages for tree species classification over passive
remote sensing sensor data such as multispectral and hyperspectral samples [25,51,52].
First, the measurement of LiDAR intensity has the advantage of being independent of
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external lighting conditions [31], so LiDAR data are not affected by variable shadows and
natural light, and the positional accuracy of point clouds is, in general, more reliable when
compared to that of point clouds produced with aerial images [53]. Second, although
passive remote sensing imaging data can be reversed to generate point clouds, in vege-
tated areas, such point clouds have limited penetration and ground points. The LiDAR
point cloud will contain background information, contrary to that produced with images,
allowing to the structuring of information. In addition, the incidence angle and height
information provided by LiDAR is brought into some intensity correction models. This
can reduce the intensity data differences caused by distance and angle of incidence to
some extent so that the intensity contains the difference in target reflectivity [30]. Finally,
LiDAR can provide both structural and intensity information, which has the advantages
of requiring less storage space, and less complex and time-consuming data processing
compared to hyperspectral and multispectral data [54,55]. There are also advantages when
using intensity frequencies versus individual intensities for tree species classification. A
single intensity can only reflect the characteristics of one point of the whole tree canopy
and carries limited information. If there is a point cloud of reflections from other features,
it may cause significant interference with the classification results. In contrast, intensity
frequency is the collection of all intensities of the whole canopy, i.e., carrying intensity
information and having a small degree of anti-interference ability. The intensity frequencies
can provide pseudo-waveform features similar to the spectral reflectance curves. The inten-
sity frequency feature of pseudo-waveform could provide more tree species differences
information than single-valued features.

Current studies using intensity for tree species classification include converting intensity
into raster images and then combining other features for species classification [23,47,56,57]
or extracting the mean and standard deviation of intensity from manually depicted tree
canopies for species classification [58]. The advantage of this approach is in preserving the
spatial distribution characteristics of the intensity data, while the disadvantage is that the
unit raster intensity value is the sum of the intensity of the points that are projected into
the pixel or the standard deviation of those intensity values, which may somewhat lose the
structure of the target object to which the intensity responds. The other method involves
constructing vegetation indices for tree species classification using multiple LiDAR sensors
with different wavelengths; for example, Yu et al. (2017) classified pine, spruce, and birch
trees based on point cloud single-channel intensity, multichannel intensity, and combined
data of three channels with a maximum accuracy of 85.9% [25]. The advantage of this
method is that it enhances the differences between different tree species by constructing
vegetation indices, thus making it easier to classify tree species. The disadvantage is that
acquiring data from different channels requires multiple repetitive operations with multiple
sensors, which is time-consuming and expensive. Additionally, the vegetation indices that
can induce the response of the intensity curves of each tree species are not yet clear, which
is also a worthwhile research direction in the future.

Although we obtained a qualitative result showing that the intensity frequencies of the
eight tree species did not differ significantly for intraspecies or interspecies observations
by the KW test, we did not perform a more detailed quantitative analysis for each tree
species. Future research could be conducted for a quantitative analysis of the differences in
intensity frequencies among tree species.

In Table 4, the PU and UA of some species need further improvement, such as the PA
of both G.L and M.G being 75%. The main reason for the low PA accuracy of these two
species may be that the training samples of these two species are few, and the RF model
cannot thoroughly learn the intensity frequency characteristics of these two species. As a
result, the intensity frequency does not possess the tree’s complete canopy characteristics,
resulting in a decrease in the PA. At the same time, the classification error of tree species in
this study may also be derived from two aspects. First, the difference in canopy structure
information and the crown shapes of different individual plants of the same tree species
are often similar but different. Second, the physiological and biochemical status of target
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leaves may also bring about tree species classification errors. Different crown properties
affect the distribution of laser echoes within and on the surface of the tree crowns [59], thus
affecting the intensity frequency. More species lead to more diversity in leaf shape, size,
and reflectance, as well as in tree structure, resulting in more difficult classification tasks.
In this case, up to eight species are classified using only the intensity signatures from a
near-ground flight (60 m) UAV, with an overall accuracy of over 86%. To our knowledge,
such results have not been reported in the scientific literature.

This study was based on ITC point clouds for point cloud thinning and analyzed
the effect of density on the classification accuracy of tree species. This approach followed
the principle of controlling a single variable for the comparison test [60]. Density as the
only dependent variable when studying the effect of density on classification results. The
effect of canopy segmentation differences on classification accuracy was excluded, because
point clouds with different densities would lead to different results of PCS segmentation
of canopies. Therefore, the conclusion related to the influence of point cloud density on
classification accuracy in this study does not apply to point clouds of different densities
acquired at different heights. This is also a direction worth investigating. There are some
limitations in this study. First is the limitation of ITC segmentation; the method of this study
is applicable to point clouds so that ITC can be segmented accurately. However, in complex
terrain, complex forest conditions, and an automatic acquisition of segmented canopy,
unavoidable random or systematic errors may arise, which leads to elevated classification
errors [61]. The second limitation is that the topography of this study area is relatively
flat. If the topography is complex, the data noise of each canopy will be greater, and the
classification will be less reliable. In addition, during intensity correction, we treat the
observation error τ as a constant, which may also cause errors in the intensity correction.
Finally, there is the diversity of tree canopies. Theoretically, different tree species have
different spectral reflectance properties, and the same tree species has similar spectral
reflectance properties [62]. However, the diversity of canopies caused by the variation in
canopy structure, leaf shape, and reflectance with age increases the intraspecific variability
and classification error probability [25]. Therefore, further research is necessary to follow
up on whether stratification by tree height or age can improve classification performance.
In addition, random forest models, trained using a limited number of samples from a
specific region, are difficult to apply on a broader scale without additional training samples
to account for site variation.

5. Conclusions

In this study, we propose a tree species classification method based on UAV-LiDAR
intensity frequency features, i.e., extracting intensity frequency features from LiDAR data
and combining the PCS algorithm to segment the acquired point cloud into ITC and the
random forest model to classify the main tree species in the study area. In the research
process, we extracted the intensity frequency features of different tree species from resam-
pled ITC point clouds of four densities, and then used the RF model to classify the tree
species. The research results show that the intensity frequency features of the point clouds
of the four densities can achieve higher accuracy in classifying the eight major tree species
in the study area, and the overall accuracy of tree species classification can reach more
than 84% even if the point cloud density is resampled to 30%. Therefore, the UAV-LiDAR
intensity frequency feature can be used for the classification of different tree species. In
addition, intensity frequency feature selection is a relevant guarantee to achieve tree species
classification accuracy, and mean rank (MR) is a promising method to achieve important
intensity frequency feature selection.

In our future work, we will carry out further research in the intelligent segmentation
of individual tree crown, and LiDAR intensity frequency combined with hyperspectral
remote sensing data to achieve intelligent identification of tree species, which is another
hot spot in the current related research.
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