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Abstract: High-precision retrieval of rainfall over large areas is of great importance for the research
of atmospheric detection and the social life. With the rapid development of communication satellite
constellations and 5G communication networks, the use of widely distributed networks of earth–
space links (ESLs) and horizontal microwave links (HMLs) to retrieve rainfall over large areas has
great potential for obtaining high-precision rainfall fields and complementing traditional instruments
of rainfall measurement. In this paper, we carry out the research of combining multiple ESLs with
HMLs to retrieve rainfall fields. Firstly, a rainfall detection network for retrieving rainfall fields is
built based on the atmospheric propagation model of ESL and HML. Then, the ordinary Kriging
interpolation (OK) and radial basis function (RBF) neural network are applied to the reconstruction
of rainfall fields. Finally, the performance of the joint network of ESLs and HMLs to retrieve rainfall
fields in the area is validated. The results show that the joint network of ESLs and HMLs based on OK
algorithm and RBF neural network is capable of retrieving the distribution of rain rates in different
rain cells with high accuracy, and the root mean square error (RMSE) of retrieving the rain rates of
real rainfall fields is lower than 0.56 mm/h, and the correlation coefficient (CC) is higher than 0.996.
In addition, the CC for retrieving stratiform rainfall and convective rainfall by the joint network of
ESLs and HMLs is higher than 0.949, indicating that the characteristics of the two different types of
rainfall events can be accurately monitored.

Keywords: joint network; earth–space links (ESLs); horizontal microwave links (HMLs); rainfall field
retrieval; radial basis function (RBF) neural network

1. Introduction

As a common weather phenomenon in the atmosphere, rainfall is closely related to
human life [1]. When the distribution of rainfall in space and time is abnormal, natural
disasters, such as floods and mudslides, can occur and cause life-threatening and significant
economic losses to humans. In addition, the abnormal variation in rainfall reflects changes
in climate [2]. Therefore, real-time and accurate monitoring of rainfall is of great significance
to ensure the normal operation of society and to promote the research of atmospheric
sounding science, especially the retrieval of spatial distribution of rainfall on a large scale
with high accuracy and high spatial and temporal resolution [3,4].

At present, the main instruments used to measure rainfall are rain gauges, weather
radars and meteorological satellites [5]. The rainfall measured by the rain gauge represents
the rainfall information of the meteorological station, which cannot reflect the rainfall
information of other locations outside the station because of the uneven distribution of
rainfall in space [6,7]. Weather radar often obtains the echoes of cloud and parts of the
precipitation in the atmosphere, which is significantly different from the rainfall on the
surface [8]. Moreover, the meteorological rain satellite can retrieve the spatial distribution
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of a wide range of rainfall, but its spatial resolution is very low because of the long detection
distance [9]. The use of a large number of rain gauges and weather radars to form a high-
density meteorological observation network enables the acquisition on the distribution of
rainfall over a large area with high precision and high temporal and spatial resolution [6,10].
However, the current distribution of rain gauges and weather radars in different regions
is uneven, limited by complex maintenance technology and high cost. In particular, the
distribution is more sparse in remote areas [11]. Therefore, the proposal of advanced rainfall
detection methods to supplement the existing detection instruments to obtain better rainfall
information is still a widely undertaken research topic in recent years.

With the rapid development of communication technology, a new method of retriev-
ing rainfall by using the attenuation caused by rainfall on microwave communication
links widely distributed in space has been proposed in recent years, and it has received
widespread attention [12–15]. Compared with traditional rainfall measurement methods,
the denser distribution of microwave links promises to enable the retrieval of rainfall over
large areas. Additionally, directly using the microwave links of the existing communication
base stations for rainfall retrieval does not entail too much cost, so it has the advantage
of low cost [16,17]. First of all, Messer et al. [12] conducted an experiment to retrieve
rainfall using microwave links in commercial cellular networks in 2006. Additionally, the
experimental results showed that the performance of microwave links for rainfall mea-
surement was better than weather radar and showed the preliminary potential of using
microwave links for rainfall measurement. Then, some scholars optimized the calculation
model of retrieving rainfall through the accurate modeling of microwave propagation
in the atmosphere, so as to further improve the accuracy of this method [17–20]. More-
over, the technology of retrieving rainfall using microwave link is also applied to radar
parameter calibration, precipitation classification and raindrop size distribution (DSD)
inversion [21,22]. In addition, with the rapid development of the internet of things tech-
nology and 5G communication networks, the distribution of microwave links is becoming
denser and denser [19,23]. A growing number of studies began to focus on using widely
distributed horizontal microwave links (HMLs) to retrieve rainfall fields that represent
the spatial distribution of rain rates in the area [24,25]. Computer tomography (CT) and
inverse distance weighting (IDW) interpolation have also been applied to rainfall field
reconstruction based on the microwave link network, and the results also verify the feasi-
bility of the scheme [26,27]. However, further research results show that it is difficult for
CT and IDW to reconstruct the rainfall field with high precision and high spatial resolution
for the real distributed microwave links, which is affected by the link sparsity and irregular
structure distribution.

Similar to HMLs, the inclined earth–space links (ESLs) between earth communication
satellites and ground receiving antennas will also produce significant attenuation due to
rainfall in the process of atmospheric propagation. Therefore, the method of using ESLs to
retrieve rainfall has also been proposed and deeply studied recently [13,27,28]. Since 2010,
a large number of experiments have begun to verify the use of a single earth–space link
(ESL) to measure rainfall. Barthès et al. [13] and Mugnai et al. [27] studied the feasibility of
using the attenuation of ESLs signals in Ku and Ka bands to measure rainfall, respectively.
After that, many advanced techniques have been proposed to solve the key factors that
affect rainfall retrieval by ESL, such as the identification of the rainy periods, reference
baseline and rainfall height [28–30]. On the basis of considering the influence of microwave
attenuation characteristics of the melting layer on ESL propagation, Xian et al. [28,31]
improved the rain attenuation calculation model and proposed an ESL rainfall retrieval
method based on machine-learning technique. In addition, the performance of the single
ESL to retrieve different grades of rainfall and different types of rainfall has been verified by
long-term empirical data [32]. In addition to the research on retrieving rainfall by a single
ESL, Huang et al. [33] and Xian et al. [34] studied the feasibility of ESLs network retrieval of
large-scale rainfall field through simulation experiments. Compared with other detection
instruments, the cost of ESL equipment is lower, and the installation is more convenient.
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It mainly consists of a small television antenna and a receiver at the user terminal [35,36].
Moreover, there are a large number of broadcast users all over the world. Therefore, the
use of widely distributed ESLs to obtain rainfall information in mountainous areas, islands
and plateaus that lack professional rainfall detection instruments is of great potential. On
the other hand, with the rapid development and application of satellite communication,
a large number of communication satellites will be launched for networking in the near
future, such as Starlink, Oneweb and Kuiper constellations [37]. This will make a large
number of ESLs closely cover all regions of the world and then providing conditions for
using ESLs network to retrieve large-scale and high-precision rainfall fields.

Previous studies have always focused on ESL and HML separately. However, the use
of these two new detection techniques to retrieve rainfall has the same essential physical
mechanism, which is the phenomenon of microwave attenuation caused by rainfall. The
realization of joint detection of the two technologies is of great significance to make full use
of space-based and ground-based microwave signal resources and supplement traditional
detection methods. Moreover, joint detection is more likely to obtain a large-scale rainfall
field with higher accuracy and higher resolution. In this paper, we carry out the research of
using the joint network of ESLs and HMLs to retrieve rainfall field with high precision and
high resolution. Firstly, the simulation experiment of joint network of ESLs and HMLs is
carried out based on the atmospheric propagation model of ESL and HML, and a rainfall
detection network for retrieving rainfall field is built, which is composed of multiple ESLs
and HMLs. Then, the sparse rainfall distribution obtained by rainfall detection network
is reconstructed by using ordinary Kriging interpolation (OK) and radial basis function
(RBF) neural network. As a result, the continuous distribution of rainfall fields in the area
is obtained. Finally, the method is verified by the hybrid rain cell (HYCELL) model and
the real rainfall fields. The purpose of this work is to preliminarily verify the feasibility
of using ESLs combined with HMLs to retrieve rainfall field and to provide reference for
future applications.

In this article, the major contributions are as follows.

(1) A method for detecting rainfall by combining multiple sources of microwave links
is proposed. We built a rainfall detection network for retrieving rainfall fields in
combination with ESLs and HMLs, and we validated the significant potential of the
method to retrieve high-precision rainfall fields using the HYCELL model and real
rainfall fields.

(2) The OK algorithm and RBF neural network are applied to the joint network to retrieve
rainfall fields. The results indicate that the joint networks of ESLs and HMLs based
on the OK algorithm and RBF neural network can both retrieve the distribution
characteristics of rainfall accurately. Moreover, the overall performance of the RBF
neural network is better than that of the OK algorithm.

2. Principles of Rainfall Field Retrieval by ESLs and HMLs

Microwave signals will have significant attenuation due to scattering and absorption
of rainfall. This physical phenomenon can lead to serious rain attenuation of the radio
wave signals from communication satellites to the earth and the communication links
between ground-based communication base stations due to rainfall. The ingenuity of
the new technique of retrieving rainfall by using rain attenuation from ESL and HML is
to reverse the interference of rainfall in the atmosphere to microwave signals to obtain
rainfall information. In addition, ESLs and HMLs can be combined to retrieve rainfall field
when multiple ESLs and HMLs are present in the area. Figure 1 depicts the process of
retrieving rainfall field by combining ESLs and HMLs. Firstly, a link network for rainfall
observation can be built by a combination of ESLs and HMLs in the area. Then, the
sparse rain attenuation at the location of the link network can be obtained by using the
forward model of rain attenuation for ESL and HML. Furthermore, the inversion model
of microwave rain attenuation can be used to convert the rain attenuation into sparsely
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distributed rain rates in the area. Finally, the spatial reconstruction method can be used to
obtain the continuously distributed rainfall field.
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Figure 1. The process for retrieving rainfall fields in the area by combining ESLs and HMLs.

2.1. Principle of Rainfall Retrieval by ESL

The basic principle of using ESL to retrieve rainfall is briefly described as follows.
When rainfall occurs in the ESL between the satellite and the antenna, the microwave
signal of the ESL will be weakened due to the effect of scattering and absorption. Then, the
changing process of microwave signal transmission can be monitored by the receiver of the
ground satellite antenna. At this time, the microwave rain attenuation can be obtained by
using the corresponding extraction algorithm. Finally, the average rain rate on the path of
ESL can be obtained by the calculation model between microwave rain attenuation and
rainfall [38]. Next, a detailed analysis of the radiation transfer process of ESL is presented.

After passing through the atmosphere, the microwave signal sent by the satellite
reaches the ground satellite antenna and is transmitted to the receiver for processing. We
use Pt and Pr to represent the transmitting power of the satellite and the receiving power
of the ground receiver, respectively, and have the following equation [32]:

Pr(t) = Pt(t)·G·ηA·ηF·ηR + Pn(t) (1)

where G and Pn represent the antenna gain and the noise power of the signal, respectively.
ηA represents the attenuation coefficient of non-rainfall factors in the atmosphere, mainly
related to clouds, gas composition and atmospheric turbulence. Additionally, ηF and ηR
represent the attenuation coefficients of ESL in free space and rainfall, respectively. In
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addition, the signal-to-noise ratio (SNR) of the ESL signal received by the ground receiver
can be expressed as

SNR(t) = 10log
Pt(t)·G·ηA·ηF·ηR

Pn(t)
. (2)

The free space loss AF and the path-integrated rain attenuation AR of ESL are defined as{
AF(t) = −10log(ηF)
AR(t) = −10log(ηR)

, (3)

then, Equation (2) can be written as

SNR(t) = 10log
Pt(t)·G·ηA

Pn(t)
− AR(t)− AF(t). (4)

For noise power Pn, it mainly includes sky noise Tsky and system noise Tsys, which can
be given by

Pn(t) = kB·B·
(

Tsys(t) + Tsky(t)
)

, (5)

where kB is the Boltzman constant, and B represents the bandwidth of the ESL signal. Tsys
can be regarded as constant when the receiver of ESL works stably. In addition, when
there is rainy weather, the Tsky received by the receiver mainly comes from the influence of
rainfall. Additionally, it can be obtained by

Tsky(t) =
∫

G(t, Ω)·tm(1− 10)−
AR(t)

10 dΩ∫
G(t, Ω)dΩ

, (6)

where G (t, Ω) is the antenna gain pattern at the fixed solid angle Ω, and tm is the average
temperature of the path [39].

We transform and rewrite Equation (5) as

Pn(t) = kB·B·Tsys(t)·

(
Tsys(t) + Tsky(t)

)
Tsys(t)

, (7)

and define 
Fn(t) = kB·B·

( Tsys(t)+Tsky(t)
Tsys(t)

)
P0(t) = kB·B·Tsys(t)

V(t) = 10log Pt(t)·G·ηA
P0(t)

, (8)

then, Equation (4) can be rewritten as

SNR(t)= V(t)− Fn(t)− AR(t)− AF(t). (9)

When there is no rain, the SNRno-rain received by the ESL receiver can be regarded as
the SNR caused by factors other than rainfall. Additionally, SNRno-rain can be written as

SNRno−rain= V(t)− Fn(t)− AF(t). (10)

In order to extract the rain attenuation caused by rainfall, we use SNRno-rain as the
attenuation baseline. Therefore, according to Equations (9) and (10), the rain attenuation
AR can be rewritten as

AR(t) = SNRno−rain − SNR. (11)
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The rain attenuation AR can be measured at the receiver terminal of ESL by the
method described above. In addition, according to the ITU-R model [40,41], the relationship
between rain specific attenuation γR (dB/km) and rain attenuation is obtained by{

γR= αRβ

AR = γR· h0 + 0.36/sinθ
, (12)

where h0 is the height of atmospheric 0◦C-Layer, θ is the elevation of ESL, and the values
of coefficients α and β are obtained by ITU-R P .838-3 [40]. Therefore, combined with
Equations (11) and (12), the average rain rate R (mm/h) retrieved by ESL can be written as

R =

[
(SNRno−rain − SNR)sinθ

(h0 + 0.36)α

]β−1

. (13)

In order to further verify the corresponding relationship between SNR and rain rate,
we used the ESL at Ku band built in Nanjing, China, to record the change process of SNR
during rainfall. A rainfall event in June 2020 is selected to analyze the correlation between
ESL signal and rain intensity. As shown in Figure 2, the SNR decreases significantly when
rainfall occurs. This change becomes more obvious as the rain rate increases. In addition,
the SNR can fluctuate rapidly due to noise, even when no rainfall is present. This is
mainly due to the movement of the atmosphere. However, on the whole, rainfall is the
main factor leading to the decrease in SNR of ESL. Further calculation shows that the
correlation coefficient (CC) between SNR and rain rate is −0.612. This indicates that there
is a strong negative correlation between the two and validates the feasibility of using ESL
to retrieve rainfall.
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2.2. Principle of Rainfall Retrieval by HML

The principle of using HML for rainfall inversion is similar to that of ESL. It also
uses the physical phenomenon that rainfall can cause attenuation of microwave signals.
However, because the line-of-sight HML composed of microwave transmitter and receiver
propagates near the ground, the change of meteorological elements in its path range is
small. Additionally, the existing calculation models all assume that the meteorological
elements at the height of HML are constant. Therefore, using HML to retrieve rainfall is
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more convenient than using ESL to retrieve rainfall. Next, the process of retrieving rainfall
by HML is described in detail [42].

When the microwave signal sent by the microwave transmitter of HML propagates
in the atmosphere near the ground, the total power attenuation Atotal on the path can be
expressed as

Atotal = Agas + Awater + AFS + Arain (14)

where Agas is the attenuation caused by gases (mainly oxygen) in the atmosphere, Awater
is the attenuation due to water vapor, AFS is the loss of microwave transmission in
the path of free space, and Arain is the attenuation caused by rainfall. The key point in
using HML to retrieve rainfall is to record rain attenuation accurately. Therefore, we
rewrite Equation (14) as

Atotal = Arain + Abaseline. (15)

The Abaseline represents the attenuation of the signal caused by other factors except
rainfall, and it is generally approximated by the attenuation during non-rainfall periods
after revision. Thus, as far as the receive signal level (RSL) of HML receiver is concerned,
regarding Abaseline as RSLbaseline, the rain attenuation can be given by

Arain = RSLbaseline − RSL. (16)

To further describe the relationship between rain rate and rain attenuation, a model
for calculating HML rain attenuation was fitted based on the Mie scattering theory and a
large amount of observational data [43]. As shown in

Arain= aRb·l, (17)

where l is the length of HML, and the values of coefficients a and b are obtained by
ITU-R P .838-3 [40]. Revising the coefficients a and b based on DSD data from different
locations will further improve the accuracy of this calculation model and thus better match
the practical situation in different locations. Therefore, according to Equations (16) and (17),
the average rain rate retrieved by HML can be written as

R =

(
RSLbaseline − RSL

a·l

) 1
b
. (18)

To visualize the correspondence between the HML signal and the rain rate, we used
the HML (26 GHz, vertical polarization) set up in Jiangyin, China, to realistically record
the RSL of its receiver during rainfall. Additionally, a rainfall event in June 2021 is selected
to validate the correlation between RSL and rain rate as shown in Figure 3. Similar to the
ESL signal, the HML signal intensity decreases significantly in the presence of rainfall. This
phenomenon becomes more obvious as the rain rate increases. In addition, rainfall is the
most powerful factor in the variation of the HML signal. Additionally, the CC between RSL
and rain intensity was calculated to be −0.762 by further analysis. The strong correlation
indicates that the HML signal is highly sensitive to rain rate and is more suitable for
retrieving rainfall.

2.3. Rainfall Field Retrieval by Combined ESLs and HMLs

When multiple ESLs and HMLs exist within an area, the rain rates R(xi, yi) at the
location (xi, yi) of the ESLs and HMLs can be measured. The rain rates at these different
locations reflect part of the distribution of the rain rates R(x, y) over the whole area.
Therefore, we can combine the ESLs and HMLs in the area to obtain highly accurate rainfall
fields by means of the reconstruction algorithm. In this paper, the OK algorithm and RBF
neural network are applied to accomplish the rainfall field retrieval.
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2.3.1. Rainfall Field Reconstruction by OK Algorithm

The assumptions for reconstructing the rainfall field using the OK algorithm are as
follows: (1) the rain rates at all locations in the area are interrelated; (2) the shorter the
distances, the higher the correlation between the rain rates [44]. Therefore, using R(xi, yi)
from ESLs and HMLs to reconstruct the R(x, y) of the whole rainfall field can be given by

R(x, y) =
N
∑

i=1
λiR(xi, yi)

N
∑

i=1
λi = 1

, (19)

where N denotes the number of ESLs and HMLs, and λi is a weight factor indicating the
degree of contribution of R(xi, yi) to R(x, y). In addition, the semi-variogram ψ is defined
by the mathematic expectation of the observed rain rates R(xi, yi) and the target point rain
rates R(x, y), as given by

ψ(i) =
1
2

E
[
(R(x, y)− R(xi, yi))

2
]
. (20)

Additionally, the connection between weight factor λ and the semi-variogram ψ is
given by [45] 

ψ11 ψ12 · · · ψ1N 1
ψ21 ψ22 · · · ψ2N 1

...
...

...
...

...
ψN1 ψN2 · · · ψNN 1

1 1 1 1 1




λ1
λ2
...

λN
δ

 =


ψ1
ψ2
...

ψN
1

, (21)

where δ is the Lagrange multiplier. Furthermore, the semi-variogram takes the stable model
for which the performance was validated in [45], and it is given by

ψ = A·
(

1− exp
(
−(d/B)C

))
, (22)

where d represents the distance between the observed rain rates R(xi, yi) and the target
point rain rates R(x, y), and A, B and C are coefficients, which can be estimated by fitting the
observed values of ESLs and HMLs. Next, after obtaining the weight factor λ on the basis
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of the semi-variogram, we can implement the reconstruction of the rainfall field according
to Equation (19).

2.3.2. Rainfall Field Reconstruction by RBF Neural Network

RBF neural network is a forward propagation network with good performance, which
is composed of input layer, hidden layer and output layer. Among them, the transformation
from the input layer to the hidden layer is nonlinear, while the transformation from the
hidden layer to the output layer is linear [46]. Each unit in the hidden layer of the RBF
network can be regarded as a RBF, which is a function that depends only on the distance
to the origin. The hidden nodes of the RBF neural network use the distance between the
input vector and the center vector as the independent variable of the function and use the
RBF as the activation function. Additionally, the farther the input of the neuron is from the
RBF center, the lower the activation degree of the neuron is. Thus, the approximation of the
objective function only depends on the nearest RBFs, while the RBFs with long distances
basically do not work. This local approximation feature enables RBF neural network to
have good convergence speed.

For the reconstruction of rainfall field in the area, the rainfall, at a point in space,
has the highest correlation with the nearest rainfall to it. Additionally, this distribution,
characteristic of the rainfall field, coincides with the local approximation feature of the RBF
neural network. Therefore, we can design the RBF neural network to reconstruct the rainfall
field as shown in Figure 4. The geometric meaning is that a continuous two-dimensional
rainfall field R(x, y) is recovered from the sparsely distributed rain rates R(xi, yi) retrieved
from the ESLs and HMLs. The specific reconstruction function can be expressed as

R(x, y) =
m

∑
n=1

N

∑
i=1

Wn fn(R(xi, yi)), (23)

where m is the number of hidden units, Wn denotes the weights from the hidden units to
the output layer, and fn is the hidden layer RBF.
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In this paper, the detailed setup of the RBF neural network used to reconstruct the
rainfall field is as follows:

(1) The Gaussian function is used as the hidden layer RBF and is given by

fn(R(xi, yi))= exp(−‖R(xi, yi)− Cn‖
2σn2 ), (24)
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where Cn denotes the center of the RBF in the hidden units, and σn is the width of the
hidden units, which is primarily used to adjust the resolution of the neural network.

(2) The K-means clustering is used to determine the network cluster center Cn and the
width of the Gaussian function σn.

(3) The learning rate of the RBF neural network is set to 0.01, and the minimum error
requirement of the objective function and the maximum number of iterations are set
to 0.01 mm/h and 5000 times, respectively. The training will be stopped automatically
if the minimum error requirement is reached during the training process.

(4) The RBF neural network can automatically add the number of hidden units until the
training error requirement is reached.

3. Design of the Joint Network of ESLs and HMLs

To verify the feasibility of combining ESLs and HMLs for rainfall field retrieval in the
area, a joint network design of combining ESLs and HMLs in Xiamen, China, is carried
out in this paper through simulation experiment. The latitude and longitude ranges of
the experimental area are 118 ◦E–118.35 ◦E and 24.35 ◦N–24.7 ◦N. In addition, the whole
experimental area is divided into a grid of 35 km × 35 km. It is assumed that the rainfall
distribution within each grid point is uniform, so the spatial resolution of the rainfall field
is 1× 1 km2. The annual average of the local atmospheric 0◦C-Layer height is 4.476 km [41].
For the design of the link network, we made use of the communication links between the
satellite antennas on the ground and the geostationary satellites to build ESLs, and the
communication links between the microwave transmitters and the receivers on the ground
to build HMLs. Additionally, the parameters of the five geostationary satellites selected for
building the ESLs are shown in Table 1.

Table 1. The parameters of the geostationary satellites for building the ESLs.

Satellites Longitude Elevation (◦) Azimuth (◦) Frequency (GHz)

Apstar9 142.0◦E 50.86 133.13 11.154
Apstar6C 134.0◦E 56.28 145.56 12.323
AsiaSat9 122.0◦E 61.04 170.75 12.726

ChinaSat10 110.5◦E 60.10 197.94 12.309
AsiaSat5 100.5◦E 55.19 217.51 12.460

In the previous study [34], we only randomly designed the ESLs without considering
the impact of a more realistic environment. Obviously, it is impossible to install the ESL
antennas for measuring rainfall on the surface of the river and the sea. Therefore, the
following guidelines need to be followed in the design of the joint network of ESLs and
HMLs in this paper.

(1) The links for ESLs and HMLs should be spread as evenly as possible across the area.
(2) The rain rate measured by the link represents the average rain rate over the path and

can be considered as the rain rate at the location of the midpoint of the link.
(3) Although rain attenuation is more likely to occur for ESLs and HMLs with long

distances, the distribution of real rainfall over the area is not uniform. Thus, the
long links have poor spatial representation. To improve the spatial representation
of rainfall retrieved by ESLs and HMLs, it is necessary to build short links (the link
lengths in this experiment are in the range of 2.8–7.6 km).

(4) The antennas of ESLs, transmitters and receivers of HMLs cannot be installed on the
water surface. However, the links can pass above the water surface.

In Figure 5, we combined ESLs and HMLs to build a link network for rainfall observa-
tion, which consists of 40 links. Specifically, the 20 purple lines represent the HMLs, and the
blue “o” indicates the location of the satellite antennas, which connect the communication
satellites in Table 1 to form the 20 ESLs. The transmitters and receivers of the HMLs are
located across the shore in order to monitor the rainfall on the water surface. In addition,
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the rainfall retrieved by the link can be considered as the rainfall at the red midpoint due to
the fact that it only reflects the path-averaged rainfall. To avoid excessive differences in each
ESL, the ESLs were built at the Ku band and with horizontal polarization. Moreover, the
electromagnetic wave signals of the HMLs are all at 20 GHz with horizontal polarization.
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network; (b) Distribution of the link network in the gridded area. The blue lines represent the ESLs,
the blue markers “o” indicate the location of the satellite antennas, the purple lines represent the
HMLs, and the red markers “*” indicate the midpoint of the links.

4. Results and Discussion

The rainfall observation network built with multiple ESLs and HMLs enables mea-
suring sparsely distributed rain rates in the area. Then, the OK algorithm and RBF neural
network are used to reconstruct the sparsely distributed rain rates to obtain a continuous
distribution of rainfall fields in the area. To investigate the performance of the link network
in retrieving rainfall field, we used the HYCELL model and real rainfall fields for relevant
validation. The root mean square error (RMSE), mean bias (MB) and Pearson correlation
coefficient (CC) are used to give a quantitative evaluation of the retrieval results. For
clarification, RMSE is mainly used to give the error between the retrieved rainfall field
Rretrieve and the real rainfall field Rreal, MB gives the unbiasedness between Rretrieve and Rreal,
and CC is used to evaluate the degree of similarity between Rretrieve and Rreal. Additionally,
they are defined by

RMSE =

√
1
n

n

∑
i=1

(Rretrieve,i − Rreal,i)
2, (25)

MB =
1
n

n

∑
i=1

(Rretrieve,i − Rreal,i), (26)

and

CC =
cov(Rretrieve,i , Rreal,i)

σRretrieve ·σRreal

, (27)

where cov(Rretrieve, Rreal) denotes the covariance between Rretrieve and Rreal, and σRretrieve and
σRreal are the standard deviations of Rretrieve and Rreal, respectively.
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4.1. Rain Cell Retrieval by Network of ESLs and HMLs

The “rain cell“ is a meteorological term used to represent the distribution of rain
rate along the path. By studying the spatial distribution characteristics of rainfall, the
exponential rain cell (EXCELL) model, Gaussian model and HYCELL model are mainly
used to represent the rain cell at present [47–49]. In this case, the HYCELL model with
better spatial representation, which is based on a combination of the EXCELL model and
the Gaussian model [50]. Additionally, the expression of the model is

R(x, y) =


RE·exp

[
−
(

x2

aE2 +
y2

bE2

) 1
2

]
, (R1< R <R2)

RG·exp
[
−
(

x2

aG
2 +

y2

bG
2

)]
, (R >R2)

(28)

where RE and RG are the peak rain rate in the EXCELL model and Gaussian model,
respectively, aE and bE are parameters of the EXCELL model, and aG and bG are parameters
of the Gaussian model. From the model, it can be seen that when the rain rate R is lower
than R2, the rainfall conforms to the EXCELL model. Additionally, when the rain rate is
higher than R2, the rainfall conforms to the Gaussian model.

To test the performance of rain cell retrieval by the network of ESLs and HMLs, we first
designed various kinds of different rain cell samples in the experimental area as the initial
rainfall fields according to the HYCELL model. The rain cells consist of 1225 (35 × 35) rain
rate signals and thus have a spatial resolution of 1 × 1 km2. Then, the sparsely distributed
rain cells in the experimental area are retrieved by the joint network of ESLs and HMLs.
Finally, the OK algorithm and RBF neural network are used to reconstruct the sparse rain
cells, respectively, so as to obtain the complete rain cells in the experimental area. For the
RBF neural network, we simulate 100 different rain cells as the training set according to the
parameter range in Table 2, so as to determine the parameters of the neural network model.
In addition, in order to verify the performance of OK algorithm and RBF neural network
for reconstructing rain cells, a set of different rain cells consisting of three rain cells were
designed as the validation samples of rainfall field, and their spatial distribution of rainfall
is shown in Figure 6. There are significant differences in the range of rain rates and the
location of peak rainfall between these rain cells.

Table 2. The range of parameters of the HYCELL model.

Rain Rate Parameters Range

R1 < R < R2

RE 10–100 mm/h
aE 0.5–35 km
bE 0.5–35 km

R > R2

RG 10–80 mm/h
aG 0.5–35 km
bG 0.5–35 km

In the whole retrieval process, the rain rates at the location of the links in the rain cell
can first be measured using the joint network of ESLs and HMLs. Then, the OK algorithm
and RBF neural network are used to reconstruct the sparse rain rates measured by the
network, respectively. The distribution of the complete rain rates of the rain cell is thus
obtained, and the retrieval of the rain cell in the area is finally accomplished. Figure 7
shows the results of the joint network of ESLs and HMLs based on the OK algorithm and
RBF neural network to retrieve the different rain cells. It can be seen from the figure that the
retrieved rain cells of the OK algorithm and RBF neural network show good consistency
with the initial rain cells. This indicates that these two methods can both accurately retrieve
the distribution of rain rates for each of the rain cells. It should be noted that the rain rates
of the rain cells retrieved using the OK algorithm are locally closer to those of the initial
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rain cells. However, there are significant differences in the overall structure of the rain cells.
Most notably, the retrieved results for rain cell 2 and rain cell 3 show obvious distortions
in local areas compared to the initial rain cells. The reason for this is mainly due to the
fact that the distribution of links at these locations is too sparse and hence causes more
significant errors in the OK algorithm during the interpolation process. In addition, the
structural distribution of the rain cells retrieved by the RBF neural network is generally
consistent with the structure of the initial rain cells on the whole. However, the rain rate
peak at the center of rain cell 2 is not accurately retrieved.
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not yet fully entered the area. (b) is rain cell 2, indicating that the rain cluster has fully moved into
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To further evaluate the retrieval results quantitatively, the rain rates of the rain cell
retrieved by the OK algorithm and the RBF neural network are compared with the rain rate
signals of the 1225 grid points of the initial rain cell. In Figure 8, it can be observed that
the rain rate signals retrieved by the OK algorithm and the RBF neural network are overall
close to those of the initial rain cells. However, there are still significant deviations for the
retrieval of a small number of rain rate signals. As can be seen from Table 3, the RMSE of
the OK algorithm for retrieving rain cell 1 and rain cell 2 is lower than the results of the
RBF neural network, which indicates that the accuracy of the OK algorithm for retrieving
the rain rate signals of rain cell 1 and rain cell 2 is better than that of the RBF neural
network. However, for rain cell 3, the results of the RBF neural network outperformed the
OK algorithm. For the MB of retrieval results, the OK algorithm is essentially unbiased for
rain cell 2 and rain cell 3, but it underestimates rain cell 1. Additionally, the RBF neural
network underestimates rain cell 1 and rain cell 2, and it overestimates rain cell 3. In
addition, the retrieved rain cells of the RBF neural network all have higher CC than that
retrieved by the OK algorithm, which indicates that the similarity between the rain cells
retrieved by the RBF neural network and the initial rain cells is better. It is further verified
that the distribution of the structures of the rain cells retrieved by the RBF neural network
in Figure 7 is in better consistency with the initial rain cells in general.
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Table 3. The results of the joint network of ESLs and HMLs retrieving the different rain cells.

Rain Cells
RMSE (mm/h) MB (mm/h) CC

OK RBF OK RBF OK RBF

Rain cell 1 0.52 0.69 −0.14 −0.12 0.995 0.999
Rain cell 2 0.27 0.28 0.03 −0.20 0.986 0.994
Rain cell 3 0.75 0.54 0.02 0.29 0.985 0.998

Based on the above results, it can be seen that the RMSE and MB of the OK algorithm
for retrieval of the different rain cells are lower than 0.75 mm/h and 0.14 mm/h, respectively,
and the CC of the retrieved results is above 0.985. In contrast, the RMSE and MB of the RBF
neural network are lower than 0.69 mm/h and 0.29 mm/h, respectively, and the CC of the
retrieved rain cells is higher than 0.994. Moreover, the structural distribution of the rain
cells retrieved by the RBF neural network is generally in better consistency with the initial
rain cells. Furthermore, the results indicate that after the distribution of sparse rain rates in
the area is measured by the joint network of ESLs and HMLs, the distribution of rain cells
in the area can be accurately retrieved by the OK algorithm and the RBF neural network.
Additionally, this illustrates the ability of the joint network of ESLs and HMLs to retrieve
rain cells with high accuracy.

4.2. Performance of Retrieving Real Rainfall Field

The joint network of ESLs and HMLs is able to accurately retrieve the distribution of
rain rates in rain cells over the area. However, the spatial distribution of real rainfall is more
complex and irregular than the structure of simulated rain cells. Therefore, it is necessary
to validate the performance of retrieving real rainfall fields using the joint network of
ESLs and HMLs by real rainfall fields that match the characteristics of actual rainfall. In
this paper, we constructed the real rainfall fields in the experimental area by processing
the rainfall products from the Climate Prediction Center Morphing Technique of NOAA
(CMORPH) through spatial interpolation, so as to further investigate the performance of
retrieving real rainfall fields by using the joint network of ESLs and HMLs. Rainfall fields
with a time interval of 0.5 h can be obtained through the CMORPH rainfall product, which
means the time resolution of the real rainfall fields in this research is 0.5 h [51]. We chose
a total of 1000 rainfall fields for the period from 2017 to 2019, each of which consisted of
1225 rainfall rates.

To verify the performance of retrieving the real rainfall field using the joint network of
ESLs and HMLs, the real rainfall field from CMORPH is firstly used as the initial field, and
then, the sparse distributed rain rates at the location of the links in the area can be measured
by the joint network of ESLs and HMLs. Eventually, the OK algorithm and the RBF neural
network are used to reconstruct the sparse rain rates, respectively, so as to obtain the rainfall
field of the whole area. For the RBF neural network, we used 70% of the real rainfall fields
as the training set, thus determining the parameters of the computational model for the
RBF neural network to retrieve the real rainfall field. The remaining rainfall fields would
be used as the initial fields to test the retrieval performance of the joint network of ESLs
and HMLs.

The results of the joint network of ESLs and HMLs retrieving all rain rates from
300 real rainfall fields are shown in Figure 9. From the validation in Figure 9a, it can be
seen that the RMSE and CC between the results retrieved from the network of ESLs and
HMLs based on the OK algorithm and the rain rates of real rainfall fields are approximately
0.56 mm/h and 0.996, respectively, and the average rain rate retrieved is very close to that
of real rainfall fields. In addition, from the validation in Figure 9b it, can be shown that the
RMSE and CC between the results retrieved from the network of ESLs and HMLs based on
RBF neural networks and the rain rates of the real rainfall fields are about 0.51 mm/h and
0.997, respectively, and the average rain rate retrieved is significantly lower than that of the
real rainfall fields, which is more obvious during heavy rainfall. The retrieval results of the
OK algorithm and the RBF neural network are generally unbiased, as evidenced by the MB,
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but the RMSE and CC of the RBF neural network for retrieving the rain rates of rainfall
fields are better than the retrieval results of the OK algorithm. However, the performance of
the RBF neural network in retrieving the average rain rate of the real rainfall fields is not as
good as that of the OK algorithm. In general, the results of the OK algorithm retrieval have
a few results with large errors across the range of rain rates. This is directly reflected in the
fact that some of the data points deviate from the fitting straight line for all ranges of rain
rates retrieved by the OK algorithm in Figure 9a. In addition, the results retrieved by the
RBF neural network are in overall better agreement with the rain rates of the real rainfall
fields than those retrieved by the OK algorithm, as can be seen in Figure 9. However, the
rain rates over 50 mm/h retrieved by the RBF neural network are lower than those of the
real rainfall field in Figure 9b, which shows that the RBF neural network underestimates
the rain rates for retrieving extreme rainfall (over 50 mm/h).
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Figure 10 shows the probability density function (PDF) and cumulative distribution
function (CDF) of the rain rates from all rainfall fields in the experimental area. It can be
shown that extreme rainfall accounts for a small percentage of the total rainfall in the area
after the statistics of all rain rates. The PDF shows that the proportion of all rain rates
above 30 mm/h is below 1.0%. In addition, 99.4% of the rain rates in the sample are below
30 mm/h, as can be seen from the CDF. Therefore, the main reason for the RBF neural
network to underestimate the rain rates of extreme rainfall is that the number of extreme
rainfall samples in the training set is too small. However, the RBF neural network still has
high accuracy for the retrieval of common rainfall in the area.

To further examine the performance in monitoring actual rainfall event, we retrieved
two different types of rainfall in July 2019 using the joint network of ESLs and HMLs,
respectively. Figures 11 and 12 show the results of the joint network of ESLs and HMLs
retrieving the two different types of rainfall events, respectively. Among them, the rainfall
field 1 to rainfall field 4 is a partial process of stratiform rainfall event with a duration of
two hours. Additionally, the rainfall field 5 to rainfall field 8 is a convective rainfall event
with a duration of two hours. The stratiform rainfall is characterized by small rain rate, long
duration and slow movement. In contrast, the convective cloud rainfall has a high peak of
rain rate, develops rapidly, and the movement of the rain cluster is fast. From monitoring
the results of the stratiform rainfall and convective rainfall, it can be seen that the rainfall
fields retrieved by the joint network of ESLs and HMLs based on the OK algorithm and
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RBF neural network are generally consistent with the distribution of the actual rainfall.
Moreover, the joint network of ESLs and HMLs can accurately retrieve the characteristics of
the stratiform rainfall and convective rainfall. However, there are still differences between
the retrieved rainfall fields and the structure of the actual rainfall in a small, localized area.
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The RMSE, MB and CC for the two types of rainfall retrieved by the joint network
of ESLs and HMLs are shown in Table 4. It can be concluded that the RMSE of retrieving
stratiform rainfall and convective rainfall by the joint network of ESLs and HMLs based
on the OK algorithm is lower than 0.54 mm/h and 4.04 mm/h, respectively, while the
CC of retrieving stratiform rainfall and convective rainfall is higher than 0.949 and 0.971,
respectively. In addition, the RMSE for retrieving stratiform rainfall and convective rainfall
by the joint network of ESLs and HMLs based on the RBF neural network is lower than
0.32 mm/h and 3.44 mm/h, respectively, and the CC for retrieving stratiform rainfall and
convective rainfall is higher than 0.954 and 0.997, respectively. In addition, it is revealed
from the MB of the retrieval results that both the OK algorithm and the RBF neural network
are essentially unbiased for the retrieval of stratiform rainfall. However, for the retrieval of
convective rainfall, the OK algorithm significantly overestimates rainfall field 7, and the
RBF neural network obviously underestimates rainfall field 6 and rainfall field 7, which is
mainly due to the factor that RBF will underestimate extreme rainfall. Overall, the errors
and unbiasedness of retrieving stratiform rainfall for the OK algorithm and RBF neural
network are better than those of retrieving convective cloud rainfall, but the consistency
of retrieving convective rainfall is better than the results of retrieving stratiform rainfall.
Moreover, the retrieval results of the RBF neural network for both types of rainfall are
generally superior to those of the OK algorithm.
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Figure 11. The results of retrieving stratiform rainfall event that occurred on 3 July 2019 by combining
ESLs and HMLs. Rainfall field 1 to rainfall field 4 in (a–d) show the development of the stratiform
rainfall at 0.5 h intervals, characterized by small rain rate, long duration and slow movement. (e–h)
are the results of retrieving the stratiform rainfall from rainfall field 1 to rainfall field 4 by the OK
algorithm, and (i–l) are the results of retrieving the stratiform rainfall from rainfall field 1 to rainfall
field 4 by the RBF neural network.

The results of the retrieval of real rainfall fields show that the joint network of ESLs
and HMLs can accurately retrieve the rain rates of real rainfall fields and can effectively
monitor stratiform rainfall and convective rainfall. Thereby, the feasibility of the joint
network of ESLs and HMLs to retrieve rainfall fields in the area is validated. Additionally,
it also shows the significant potential of combined ESLs and HMLs for monitoring rainfall
over large areas.
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Figure 12. The results of retrieving convective rainfall event that occurred on 22 July 2019 by
combining ESLs and HMLs. Rainfall field 5 to rainfall field 8 in (a–d) show the development of the
convective rainfall with a high peak of rain rate, rapid development and fast movement of the rain
cluster. (e–h) are the results of retrieving the convective rainfall from rainfall field 5 to rainfall field 8
by the OK algorithm, and (i–l) are the results of retrieving the convective rainfall from rainfall field 5
to rainfall field 8 by the RBF neural network.

Table 4. The results of retrieving two different types of rainfall events by the joint network of ESLs
and HMLs.

Rainfall Type Rainfall Fields
RMSE (mm/h) MB (mm/h) CC

OK RBF OK RBF OK RBF

Stratiform rainfall

Rainfall field 1 0.52 0.32 −0.08 −0.01 0.988 0.999
Rainfall field 2 0.54 0.26 −0.03 −0.02 0.980 0.998
Rainfall field 3 0.42 0.23 −0.01 −0.04 0.964 0.990
Rainfall field 4 0.31 0.30 −0.05 −0.06 0.949 0.954

Convective rainfall

Rainfall field 5 1.05 0.58 −0.20 0.09 0.979 0.997
Rainfall field 6 2.56 1.60 0.22 −1.00 0.971 0.997
Rainfall field 7 4.04 3.44 1.27 −1.94 0.988 0.998
Rainfall field 8 1.75 1.73 0.47 0.62 0.992 0.998
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5. Conclusions

In this paper, we carried out the research of combining multiple ESLs with HMLs to
retrieve high-precision rainfall fields. First of all, we deployed a rainfall detection network
for retrieving rainfall fields in Xiamen based on the atmospheric propagation model of ESL
and HML. Then, the methods of the OK algorithm and the RBF neural network were given
to reconstruct the sparse distribution of rainfall measured by the rainfall detection network
to obtain a continuous distribution of rainfall fields in the area. Finally, the HYCELL
model and real rainfall fields were used to validate the performance of the joint network
of ESLs and HMLs to retrieve rainfall fields in the area. The experimental results verify
the feasibility of combining ESLs and HMLs to accurately retrieve rainfall fields. Detailed
conclusions are presented below.

(1) For the HYCELL model, the joint network of ESLS and HMLs is able to retrieve
the distribution of rain rates in rain cells with high accuracy. The RMSE and MB of
the OK algorithm for retrieval of the different rain cells are lower than 0.75 mm/h
and 0.14 mm/h, respectively, and the CC of the retrieved results is above 0.985. In
contrast, the RMSE and MB of the RBF neural network are lower than 0.69 mm/h and
0.29 mm/h, respectively, and the CC of the retrieved rain cells is higher than 0.994.
Moreover, the structural distribution of the rain cells retrieved by the RBF neural
network is generally in better consistency with the initial rain cells.

(2) For the rainfall from CMORPH, the joint network of ESLs and HMLs can accurately
retrieve the rain rates of the real rainfall fields. In particular, the error and correlation
of the RBF neural network in retrieving the rain rates from the real rainfall field are
better than those of the OK algorithm. However, the performance of the RBF neural
network in retrieving the average rain rate is inferior to that of the OK algorithm, and
the rain rates would be underestimated for retrieving extreme rainfall.

(3) The joint network of ESLs and HMLs also shows a good performance in monitoring
actual rainfall event. The results for stratiform rainfall and convective rainfall retrieved
by the joint network based on the OK algorithm and the RBF neural network are
substantially consistent with the distribution of actual rainfall events, and they show
correctly the characteristics of stratiform rainfall and convective rainfall. Moreover,
the approach of the RBF neural network performs better for the retrieval of actual
rainfall events.

The paper only provides a preliminary verification of the feasibility of retrieving
rainfall fields by combining ESLs and HMLs through a simulated network. With the rapid
development of communication satellite constellations and 5G communication networks,
the use of widely distributed networks of ESLs and HMLs to retrieve rainfall over large
areas has great potential for obtaining high-precision rainfall fields and complementing
traditional instruments of rainfall measurement. Next, we will build multiple real ESLs and
HMLs in different topographic areas to form a rainfall observation network and monitor
rainfall over a large area in real time. Furthermore, it is worthwhile to develop a study to
combine ESLs and HMLs with traditional rain instruments to obtain rainfall fields with
higher precision.
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