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Abstract: Accurate estimation of the canopy chlorophyll content (CCC) plays a key role in quantitative
remote sensing. Maize (Zea mays L.) is a high-stalk crop with a large leaf area and deep canopy. It
has a non-uniform vertical distribution of the leaf chlorophyll content (LCC), which limits remote
sensing of CCC. Therefore, it is crucial to understand the vertical heterogeneity of LCC and leaf
reflectance spectra to improve the accuracy of CCC monitoring. In this study, CCC, LCC, and leaf
spectral reflectance were measured during two consecutive field growing seasons under five nitrogen
treatments. The vertical LCC profile showed an asymmetric ‘bell-shaped’ curve structure and was
affected by nitrogen application. The leaf reflectance also varied greatly between spatio–temporal
conditions, which could indicate the influence of vertical heterogeneity. In the early growth stage,
the spectral differences between leaf positions were mainly concentrated in the red-edge (RE) and
near-infrared (NIR) regions, whereas differences were concentrated in the visible region during the
mid-late filling stage. LCC had a strong linear correlation with vegetation indices (VIs), such as
the modified red-edge ratio (mRER, R2 = 0.87), but the VI–chlorophyll models showed significant
inversion errors throughout the growth season, especially at the early vegetative growth stage and
the late filling stage (rRMSE values ranged from 36% to 87.4%). The vertical distribution of LCC had
a strong correlation with the total chlorophyll in canopy, and sensitive leaf positions were identified
with a multiple stepwise regression (MSR) model. The LCC of leaf positions L6 in the vegetative
stage (R2-adj = 0.9) and L11 + L14 in the reproductive stage (R2-adj = 0.93) could be used to evaluate
the canopy chlorophyll status (L12 represents the ear leaf). With a strong relationship between leaf
spectral reflectance and LCC, CCC can be estimated directly by leaf spectral reflectance (mRER,
rRMSE = 8.97%). Therefore, the spatio–temporal variations of LCC and leaf spectral reflectance were
analyzed, and a higher accuracy CCC estimation approach that can avoid the effects of the leaf area
was proposed.

Keywords: leaf chlorophyll content; canopy chlorophyll content; vertical distribution; leaf spectral
reflectance; maize

1. Introduction

The canopy chlorophyll content (CCC) can reflect the total photosynthetic productivity
of a population, and it forms an important basis for judging the growth and nutritional
status of individual plants [1–3]. Accurate monitoring of the chlorophyll content at the
canopy and leaf scales by remote sensing is key in crop growth status determination and
yield prediction [2,4]. However, the chlorophyll content in the maize canopy has a strong
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non-uniform vertical distribution, which makes it difficult to monitor CCC by standard
spectral methods [5,6].

The non-uniform vertical profile of CCC in the canopy is generally abstracted as a
slightly skewed “bell-shaped” model or Gaussian curve structure [7,8], with higher levels
in the middle and lower levels at the top and bottom of the canopy. This means that the leaf
chlorophyll content (LCC) at each leaf position is different. Light and nitrogen availability
are the main factors that affect the vertical distribution of LCC in the canopy [7,9,10].
Transference and reuse of nitrogen between leaf layers during the growth season amplifies
the spatio–temporal variability of LCC in the canopy [5,11]. Therefore, comprehensive
measurements of the temporal and spatial distribution of chlorophyll in the canopy are
required for accurate evaluation of the growth and nutritional status of maize in the field.

Vegetation indices (VIs) based on visible and near infrared (NIR) regions are well
correlated with LCC, and the sensitive wavebands are primarily between 520 and 585 nm
and 695 and 740 nm [12–14]. The empirical VI method, which is based on combinations
of wavebands, can be used for accurate quantitative remote sensing of the chlorophyll
content; this has been demonstrated in numerous studies. Common and widely used
VIs include the normalized difference red edge index (NDRE) [15], MERIS Terrestrial
Chlorophyll Index (MTCI) [16], and Vogelman Red Edge Index 2 (VOG2) [17]. In particular,
the red edge chlorophyll index (CIred-edge) has been found to have a strong correlation
with LCC (R2 > 0.94) [18] and can be used to accurately estimate LCC within a range of
10–80 µg/cm2 [8,18]. Based on the spectral reflectance, VI has strong adaptability and
expansibility, and previous studies developed diverse VI models to reduce the influence of
factors such as the leaf structure, surface reflectance, and soil background on chlorophyll
inversion accuracy [4,13,19]. Other studies developed transferable leaf nitrogen content
assessment models based on support vector regression (SVR) and partial least squares
regression (PLSR) to account for variations in plant species and growth conditions [20,21].
Physically based radiation transfer models (RTM) such as PROSPECT and PROSAIL have
been widely used to simulate leaf hyperspectral reflectance and to optimize chlorophyll
inversion methods at the leaf and canopy scales [22–24].

Although the methods described above function well in some applications, the vertical
heterogeneity of LCC in the canopy and between growth stages causes significant differ-
ences in reflectance spectrum characteristics of leaves in different positions [14,25]. Soil and
Plant Analyzer Development (SPAD-502) is a widely used chlorophyll meter, and it has
been demonstrated that the relationship between SPAD values and LCC is not consistent
between different leaf positions [26,27]. The high-value area of SPAD generally appears in
the middle–upper rank of leaves and changes with nitrogen supply [7]. The correlation
between leaf reflectance and the chlorophyll content has been shown to be highest in the
middle–upper positions [14,27], and LCC-based inversion accuracy of VI is higher in the
middle than in upper or lower positions. In studies of canopy vertical distribution, the
canopy is often artificially divided into upper, middle, and lower layers, and corresponding
spectral index models have been established based on that system [27–29]. There has been
no clear conclusion regarding how the relationships between leaf spectral characteristics
and LCC change in different growth stages and leaf positions in the canopy.

CCC is a comprehensive evaluation of the chlorophyll content at the canopy scale;
estimation of CCC is affected by the vertical distribution of LCC [5,30]. The vertical
distribution of LCC in the canopy can be adjusted to increase the photosynthetic rate of
leaves in the upper canopy to cope with stress conditions [31]. Symptoms of chlorophyll
deficiency often occur in the lower layers, and the mid-upper layers show significant
changes in LCC when nitrogen supply is altered [14,28,31]. The collar leaf and the ear leaf
have generally been used before and after silking, respectively, as the “sensitive leaf” to
estimate the canopy chlorophyll status [30,32]. Previous studies demonstrated a strong
relationship between chlorophyll accumulation in the ear leaf and CCC (R2 = 0.86) [30]. It
has also been suggested that the mean LCC of upper canopy layers can be used to represent
all canopy layers, and therefore CCC can be estimated as the mean LCCupper × leaf area
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index (LAI) (R2 = 0.97) [33]. Estimation of CCC based on canopy spectral reflectance is an
efficient and convenient method but seldom takes non-uniform chlorophyll distribution
into consideration [34,35]. This limits the accuracy of CCC remote sensing (R2 = 0.60) and
decreases the practical value [35]. Due to the vertical variability of LCC between growth
conditions, it is not known whether CCC can be accurately evaluated by LCC. If it can, LCC
measurements could be used as a quick method to determine the canopy chlorophyll status.

In this study, we used a gradient of five nitrogen treatments to establish a range of
canopy architectures, sampled all of the leaves in the canopy throughout the growth season,
and measured LCC and leaf spectral reflectance. Three objectives were addressed: (1) to
understand the effect of nitrogen supply on the vertical distribution of chlorophyll in the
maize canopy and dynamic changes in chlorophyll distribution during the growth season;
(2) to explore differences in leaf spectral reflectance characteristics in the canopy and verify
whether a VI model based on leaf spectral reflectance can accurately invert LCC under
variable spatio–temporal conditions; and (3) to identify the sensitive leaf positions (those
that can be used to characterize the relationship between LCC and CCC) and evaluate
the robustness and accuracy of a VI model based on leaf spectra to assess the canopy
chlorophyll status.

2. Materials and Methods
2.1. Study Area and Experimental Design

This experiment was conducted in 2019 and 2020 at the Xinxiang Experimental Station
(35◦7′51.57′′N, 113◦45′36.63′′E) of the Chinese Academy of Agricultural Sciences, Henan
Province, Eastern China, located in the Huang-Huai-Hai maize ecological zone. The experi-
mental site was located in a semi-moist monsoon temperate continental climate region, with
annual average temperature, precipitation, and sunlight duration of 14 ◦C, 573.4 mm, and
1993 h, respectively. The maize hybrid ‘Jingnongke 728’ (JNK728) was used, and the grow-
ing season was from 18 June to 29 September 2019 and from 11 June to 28 September 2020.
The planting density was 75,000 plants/ha, and an isometric planting mode was used. The
experimental area was ~0.66 hm2 with a long-term rotation between summer maize (Zea
mays L.) and winter wheat (Triticum aestivum L.). The soil composition was measured prior
to nitrogen fertilizer application; organic matter content was 17.78 g/kg, available P was
12.93 mg/kg, available K was 139.09 mg/kg, total N was 1.34 g/kg, and the pH was 7.6.

The experiment in 2019 was a trial, which was followed by the formal experiment
in 2020. To obtain a wide range of LCC values and a variety of canopy structures, the
experiment was designed with five nitrogen application rate (N rate) treatments: 0, 100,
200, 300, and 400 kg/hm2 (denoted as N0–N400). The same nitrogen treatment plants and
field management practices were followed in 2019 and 2020. In 2019, only the N0 and
N400 plants were sampled, whereas plants from all five N treatments were sampled in
2020. Nitrogen fertilizer was applied at the three-leaf (V3) and silking (VT) stages for a
total of two applications. Details about the volume and timing of N treatments are shown
in Table 1.

Table 1. Nitrogen treatments (kg/hm2).

Stage N0 N100 N200 N300 N400

V3 0 60 120 180 240
VT 0 40 80 120 160

A drip irrigation system was used in this study with water and nitrogen fertilizer
integrated. Each plot was equipped with a flow gauge to ensure uniform irrigation. Each
N treatment had three independent replicate plots, each 9.6 m × 9.6 m (92.16 m2) in size.
The N treatment consisted of urea with a nitrogen content of 46%. Superphosphate was
used as phosphate fertilizer (P2O5, 12%, 90 kg/hm2), and potassium chloride was used
as potash fertilizer (K2O, 60%, 120 kg/hm2), both of which were applied once as basal
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fertilizer before sowing. The layout and management of the experimental site were shown
in Figure 1.
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Figure 1. Overhead view of the study area on 2 September 2020 (a). Hyperspectral reflectance
measurement system (b). Benchtop chlorophyll spectrophotometer (c). Canopy conditions under five
nitrogen treatments (N) on 8 August 2020 (d).

2.2. Leaf Sampling and Chlorophyll Measurement

In 2019, samples were collected at three stages during the maize growing season:
the sixteen-leaf stage (day 51 after emergence), silking stage (day 64), and filling stage
(day 87). In 2020, samples were taken at five stages: the ninth-leaf stage (day 38), silking
stage (day 57), blister stage (day 71), filling stage (day 87), and physiological maturity stage
(day 100).

The leaf positions L1–L18 denote leaf order from the bottom to the top of the canopy,
with the first leaf after emergence designated L1 and subsequent leaves numbered in order.
Three maize plants were measured in each plot. For each plot, leaves at the same position
were measured as biological replicates of LCC and leaf spectral reflectance. Leaf height
was measured as the vertical distance from the leaf collar to the ground. Chlorophyll
and spectral reflectance measurements were carried out in the laboratory using ~3800
destructively sampled leaves.

LCC (µg/cm2) was measured under dark conditions in the laboratory. A circular
punch (10 mm in diameter) was used to obtain leaf discs from symmetrical positions on
both sides of the leaf vein. LCC was measured in the basal, central, and top portions of
each leaf. Approximately 20 leaf discs were obtained for each leaf position, from which
six discs were randomly selected, placed in a test tube, soaked in 95% ethanol (10 mL),
and incubated in the dark for 48 h until the chlorophyll was completely extracted. The
absorbance values of the chlorophyll solution were measured at 645 and 663 nm using a
V-1800BPC spectrophotometer (V-1800, Inc., MAPADA, Shanghai, China), with 95% ethanol
as the blank sample. The Arnon method was used to calculate the chlorophyll content [36]:

Chla+b(mg/L) = 8.04× A663 + 20.29× A645 (1)
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LCC
(
µg/cm2

)
=

Chla+b(mg/L)×VT(mL)
disc area(cm2)

(2)

where A663 and A645 represent the absorbance values of the chlorophyll solution at 663 nm
and 645 nm, respectively; VT (mL) represents the volume of the chlorophyll soaking
solution; and disc area

(
cm2) represents the area of the leaf disc.

The canopy chlorophyll content (CCC, g/m2) was used to represent the chlorophyll
status of the canopy. CCC was calculated as the total chlorophyll accumulation per unit of
ground area. The leaf area at each leaf position was calculated by manually measuring the
maximum length and width of the leaf [37]:

Lea f area
(

cm2
)
=

{
length× width× 0.5 (Unexpanded lea f )
length× width× 0.75 (expanded lea f )

(3)

CCC
(

g/m2
)
=

n

∑
i=1

(LCCi × LAIi)× 100 (4)

where n represents the number of leaves in the canopy; LCCi and LAIi represent the leaf
chlorophyll content (µg/cm2) and leaf area index (m2/m2) of each leaf position, respectively.

2.3. Leaf Spectral Reflectance Measurements

Leaf spectral reflectance was measured from 350 nm to 2500 nm using an ASD Field-
Spec4 spectrometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) attached via a
fiber optic cable to a plant probe (Field of View = 25◦) equipped with a leaf clip containing
a halogen bulb inside. A white reference panel on the leaf clip was used for reflectance
correction. The sampling interval was 1.4 nm from 350 to 1000 nm and 2 nm from 1001 nm
to 2500 nm. The hyperspectral data were resampled to 1 nm resolution using a self-driven
interpolation method in RS3 6.4.0 (ASD Operation Software, Inc., Spectris, Westborough,
MA, USA). The wavelength range between 350 nm to 900 nm was used in this experiment
because chlorophyll is most strongly associated with that region [12–14]. To avoid potential
errors, reflectance spectra were measured at six points symmetrically distributed over the
basal, central, and top portions of the leaf. Each point was scanned 10 times, and the
average value was recorded. Standard white reference panel calibration was performed
before measurements and once every 10–20 min while measurements were taken.

Measurements at several (three to four) leaf positions were halted during the vegetative
period because the leaves grew rolled together at the top of the canopy, which hindered
chlorophyll extraction and spectral measurements. Leaf hyperspectral reflectance data were
acquired in three stages in 2019 and five stages in 2020 as described above for field sampling.

2.4. Vegetation Index Extraction

LCC has a direct correlation with leaf spectral reflectance. Previous research has
resulted in the development of various vegetation indices (VIs). We calculated narrow-
band vegetation indices from leaf reflectance spectra [38], and 24 classic chlorophyll-related
VIs were used to verify their relationship with LCC (Table 2).

2.5. Statistical Analysis
2.5.1. Construction of the VI–Chlorophyll Model

To ensure a sufficient sample size to fully verify the VI–LCC relationship under various
spatio–temporal conditions, 170 of the 824 samples from the 2020 dataset were used in
model building to determine the relationship between leaf spectral reflectance and LCC.
This dataset contained all possible combinations of leaf positions, nitrogen treatments,
and sampling time points. A linear model of VI and LCC was constructed using the least
squares method.
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Table 2. Vegetation indices (VIs) studied in this experiment.

Vegetation Index (Abbr.) Formula Reference

Simple ratio (SR) Rnir/Rred [39]
Vogelman Red Edge Index 1 (VOG1) R740/R720 [17]

Normalized difference vegetation index (NDVI) (Rnir − Rred)/(Rnir + Rred) [40]
Normalized difference red edge index (NDRE) (Rnir − Rre)/(Rnir + Rre) [15]

Green NDVI (GNDVI) (Rnir − Rgreen)/(Rnir + Rgreen) [41]
Plant Pigment ratio (PPR) (Rgreen − Rblue)/(Rgreen + Rblue) [42]

Canopy chlorophyll content (CCCI) NDRE/NDVI [43]
MERIS Terrestrial Chlorophyll Index (MTCI) (Rnir − Rre)/(Rre − Rred) [16]

Vogelman Red Edge Index 2 (VOG2) (R734 − R747)/(R715 + R726) [17]
Vogelman Red Edge Index 3 (VOG3) (R734 − R747)/(R715 + R720) [17]

Red edge chlorophyll index (CIred-edge) (Rnir/Rre) − 1 [8]
Green chlorophyll index (CIgreen) (Rnir/Rgreen) − 1 [12]

Transformed Chl absorption in reflectance index (TCARI) 3[(Rre − Rred) − 0.2(Rre − Rgreen)(Rre/Rred)] [44]
Structure independent pigment index (SIPI) (R800 − R445)/(R800 − R680) [45]

Double difference index (DD) (R750 − R720) − (R700 − R670) [46]
Modified normalized difference (mND705) (R750 − R705)/(R750 + R705 − 2 × R445) [13]

Modified simple ratio (mSR705) (R750 − R445)/(R705 − R445) [13]
Triangular vegetation index (TVI) 60 × (Rnir − Rgreen) − 100 × (Rred − Rgreen) [47]

mTVI (red-edge) 60 × (Rnir − Rgreen) − 100 × (Rre − Rgreen) [47]
Modified chlorophyll absorption ratio index (MCARI) (Rre − Rred) − 0.2 × (Rre − Rgreen) × (Rre/Rred) [3]

mNDblue (Rblue − Rre)/(Rblue + Rnir) [48]
Double-peak canopy nitrogen index (DCNII) (R750 − R700)/(R700 − R670)/(R750 − R670 + 0.09) [49]

Modified red-edge ratio (mRER) (R759 − 1.8 × R419)/(R742 − 1.8 × R419) [50]
Enhanced vegetation index (EVI) 2.5 (Rnir − Rred)/(Rnir + 6 Rred − 7.5 Rblue + 1) [51]

Rblue, Rgreen, Rred, Rre, and Rnir refer to differences in band reflectance. The characteristic bands were
designated as follows: 475 nm (Rblue), 560 nm (Rgreen), 668 nm (Rred), 718 nm (Rre), and 842 nm (Rnir).

2.5.2. Model Testing and Verification

Approximately 13 samples for each growth stage and vertical position were used
to test the model. The remaining samples (654 from the 2020 dataset and 427 from the
completely independent 2019 dataset) were used as a verification set to determine the
correlation between chlorophyll and spectral reflectance. The differences in chlorophyll
inversion ability of the unified model based on vertical leaf position were verified at the
ninth-leaf stage (day 38), silking stage (day 57), blister stage (day 71), filling stage (day 87),
and physiological maturity stage (day 100).

2.5.3. Multivariate Regression Model for LCC and CCC

Multivariable stepwise regression (MSR) is a simple and effective method to avoid
multicollinearity among factors and to screen characteristic variables [52]. Each new
variable was evaluated with an F-test, and the existing variables were evaluated with a
t-test to ensure that all were significant in MSR. Variance inflation factor (VIF) analysis was
used to evaluate the collinearity among variables. When VIF > 10, it is generally considered
that there is multicollinearity among variables [53]. The MSR model was evaluated with
an adjusted coefficient of determination (R2-adj), which is used to avoid an increase in R2

caused by the inclusion of a large number of variables in the model. In this study, it was
used to determine the sensitive leaf position that can represent CCC and to construct the
multiple linear relationship between LCC and CCC. The stepwise algorithm in SPSS v.22
(SPSS Inc., Chicago, IL, USA) was used for leaf layer filtering and model building. MSR
was calculated as follows:

Y = α0 + α1X1 + α2X2 + · · ·+ αnXn + ε (5)

R2 − adj = 1−
(
1− R2)(n− 1)

n− k− 1
(6)
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where Y is the value of CCC; a0 is a constant term; X1, X2, . . . , Xn are the variables; a1, a2,
. . . , an are the coefficients; ε represents a random error term; R2 represents the coefficient
of determination; n represents the number of samples; and k is the number of coefficients
in the equation. The dataset from 2020 was used to construct the MSR model of LCC and
CCC, and the 2019 dataset was used to verify the robustness and accuracy of the model.

2.5.4. Validation Metrics

ViewSpecPro5.7 spectrum processing software was used for leaf spectral data ex-
traction. Python 3.8 was used for data preprocessing and plotting. The coefficient of
determination (R2), root mean square error (RMSE), and relative root mean square error
(rRMSE) were used as indices to evaluate the inversion accuracy of the VI model. Pearson’s
correlation coefficient (r) was used to express the correlation between spectral wavebands
and LCC, and p-values were used to evaluate the degree of significance; p < 0.05 was
considered a statistically significant difference. The statistical equations were as follows:

R2 = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −Oi

)2 (7)

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(8)

rRMSE (%) =
RMSE

O
× 100% (9)

where n is the number of samples; Oi is the observed value; Pi is the estimated value from
the regression model; and Oi is the average observed value. Higher R2 and lower RMSE
and rRMSE values indicate higher accuracy and precision of the model.

3. Results
3.1. Vertical Profile and Temporal Variation of the Leaf Chlorophyll Content

There were drastic differences in the vertical distribution of LCC at different growth
periods (Figure 2). In the early growth stage, LCC showed low levels (2.12 to 76.23 µg/cm2).
After the vegetative growth stage, LCC increased rapidly and peaked at the early filling
stage, ranging from 37.35 to 97.02 µg/cm2 (Figure 2a–c). After peaking, LCC slowly
decreased until the end of the growing season, at which point it ranged from 1.02 to
59.29 µg/cm2. The vertical profile of LCC showed a rapid increase from the top to the
middle and a slow decrease from the middle to the bottom. During vegetative stages,
the vertical profile of LCC increased toward the bottom layer. During the reproductive
period, LCC was obviously skewed toward the higher layers (Figure 2a,b). Maximum LCC
values were observed in the two to three leaf positions above the ear leaf (Figure 2b,c). The
amount of nitrogen applied had a significant effect on LCC in positions throughout the
canopy; those with sufficient nitrogen supply maintained high CCC. At the late growth
stage, nitrogen-deficient plants showed a rapid decrease in LCC, which was accompanied
by chlorosis and senescence in lower leaf positions (Figure 2c–e).
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Figure 2. Vertical profile of the leaf chlorophyll content (LCC) within the maize canopy during the
2020 growing season. The y-axis shows the mean height above the ground for each leaf position at
five sampling points: (a) ninth-leaf stage (day 38), (b) silking stage (day 57), (c) blister stage (day 71),
(d) filling stage (day 87), and (e) physiological maturity (day 100). The red line denotes the position
of the ear leaf (L12). Error bars show standard deviation.

3.2. The Vertical–Temporal Variation of Leaf Reflectance Spectral Characteristics

Samples collected at 38, 57, and 87 days after emergence were used to represent the
early (Figure 3a,b), middle (Figure 3c,d), and late (Figure 3e,f) stages of maize growth,
respectively. There were significant differences in leaf spectral reflectance curves under
different temporal and spatial conditions. In the early growth stage, the main variations in
leaf spectral reflectance curves were concentrated in the near-infrared (NIR) band (around
750–900 nm) and the red-edge (RE) band (around 700–721 nm), whereas differences were
mostly concentrated in the visible wave band (around 510–680 nm) in the late growth stage.
In the middle growth stage, the leaf spectral reflectance curves at different leaf positions
were relatively uniform. These obvious fluctuations in reflectance spectra between leaf
positions reflect a vertical non-uniformity of leaf properties in the maize canopy.

Leaf position was shown to influence the leaf spectral reflectance. Based on the
correlation between wavebands and LCC at different leaf positions, the characteristic of
LCC wavebands showed changes in sensitivity at different leaf positions (Figure 3). With
the increase in LCC, the RE position moved in the infrared direction, the reflectance spectra
in the visible light area showed a descending trend, and the NIR area showed an ascending
trend. The sensitive wavebands for LCC were concentrated in the green band (531–567 nm;
r = −0.65) and the RE band (712–731 nm; r = −0.77). There was a weak positive correlation
between the NIR band and LCC.
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3.3. Sensitivity of Vegetation Indices

Linear models were established to represent the relationship between vegetation
indices (VIs) and LCC using the modeling dataset. After models were built, VI sensitivity
to LCC was analyzed by calculating the coefficient of determination (R2), root mean square
error (RMSE), and relative RMSE (rRMSE) (Table 3).

The results showed that several commonly used VIs, such as the normalized difference
red edge (NDRE), simple ratio (SR), and CIred-edge had a relatively strong linear correlation
with LCC (for example, R2 for NDRE was 0.85). These VIs are calculated with a combination
of near-infrared (NIR) and red-edge band (RE) data, indicating that those two bands had
a good inversion ability for LCC under relatively complex conditions. In contrast, green
NDVI (GNDVI, NIR and green band; R2 = 0.77) and the normalized difference vegetation
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index (NDVI, NIR and red band; R2 = 0.41) did not perform as well. These results indicate
that the red edge band was key for monitoring LCC through the spectral reflectance.

Table 3. Verification of vegetation index (VI) sensitivity to leaf chlorophyll content (LCC).

NO. VI Linear Model R2 RMSE rRMSE (%)

1 mRER y = 496.61x − 499.81 0.87 7.98 14.42
2 VOG2 y = −441.07x + 6.09 0.85 8.38 15.13
3 SR(Rnir, Rre) y = 65.38x − 66.96 0.85 8.49 15.34
4 CIred-edge y = 65.38x − 1.58 0.85 8.49 15.34
5 VOG3 y = −377.01x + 8.38 0.85 8.58 15.49
6 NDRE y = 250.7x − 18.53 0.85 8.59 15.51
7 mTVI y = 5.85x + 9.47 0.82 9.21 16.64
8 VOG1 y = 103.37x − 104.75 0.82 9.31 16.82
9 MTCI y = 43.88x − 1.33 0.81 9.48 17.12
10 DD y = 316.21x + 11.8 0.81 9.50 17.16
11 mNDblue y = 321.09x + 161.16 0.80 9.93 17.94
12 mSR705 y = 11.44x − 1.51 0.79 10.03 18.11
13 CIgreen y = 27.06x − 11.9 0.78 10.30 18.61
14 CI705 y = 28.17x − 0.47 0.78 10.40 18.79
15 GNDVI y = 236.7x − 72.78 0.77 10.50 18.96
16 CCCI y = 222.07x − 37.6 0.75 10.96 19.80
17 DCNII1 y = 20.16x + 0.38 0.74 11.27 20.36
18 TCARI y = −201.47x + 115.49 0.49 15.72 28.38
19 MCARI y = −604.4x + 115.49 0.49 15.72 28.38
20 PPR y = −245.18x + 125.12 0.42 16.75 30.25
21 NDVI y = 150.7x − 49.53 0.41 16.89 30.50
22 EVI y = 131.18x − 34.95 0.27 18.77 33.90
23 SIPI y = −79.59x + 137.67 0.22 19.43 35.10
24 TVI y = 1.14x + 26.76 0.02 21.71 39.21

Note: x and y represent VIs and LCC, respectively. A linear model was used to establish the relationship between
VI and LCC. n = 169.

Some VIs that are composed of three or four wavebands, including multiple red-
edge and near-infrared bands, also showed good inversion ability for LCC, such as VOG2
(R2 = 0.85), mRER (R2 = 0.87), VOG3 (R2 = 0.85), MTCI (R2 = 0.81), and DD (R2 = 0.81).
Previous studies have shown that such VIs have increased robustness and sensitivity
compared to dual-band VIs and can reduce the influence of saturation effects [54]. Here,
the combination of multiple red-edge bands improved the sensitivity and robustness of the
correlation between VIs and LCC.

3.4. Establishing an Inversion Model for Chlorophyll Prediction through Vegetation Indices

To comprehensively verify the accuracy of VI–LCC models throughout the whole
growth period, six typical vegetation indices (mRER, VOG2, CIred-edge, NDRE, MTCI, and
DD) with different formula types and waveband compositions were selected based on
R2 and RMSE values (Table 3). All six VI models constructed had strong linear (or close
to linear) relationships with LCC (Figure 4), with the exception of DD, which showed a
slight tendency toward exponential function distribution. The model dataset showed a
normal distribution (Figure 4), which met the requirements for random sampling and could
therefore be used to represent the whole dataset. However, mRER (Figure 4a), CIred-edge
(Figure 4c), and MTCI (Figure 4e) showed a more uniform data distribution, whereas NDRE
(Figure 4d) and DD (Figure 4f) showed a slight skewness toward high values, indicating
that there was some saturation at higher LCC values. VOG2 (Figure 4b) was the only VI
among the six selected that was negatively correlated with LCC.
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3.5. Validation and Testing under Spatio–Temporal Variation

To verify the relationship between leaf spectral reflectance and the vertical distribution
of LCC, VI–chlorophyll models were established to predict LCC under different spatio–
temporal conditions (Figure 5). rRMSE was used to express the degree of deviation between
the predicted and observed values to measure the robustness and accuracy of each model.
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Figure 5. rRMSE (%) for the six LCC-VI models: (a) mRER, (b) VOG2, (c) CIred-edge, (d) NDRE,
(e) MTCI, and (f) DD. rRMSE was used to evaluate the model inversion accuracy. Lower values of
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high rRMSE value between the observed and predicted LCC. Gray indicates error of more than 100%.
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All of the VI models showed a similar pattern in performance throughout the growing
season (Figure 5). LCC predictions for the silking stage (day 57) and early filling stage
(day 71) had the highest precision, with average rRMSE values of ~6.2% to 9.4%. Precision
was lowest in the vegetation stage (day 38) and late growth stage (day 100), with average
rRMSE values of ~26.4% to 48.4%. The inversion accuracy of the model also differed by
leaf position. In the vegetative growth stage (day 38), the chlorophyll model had a good
inversion effect for the lower and middle mature leaves (rRMSE ≈ 10.4%) but not for the
top leaf positions with tender leaves (rRMSE ≈ 20% to 80%). In the early and middle
reproductive growth stages (days 57, 71, and 87), all leaves in the maize canopy were in
a robust mature functional stage, and the chlorophyll model could be used to conduct
high-precision inversion for all leaf positions in the canopy (rRMSE ≈ 10.9%). At the end of
the growing season when leaves became senescent (day 100), the one to two leaves above
the ear leaf (L12), which still had green tissue and maintained basic physiological functions,
had the best inversion effect (rRMSE ≈ 21.2%).

In the vegetative growth stage before silking and the late reproductive growth stage,
the inversion performance differed significantly by leaf position. This indicated that the
relationship between LCC and leaf spectral reflectance was variable, and the inversion
accuracy of the VI model was affected by leaf properties or other factors that were vertically
distributed in the canopy. A completely independent data set (collected in 2019) was used
to test the accuracy of the VI–LCC model. The results are consistent with those shown
in Figure 5 (Appendix A/Figure A1). The model had the best inversion precision in the
middle growth period (days 51 and 64), and the inversion effect was poor for senescent
leaves in the mature stage.

3.6. Relationship between LCC and CCC throughout Growth Stages

Different nitrogen treatments and growth stages were associated with changes in the
vertical distribution of chlorophyll in the canopy (Figure 2). There were clear relationships
between the chlorophyll content in individual leaves (LCC, µg/cm2) located at different
leaf positions and the total chlorophyll content in the canopy (CCC, g/m2), and these rela-
tionships varied between growth stages (Figure A2). A multiple stepwise regression model
(MSR) was used to determine the sensitive leaf position and to construct a multiple linear
relationship between LCC and CCC using the 2020 dataset (Table 4). Variance inflation fac-
tor (VIF) analysis was used to measure the degree of collinearity among variables. Variables
are generally considered to have multicollinearity when VIF > 10. It is important to note
that, due to the correlation between LCC and vertical leaf position, the multivariate linear
model for LCC and CCC could incorporate data from a maximum of two leaf positions.

Table 4. Relationships between the leaf chlorophyll content (LCC) and canopy chlorophyll content
(CCC) in the 2020 dataset.

MSR Model Parameters Regression Model R2-adj Beta VIF

Early model (day 38) X1:L6 Y = 0.042X1 − 1.6 0.9 0.95 1

Middle model (day = 57 + 71) X1:L9 Y = 0.052X1 − 0.334 0.89 0.95 1
X1:L9, X2:L16 Y = 0.038X1 + 0.018X2 − 0.79 0.93 (0.7, 0.3) 2.64

Late model (day = 87 + 100) X1:L14 Y = 0.039X1 − 0.67 0.92 0.96 1
X1:L14, X2:L9 Y = 0.032X1 + 0.009X2 − 0.362 0.97 (0.79, 0.27) 1.74

Reproductive model (day
57−100)

X1:L11 Y = 0.042X1 − 0.09 0.91 0.95 1
X1:L11, X2:L14 Y = 0.022X1 + 0.024X2 − 0.679 0.93 (0.51, 0.48) 8.428

Notes: Using the 2020 data, the samples were divided into early, middle, late, and reproductive stages based
on the number of days after emergence. CCC (g/m2) was the dependent variable, and LCC (µg/cm2) was the
independent variable. X1 and X2 represent the sensitive leaf positions determined by MSR. Beta represents
the contribution of different parameters to the model, and VIF represents the degree of collinearity between
parameters. VIF > 10 indicates strong collinearity between parameters. The number of samples at each stage were
as follows: n = 15 (early stage), n = 28 (middle stage), n = 34 (late stage), and n = 62 (reproductive stage).
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The corn growth season could be divided into the early (day 38), middle (day 57, 71),
late (day 87, 100), and reproductive stages (day 57–100) based on the number of days after
emergence. The correlation between CCC and vertical LCC varied between growth stages.
In the early growth stage, the highest correlation between LCC and CCC was found at the
L6 position (R2-adj = 0.9, Beta = 0.95). In the middle growth stage, L9 and L16 had the best
correlation with CCC (R2-adj = 0.93). In the late growth stage, the sensitive leaf positions
were L9 and L14 (R2-adj = 0.97). The reproductive stage refers to the entire period from
silking to maturity (i.e., the middle and late stages), and in this stage, L11 and L14 were the
sensitive leaf positions (R2-adj = 0.93).

According to the relationship between the chlorophyll content in per unit leaf areas
and the chlorophyll content per unit ground area, LAI can be ignored in CCC estimation.
Based on the relationships described above for each growth stage, CCC can be estimated
directly by leaf spectral reflectance.

3.7. Estimation and Validation of CCC by Leaf Spectral Reflectance

Chlorophyll-related vegetation indices were used to estimate the LCC of sensitive leaf
positions at each growth stage based on leaf spectral reflectance. The data from 2019 and
2020 verified that mRER had the best inversion precision for LCC (R2 = 0.87, Section 3.5),
and the average rRMSE of LCC inversion at sensitive leaf positions (such as L14 and L11)
was 11.28%. The independent data were sampled at the sixteen-leaf stage (day 51, V16),
silking stage (day 64, R1), and filling stage (day 87, R3) in 2019, and these data were used to
assess the accuracy of CCC estimation using an MSR model (Figure 6). Separate models
were built for the middle, late, and reproductive stages to verify the performance at the
three growth stages (Table 5).
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Figure 6. The canopy chlorophyll content (CCC) predicted by the middle model (a), late model (b),
and reproductive model (c) compared to measured CCC in 2019. LCC was predicted from mRER,
which had the highest accuracy of chlorophyll inversion in this study. The blue dotted line indicates
predicted CCC from LCC of one leaf position, and the red line indicates predicted CCC from LCC of
two leaf positions. The 2019 dataset included three growth stages: the sixteen-leaf stage (day 51, V16),
silking stage (day 64, R1), and filling stage (day 87, R3).
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Table 5. Verification of the stepwise regression model in 2019.

Stage
Middle Model Late Model Reproductive Model

L9 L9 + L16 L14 L14 + L9 L11 L11 + L14

Sixteen-leaf stage (day 51) 7.68% 6.81% 16.60% 7.52% 8.65% 6.95%
Silking stage (day 64) 7.49% 7.26% 16.31% 11.40% 6.96% 9.99%
Filling stage (day 87) 43.95% 30.20% 6.47% 5.46% 13.58% 9.54%
All stages (day 51–87) 20.74% 14.90% 15.35% 9.21% 9.37% 8.97%

Notes: Sample data for the sixteen-leaf stage (day 51, V16), silking stage (day 64, R1), filling stage (day 87, R3),
and all stages (days 51–87, n = 18) in 2019 were verified with the three MSR models (middle model, late model,
reproductive model). LCC was estimated by mRER (R2 = 0.87). rRMSE (%) was used to represent error between
predicted CCC and measured CCC; smaller rRMSE values correspond to higher model accuracy.

The validation results (Table 5) showed that MSR models could accurately estimate
CCC from leaf spectral reflectance. The middle stage model had good estimation accuracy
in the V16 and silking stages (with rRMSE values of 6.81% and 7.26%, respectively) but
poor estimation at the filling stage (rRMSE = 30.2%). The late model had high precision
for CCC estimation at the filling stage (rRMSE = 6.47%), but low precision at the V16 and
silking stages (rRMSE values of 16.6% and 16.31%, respectively). The reproductive stage
model was constructed by integrating data from silking through maturation stages in 2020,
and this model showed high accuracy for CCC estimation throughout all three growth
stages in 2019 (rRMSE ranged from 6.95–9.99%).

Compared with establishing relationships between CCC and LCC at a single leaf
position, estimating CCC using LCC values from two sensitive leaf positions showed higher
accuracy and robustness (Table 5). Thus, CCC (g/m2) can be accurately estimated from LCC
(µg/cm2) at the L11 and L14 positions based on leaf spectral reflectance (rRMSE = 8.97%)
at the reproductive stage.

4. Discussion

Remote sensing of chlorophyll is a fundamental component of the quantitative remote
sensing of crops. Many studies have addressed the vertical distribution of chlorophyll
in the canopy because understanding canopy architecture is important for crop growth
management and monitoring [5,27]. Solar radiation interception of the canopy structure and
nitrogen transference have been identified as the main contributors to vertical heterogeneity
of the chlorophyll content in the canopy [5,9,10]. In the present study, vertical distribution
of the leaf chlorophyll content (LCC) in the canopy and changes in the correlation between
LCC and leaf spectral reflectance were explored. The vertical profile of LCC showed
asymmetric distribution, with higher values in the upper–middle layer than in the top or
bottom layers [7,8]. In the vegetative stage, the highest values were found in the lower–
middle layer (Figure 2). The bottom layers of the canopy were significantly affected by
nitrogen supply [14,31]; it appears that a sufficient nitrogen supply can ensure that leaves
continue to synthesize chlorophyll and remain vital as the plant matures.

We created a variety of canopy architecture types by applying different amounts of
nitrogen fertilizer (Figure 2), as has been done in previous studies [7,8]. The green band
at 531–567 nm and the red-edge (RE) band at 712–731 nm were sensitive to chlorophyll
(Figure 3) [3]. Vegetation index (VI) models based on leaf spectral reflectance could effec-
tively achieve LCC inversion. mRER was the VI with the best LCC modeling performance
in this study (R2 = 0.87). Red edge (RE) and near-infrared (NIR) were the necessary bands
to measure to build the VI–chlorophyll model (Table 3) [3,27]. The RE waveband had a
moderate correlation with chlorophyll (r = −0.77), but the correlation with NIR was not
significant. Previous studies showed that there are specific absorption bands in the NIR
waveband that are associated with nitrogen and proteins, and these are related to the
vertical distribution of nitrogen in the canopy [55].

Leaf spectral reflectance has been widely used in previous research for remote sensing,
and it has been shown that leaf reflectance varies throughout the canopy [56,57]. However,
there are few conclusions about whether there is a unified chlorophyll–spectral relationship
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for different leaf positions in the canopy. To determine the relationship between LCC and
leaf spectral reflectance, a VI–LCC model was established here and verified under several
spatio-temporal conditions. The results showed that there was a great deal of variability in
the relationship between LCC and leaf spectra at different positions in the canopy, and a
single VI–chlorophyll model was limited in its capacity to predict LCC (Figure 5). However,
the inversion effect of the chlorophyll model was consistent within each growth stage.
Other researchers have published similar results in using SPAD to monitor leaf chlorophyll
and the nitrogen content [58–61]. Here, the VI model could invert LCC well in the middle
growth stage (day 57–71), and L13–L15 had the best inversion accuracy (rRMSE ≈ 6.6%).
However, VI and LCC had weak positive correlations in the tender upper leaves at the
vegetative growth stage (day 38, L10–L14, rRMSE ≈ 70.3%) and in the aged leaves in
the upper-lower positions at the late reproductive growth stage (day 100, L10–L12 and
L16–L18, rRMSE ≈ 61.5%). In the early growth stage, differences in leaf spectra between
leaf positions were concentrated in the RE and NIR waveband regions, indicating that the
leaf microstructure differed by leaf position. In contrast, in the late stage, differences were
concentrated in the visible region, indicating a difference in the chlorophyll content between
leaf positions [14,37]. However, there were six VI models for chlorophyll inversion that
performed with consistent accuracy, showing that the variation may be caused by changes
in leaf structure or chlorophyll spectral properties rather than by VI sensitivity [13,62].

Previous studies reported that crops respond to deficiency or stress by altering the
chlorophyll content at different vertical leaf positions to maintain photosynthetic effi-
ciency [56,63,64]. The chlorophyll content in the collar leaf at the vegetation stage and
in the ear leaf at the reproductive stage is often used to evaluate the canopy chlorophyll
status [30,32], and other research suggested that bottom leaf positions were more suitable
as indicators of canopy chlorophyll diagnosis [65,66]. In the present study, data collected in
2019 and 2020 demonstrated a strong correlation between CCC and LCC at various growth
stages. Based on a multiple stepwise regression (MSR) model, CCC could be accurately
estimated from the chlorophyll content at multiple leaf positions. L6 in the vegetative stage
(R2-adj = 0.9) and L11 + L14 in the reproductive stage (R2-adj = 0.93) were used as the
sensitive leaf positions for CCC estimation. Based on the close correlation between leaf
spectral reflectance and the chlorophyll content per unit of leaf area (LCC, µg/cm2), the
MSR model of CCC estimation was established using a VI model; mRER represents LCC,
and the high accuracy was verified at different growth stages (rRMSE = 8.97%). Due to the
strong correlation between LCC at vertical leaf positions [18], CCC estimated using LCC
from two sensitive leaf positions was a better choice to avoid multilinearity and improve
model precision.

The leaves were usually considered to be uniform objects in previous studies, which
means the relationship between LCC and leaf spectral reflectance is consistent in the same
plant species [33,67,68]. Other studies proposed that the leaf thickness, water content, and
leaf structure would lead to inconsistencies between LCC and spectral reflectance [22,69,70].
A common viewpoint is that there are strong correlations between LCC and spectral
characteristics in the middle leaf position of a canopy, with a weak relationship in the upper
and lower positions of the canopy [56]. In the present study, a more elaborate division
of growth stages and vertical distribution was conducted, illustrating the variability of
the correlation between LCC and leaf spectral reflectance under various spatial-temporal
conditions. The mismatch between the LCC and spectral would be masked by the soil
background and canopy architecture that make chlorophyll remote sensing at a canopy
level more complicated with a lack of robustness.

Canopy spectral reflectance (measured using a UAV or satellite) is an efficient and
non-destructive chlorophyll remote sensing method. However, ignoring the significant
vertical gradient of chlorophyll and treating the canopy as a uniform plane field would
limit robustness and decrease the practical value of canopy remote sensing [7,71]. On the
one hand, previous studies proposed that chlorophyll deficiency is mainly exhibited in the
lower positions of the canopy rather than in the upper leaves [14,65]. On the other hand,
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canopy spectral reflectance is mainly contributed by the upper–middle leaves, and few
studies explored CCC estimation from part of LCC in the canopy [72,73]. In this study, a
CCC estimation model based on the LCC vertical distribution was proposed, which avoids
the influence of LAI and biomass. The LCC of lower leaves (L6) at the vegetative stage
and upper–mid leaves (L11, L14) at the reproductive stage was sensitive to CCC changes.
This result provides theoretical support and reference sensitive leaf positions for canopy
chlorophyll remote sensing, considering the non-uniform vertical distribution [29,34,74].

Some limitations of this study should be mentioned. The vegetative stage is an
important period in which crops accumulate material, and due to limitations on the number
of sampling time points, the vertical distribution of LCC and verification of sensitive leaf
positions in this stage have not been fully demonstrated. Additionally, only the maize
variety JNK728 was studied, preventing comparison among different varieties. The factors
leading to the observed inconsistent relationship between LCC and VI at the early and
late growth stages need further study. Additional time points and maize varieties will be
studied in future research to address these issues.

5. Conclusions

Five nitrogen application levels were used to construct diverse maize canopy architec-
tures and reveal the vertical heterogeneity of the leaf chlorophyll content (LCC) and leaf
spectral reflectance characteristics in the maize canopy. A multiple stepwise regression
(MSR) model was built to accurately monitor the canopy chlorophyll content (CCC) based
on the vertical distribution of LCC within the canopy; LCC showed an asymmetric vertical
distribution, tending to be lower in the bottom layer, increasing in the middle layer, then
decreasing in the upper layer. Nitrogen treatments significantly changed LCC, and the
vertical profile of LCC distribution remained similar between treatments. Leaf spectral
reflectance characteristics under variable spatio–temporal conditions were analyzed. The
green band (531–567 nm) and the red-edge band (712–731 nm) were the sensitive wave-
bands for monitoring LCC. Six classical VIs were used to construct VI–chlorophyll models,
the best of which was the model built with modified red-edge ratio (mRER, R2 = 0.87). The
VI model could accurately predict LCC at the middle growth stage (rRMSE = 10.9%), but
the correlation between VI and LCC changed in the upper and lower leaf layers during
the early vegetative and mature stages (rRMSE ranged from 36% to 87%). Through a
combination of the inversion accuracy results and multiple stepwise regression, the leaves
at positions L6 in the vegetative stage and L11 and L14 in the reproductive stage (L12 is the
ear leaf) were found to be the most sensitive in CCC estimation. In this way, a VI–LCC–CCC
model was constructed based on leaf spectral reflectance to estimate the canopy chlorophyll
status. The model was evaluated using data from field experiments in 2019 and 2020 and
was found to be robust and accurate (rRMSE = 8.97%).
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31. Klem, K.; Rajsnerová, P.; Novotná, K.; Mìša, P.; Křen, J. Changes in Vertical Distribution of Spectral Reflectance within Spring
Barley Canopy as an Indicator of Nitrogen Nutrition, Canopy Structure and Yield Parameters. Agriculture 2014, 60, 50–59.
[CrossRef]

32. Li, Z.; Zhang, Y.; Liu, H.; Zhang, F. Application of chlorophyll meter on N nutritional diagnosis for summer corn. Plant Nutr.
Fertitizer Sci. 2005, 11, 764–768.

http://doi.org/10.1016/j.fcr.2012.11.017
http://doi.org/10.1016/j.agrformet.2012.10.004
http://doi.org/10.1016/j.fcr.2012.01.007
http://doi.org/10.2134/agronj2007.0322
http://doi.org/10.1093/aob/mcw099
http://doi.org/10.1007/BF00378977
http://doi.org/10.3321/j.issn:1002-6819.2006.06.021
http://doi.org/10.1078/0176-1617-00887
http://doi.org/10.1016/S0034-4257(02)00010-X
http://doi.org/10.1080/00103624.2018.1424893
http://doi.org/10.1016/S0176-1617(11)81633-0
http://doi.org/10.1080/0143116042000274015
http://doi.org/10.1080/01431169308953986
http://doi.org/10.1016/j.rse.2012.08.019
http://doi.org/10.1016/j.rse.2021.112826
http://doi.org/10.1016/j.indcrop.2018.02.051
http://doi.org/10.1109/JSTARS.2015.2422734
http://doi.org/10.1016/j.rse.2008.01.026
http://doi.org/10.3390/rs14051247
http://doi.org/10.1080/10798587.2008.10643315
http://doi.org/10.1371/journal.pone.0088421
http://doi.org/10.3390/rs13050987
http://doi.org/10.1088/1755-1315/17/1/012051
http://doi.org/10.3390/rs13081501
http://doi.org/10.1016/j.jplph.2008.03.004
http://doi.org/10.2478/agri-2014-0006


Remote Sens. 2022, 14, 2115 21 of 22

33. Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops.
Geophys. Res. Lett. 2005, 32, L08403. [CrossRef]

34. Duan, D.D.; Zhao, C.J.; Li, Z.H.; Yang, G.J.; Zhao, Y.; Qiao, X.J.; Zhang, Y.H.; Zhang, L.X.; Yang, W.D. Estimating total leaf
nitrogen concentration in winter wheat by canopy hyperspectral data and nitrogen vertical distribution. J. Integr. Agric. 2019, 18,
1562–1570. [CrossRef]

35. Ye, H.; Huang, W.; Huang, S.; Wu, B.; Dong, Y.; Cui, B. Remote Estimation of Nitrogen Vertical Distribution by Consideration of
Maize Geometry Characteristics. Remote Sens. 2018, 10, 1995. [CrossRef]

36. Li, D.; Guo, Y.; Yun, H.; Zhang, M.; Gong, X.; Fang, M. Dtermined Methods of Chlorophyll from Maize. Chin. Agric. Sci. Bull.
2005, 21, 153. (In Chinese)

37. Wen, P.F.; Shi, Z.J.; Li, A.; Ning, F.; Zhang, Y.H.; Wang, R.; Li, J. Estimation of the vertically integrated leaf nitrogen content in
maize using canopy hyperspectral red edge parameters. Precis. Agric. 2021, 22, 984–1005. [CrossRef]

38. Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of soil moisture
content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530.
[CrossRef]

39. Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [CrossRef]
40. Rouse, J.; Haas, R.; Schell, J.; Deering, D.; Harlan, J. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of

Natural Vegetation; NASA/GSFC Type III, Final Report; NASA: Greenbelt, MD, USA, 1974.
41. Gitelson, A.; Merzlyak, M. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692.

[CrossRef]
42. Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J.

Remote Sens. 2003, 24, 2855–2877. [CrossRef]
43. Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral

index—The canopy chlorophyll content index (CCCI). Field Crops Res. 2010, 116, 318–324. [CrossRef]
44. Haboudane, D.; Miller, J.; Tremblay, N.; Zarco-Tejada, P.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of

crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [CrossRef]
45. Strachan, I.; Pattey, E.; Boisvert, J. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral

reflectance. Remote Sens. Environ. 2002, 80, 213–224. [CrossRef]
46. le Maire, G.; Francois, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and

hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [CrossRef]
47. Broge, N.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation

of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [CrossRef]
48. Jay, S.; Gorretta, N.; Morel, J.; Maupas, F.; Bendoula, R.; Rabatel, G.; Dutartre, D.; Comar, A.; Frederic, B. Estimating leaf

chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery. Remote Sens. Environ. 2017,
198, 173–186. [CrossRef]

49. Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Baoguo, L. New spectral indicator assessing the efficiency of crop nitrogen
treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [CrossRef]

50. Feng, W.; Guo, B.-B.; Zhang, H.-Y.; He, L.; Zhang, Y.-S.; Wang, Y.-H.; Zhu, Y.-J.; Guo, T.-C. Remote estimation of above ground
nitrogen uptake during vegetative growth in winter wheat using hyperspectral red-edge ratio data. Field Crops Res. 2015, 180,
197–206. [CrossRef]

51. Peng, Y.; Nguy-Robertson, A.; Arkebauer, T.; Gitelson, A. Assessment of Canopy Chlorophyll Content Retrieval in Maize and
Soybean: Implications of Hysteresis on the Development of Generic Algorithms. Remote Sens. 2017, 9, 226. [CrossRef]

52. Huang, Z.; Turner, B.J.; Dury, S.J.; Wallis, I.R.; Foley, W.J. Estimating foliage nitrogen concentration from HYMAP data using
continuum removal analysis. Remote Sens. Environ. 2004, 93, 18–29. [CrossRef]

53. Feng, A.; Zhou, J.; Vories, E.D.; Sudduth, K.A.; Zhang, M. Yield estimation in cotton using UAV-based multi-sensor imagery.
Biosyst. Eng. 2020, 193, 101–114. [CrossRef]

54. Zhang, H.Y.; Ren, X.X.; Yi, Z.; Wu, Y.P.; Li, H.; Ya-Rong, H.; Wei, F.; Wang, C.Y. Remotely assessing photosynthetic nitrogen use
efficiency with in situ hyperspectral remote sensing in winter wheat. Eur. J. Agron. 2018, 101, 90–100. [CrossRef]

55. Berger, K.; Verrelst, J.; Féret, J.-B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop nitrogen
monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ.
2020, 242, 111758. [CrossRef]

56. Zhang, Y.-J.; Wang, L.; Bai, Y.-L. Nitrogen Nutrition Diagnostic Based on Hyperspectral Analysis about Different Layers Leaves in
Maize. Spectrosc. Spectr. Anal. 2019, 39, 2829. (In Chinese)

57. Xu, X.; Li, Z.; Yang, X.; Yang, G.; Teng, C.; Zhu, H.; Liu, S. Predicting leaf chlorophyll content and its nonuniform vertical
distribution of summer maize by using a radiation transfer model. J. Appl. Remote Sens. 2019, 13, 034505. [CrossRef]

58. Zhang, Y.-J.; Wang, L.; Bai, Y.; Lu, Y.-L.; Zhang, J.-J.; Ge, L. Relationship of physiological and biochemical indicators with SPAD
values in maize leaves at different layers. J. Plant Nutr. Fertil. 2020, 26, 61–73. (In Chinese)

59. Zhao, B.; Tahir, A.; Liu, Z.; Zhang, J.; Xiao, J.; Liu, Z.; Qin, A.; Ning, D.; Yang, Q.; Zhang, Y. Simple Assessment of Nitrogen
Nutrition Index in Summer Maize by Using Chlorophyll Meter Readings. Front. Plant Ence 2018, 9, 11. [CrossRef]

http://doi.org/10.1029/2005GL022688
http://doi.org/10.1016/S2095-3119(19)62686-9
http://doi.org/10.3390/rs10121995
http://doi.org/10.1007/s11119-020-09769-5
http://doi.org/10.1016/j.agwat.2022.107530
http://doi.org/10.2307/1936256
http://doi.org/10.1016/S0273-1177(97)01133-2
http://doi.org/10.1080/01431160210163074
http://doi.org/10.1016/j.fcr.2010.01.010
http://doi.org/10.1016/S0034-4257(02)00018-4
http://doi.org/10.1016/S0034-4257(01)00299-1
http://doi.org/10.1016/j.rse.2003.09.004
http://doi.org/10.1016/S0034-4257(00)00197-8
http://doi.org/10.1016/j.rse.2017.06.008
http://doi.org/10.1016/j.rse.2010.04.006
http://doi.org/10.1016/j.fcr.2015.05.020
http://doi.org/10.3390/rs9030226
http://doi.org/10.1016/j.rse.2004.06.008
http://doi.org/10.1016/j.biosystemseng.2020.02.014
http://doi.org/10.1016/j.eja.2018.08.010
http://doi.org/10.1016/j.rse.2020.111758
http://doi.org/10.1117/1.JRS.13.034505
http://doi.org/10.3389/fpls.2018.00011


Remote Sens. 2022, 14, 2115 22 of 22

60. Dang, R.J.; Li, S.-Q.; Mu, X.-H.; Li, S.-X. Effect of nitrogen on vertical distribution of canopy nitrogen and chlorophyll relative
value (SPAD value) of summer maize in sub-humid areas. Chin. J. Eco-Agric. 2009, 17, 54–59. [CrossRef]

61. Peng, S.; Laza, M.; Garcia, F.V.; Cassman, K.G. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice.
Commun. Soil Sci. Plant Anal. 1995, 26, 927–935. [CrossRef]

62. Féret, J.-B.; Francois, C.; Asner, G.; Gitelson, A.; Martin, R.; Bidel, L.; Ustin, S.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5:
Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043.
[CrossRef]

63. Li, Z.; Jin, X.; Yang, G.; Drummond, J.; Yang, H.; Clark, B.; Li, Z.; Zhao, C. Remote Sensing of Leaf and Canopy Nitrogen Status in
Winter Wheat (Triticum aestivum L.) Based on N-PROSAIL Model. Remote Sens. 2018, 10, 1463. [CrossRef]

64. Li, L.; Sheng, K.; Yin, H.; Guo, Y.; Wang, D.; Wang, Y. Selecting the sensitive position of maize leaves for nitrogen status diagnosis
of summer maize by considering vertical nitrogen distribution in plant. Trans. Chin. Soc. Agric. Eng. 2020, 36, 64–73. [CrossRef]

65. Huang, W.; Yang, Q.; Pu, R.; Yang, S. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter
Wheat. Sensors 2014, 14, 20347–20359. [CrossRef]

66. Wang, Z.; Wang, J.; Zhao, C.; Zhao, M.; Huang, W.; Wang, C. Vertical Distribution of Nitrogen in Different Layers of Leaf and
Stem and Their Relationship with Grain Quality of Winter Wheat. J. Plant Nutr. 2005, 28, 73–91. [CrossRef]

67. Wan, L.; Zhang, J.; Xu, Y.; Huang, Y.; Zhou, W.; Jiang, L.; He, Y.; Cen, H. PROSDM: Applicability of PROSPECT model coupled
with spectral derivatives and similarity metrics to retrieve leaf biochemical traits from bidirectional reflectance. Remote Sens.
Environ. 2021, 267, 112761. [CrossRef]

68. Wang, H.F.; Huo, Z.G.; Zhou, G.S.; Liao, Q.H.; Feng, H.K.; Wu, L. Estimating leaf SPAD values of freeze-damaged winter wheat
using continuous wavelet analysis. Plant Physiol Biochem. 2016, 98, 39–45. [CrossRef]

69. Liu, L.; Song, B.; Zhang, S.; Liu, X. A Novel Principal Component Analysis Method for the Reconstruction of Leaf Reflectance
Spectra and Retrieval of Leaf Biochemical Contents. Remote Sens. 2017, 9, 1113. [CrossRef]

70. Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the
PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [CrossRef]

71. Li, H.; Zhao, C.; Yang, G.; Feng, H. Variations in crop variables within wheat canopies and responses of canopy spectral
characteristics and derived vegetation indices to different vertical leaf layers and spikes. Remote Sens. Environ. 2015, 169, 358–374.
[CrossRef]

72. Xiao, C.H.; Li, S.K.; Wang, K.R.; Lu, Y.L.; Bai, J.H.; Xie, R.Z.; Gao, S.J.; Li, X.J.; Tan, H.Z. The Response of Canopy Direction
Reflectance Spectrum for the Wheat Vertical Leaf Distributing. Sens. Lett. 2009, 9, 77–85.

73. Liu, S.; Peng, Y.; Du, W.; Le, Y.; Li, L. Remote Estimation of Leaf and Canopy Water Content in Winter Wheat with Different
Vertical Distribution of Water-Related Properties. Remote Sens. 2015, 7, 4626–4650. [CrossRef]

74. Luo, J.; Ma, R.; Feng, H.; Li, X. Estimating the Total Nitrogen Concentration of Reed Canopy with Hyperspectral Measurements
Considering a Non-Uniform Vertical Nitrogen Distribution. Remote Sens. 2016, 8, 789. [CrossRef]

http://doi.org/10.3724/SP.J.1011.2009.00054
http://doi.org/10.1080/00103629509369344
http://doi.org/10.1016/j.rse.2008.02.012
http://doi.org/10.3390/rs10091463
http://doi.org/10.11975/j.issn.1002-6819.2020.06.007
http://doi.org/10.3390/s141120347
http://doi.org/10.1081/PLN-200042175
http://doi.org/10.1016/j.rse.2021.112761
http://doi.org/10.1016/j.plaphy.2015.10.032
http://doi.org/10.3390/rs9111113
http://doi.org/10.1016/0034-4257(95)00238-3
http://doi.org/10.1016/j.rse.2015.08.021
http://doi.org/10.3390/rs70404626
http://doi.org/10.3390/rs8100789

	Introduction 
	Materials and Methods 
	Study Area and Experimental Design 
	Leaf Sampling and Chlorophyll Measurement 
	Leaf Spectral Reflectance Measurements 
	Vegetation Index Extraction 
	Statistical Analysis 
	Construction of the VI–Chlorophyll Model 
	Model Testing and Verification 
	Multivariate Regression Model for LCC and CCC 
	Validation Metrics 


	Results 
	Vertical Profile and Temporal Variation of the Leaf Chlorophyll Content 
	The Vertical–Temporal Variation of Leaf Reflectance Spectral Characteristics 
	Sensitivity of Vegetation Indices 
	Establishing an Inversion Model for Chlorophyll Prediction through Vegetation Indices 
	Validation and Testing under Spatio–Temporal Variation 
	Relationship between LCC and CCC throughout Growth Stages 
	Estimation and Validation of CCC by Leaf Spectral Reflectance 

	Discussion 
	Conclusions 
	Appendix A
	References

