
Citation: Zheng, Y.; Wang, Q.; Zhang,

X.; Yu, J.; Li, C.; Chen, L.; Liu, Y.

Nitrogen and Phosphorus Retention

Risk Assessment in a Drinking Water

Source Area under Anthropogenic

Activities. Remote Sens. 2022, 14, 2070.

https://doi.org/10.3390/rs14092070

Academic Editor: Mingliang Liu

Received: 21 February 2022

Accepted: 23 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Nitrogen and Phosphorus Retention Risk Assessment in a
Drinking Water Source Area under Anthropogenic Activities
Yuexin Zheng 1, Qianyang Wang 1, Xuan Zhang 1, Jingshan Yu 1,*, Chong Li 1, Liwen Chen 2,3 and Yuan Liu 1

1 College of Water Sciences, Beijing Normal University, Beijing 100875, China; yxzheng@mail.bnu.edu.cn (Y.Z.);
201931470001@mail.bnu.edu.cn (Q.W.); xuan@bnu.edu.cn (X.Z.); chong@mail.bnu.edu.cn (C.L.);
201921470018@mail.bnu.edu.cn (Y.L.)

2 School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130118, China;
chenliwen@iga.ac.cn

3 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University,
Beijing 100875, China

* Correspondence: jingshan@bnu.edu.cn; Tel.: +86-588-07814

Abstract: Excessive nitrogen (N) and phosphorus (P) input resulting from anthropogenic activities
seriously threatens the supply security of drinking water sources. Assessing nutrient input and
export as well as retention risks is critical to ensuring the quality and safety of drinking water
sources. Conventional balance methods for nutrient estimation rely on statistical data and a huge
number of estimation coefficients, which introduces uncertainty into the model results. This study
aimed to propose a convenient, reliable, and accurate nutrient prediction model to evaluate the
potential nutrient retention risks of drinking water sources and reduce the uncertainty inherent in the
traditional balance model. The spatial distribution of pollutants was characterized using time-series
satellite images. By embedding human activity indicators, machine learning models, such as Random
Forest (RF), Support Vector Machine (SVM), and Multiple Linear Regression (MLR), were constructed
to estimate the input and export of nutrients. We demonstrated the proposed model’s potential
using a case study in the Yanghe Reservoir Basin in the North China Plain. The results indicate
that the area information concerning pollution source types was effectively established based on
a multi-temporal fusion method and the RF classification algorithm, and the overall classification
low-end accuracy was 92%. The SVM model was found to be the best in terms of predicting nutrient
input and export. The determination coefficient (R2) and Root Mean Square Error (RMSE) of N input,
P input, N export, and P export were 0.95, 0.94, 0.91, and 0.93, respectively, and 32.75, 5.18, 1.45,
and 0.18, respectively. The low export ratios (2.8–3.0% and 1.1–2.2%) of N and P, the ratio of export
to input, further confirmed that more than 97% and 98% of N and P, respectively, were retained in
the watershed, which poses a pollution risk to the soil and the quality of drinking water sources.
This nutrient prediction model is able to improve the accuracy of non-point source pollution risk
assessment and provide useful information for water environment management in drinking water
source regions.

Keywords: drinking water source; retention risk; remote sensing; nutrient prediction; support vector
machine; random forest; human activity

1. Introduction

Over the last 30 years, with the rapid economic and social development in China [1],
drinking water sources have been heavily polluted by human activities [2,3]. Non-point
source pollution (NPSP) is considered to be an important factor involved in the afore-
mentioned problems in China [4]. According to the results of the first national pollution
survey [5], more than half of the total nitrogen (TN) and total phosphorus (TP) discharged
into the environment were produced by NPSP. The excessive input of nitrogen (N) and
phosphorus (P) as a result of anthropogenic activities has caused water quality degradation
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in rivers [6] and increased eutrophication [7,8]. Concurrently, the nutrient budget, meaning
the surplus between input and export, retained in the watershed also pollutes the soil and
aquifers [9]. Therefore, it is vital to quantify the inputs and exports of anthropogenic N
and P.

The input and export of N and P are two important components when quantifying
nutrient budgets [10]. The NPSP load entering the basin through leaching and runoff is
subsequently exported into the river systems, which is known as the export of nutrients [10].
N and P inputs strongly affect exports [11]. The ratio of export to input is called the nutrient
export ratio, and it reflects the capacity for nutrient retention and the potential risk of
pollution in the riverine system [12,13]. Studies have shown that human activities can
significantly affect the nutrient export ratio [14]. For example, the N export ratio in the Taihu
Lake Basin has increased from 18% to 30% in the last 30 years as a result of urbanization and
population growth, and the N budget has changed accordingly [13]. Hence, it is important
to accurately and quantitatively estimate and predict the nutrient retention potential risk in
riverine systems affected by human activities.

Model simulations are an important technical basis for the quantitative estimation
and risk assessment of nutrients [15]. Physical-based models, such as the Soil and Water
Assessment Tool, can simulate the physical process of pollutants by using a large number of
parameters [16]. However, abundant parameters limit model application in data deficient
areas [17,18]. The nutrient balance model is widely used in estimating N and P loads [19].
The majority of studies integrate the Net Anthropogenic Nitrogen Input (NANI), the
Net Anthropogenic Phosphorus Input (NAPI), and the Export Coefficient Model (ECM)
methods to assess nutrient input and export, and their potential risks within the watershed
system [20]. For example, Lian et al. [13] first integrated the NANI and ECM models to
evaluate the N load at the county level in the Taihu Lake Basin and found that urbanization
and population growth are the main factors disturbing the nitrogen budget. Deng et al. [15]
quantified the contribution rate of various factors to the NANI and NAPI models and
constructed the management mechanism of nutrient diversity. These studies demonstrate
that the nutrient balance model is a robust empirical model and is an effective predictor of
N and P load [13]. Moreover, the model can be easily used to assess nutrient variation in
environmental systems, depending on whether their input variables (for example, N and
P fertilization, atmospheric nitrogen fixation, crop nitrogen fixation) and export variables
(domestic sewage, garbage, rural excrement, urban residents, livestock, and land use) are
specific [21]. However, the estimation of these nutrient balance variables is an imprecise
process involving heavy calculations [22]. For instance, nutrient balance models usually
rely on statistical data and abundant estimation coefficients, and the differences in nutrient
estimation coefficients have a certain impact on the model results [13]. Secondly, statistical
data are usually on the county level spatial scale, which poses a certain challenge in terms
of accurately describing the spatial distribution of pollutants [23].

Considering the aforementioned problems, machine learning models based on time
series satellite images are regarded as a useful tool [24,25]. Firstly, machine learning models
have a high simulation accuracy and fast training speed [24]. This is important because it
overcomes the problem whereby physical models are inadequate in data-deficient areas but
also does not need to consider the influence of complex underlying surface characteristics
on the estimated coefficients of the traditional model [26,27]. Secondly, remote sensing
monitoring is an effective means to quantitatively evaluate pollutant exports and portray
their spatial changes [28] and is often used to identify and monitor NPSP exports [20]. Hu-
man activities are the key factors affecting the input and export of nutrients [12]. Therefore,
a prediction model embedded with human activity indicators is necessary for estimating
the input and export of nutrients.

The major objectives of this study were: (1) to build a nutrient prediction model
embedded in human activity indicators to predict the input and export of nutrients; (2) to
describe the spatial distribution of pollutant input and export; (3) to evaluate the potential
risk of N and P retention in the watershed as a result of human activities.
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2. Materials
2.1. Study Area

The Yanghe River Basin is located in Qinhuangdao City, Hebei Province (39◦N–40◦N;
118◦E–119◦E) (Figure 1a,b) [29]. The Yanghe Reservoir is situated in the Yanghe River Basin
and has a total storage capacity of 0.353 billion m3 and a controlled drainage area of 755 km2

(Figure 1c) [30]. It is an important drinking water source with significant ecological and
socio-economic value [31] and provides the domestic water supply for Qinhuangdao city.
There are four main upstream tributaries in the Yanghe Reservoir Basin, namely, the Miwu
River, Xiyang River, Dongyang River, and Maguying river (Figure 1c). This study area
covers 3 counties, 7 towns, and 242 villages. The Yanghe Reservoir basin is an important
grain production region, in which corn and peanuts are primarily cultivated. The basin
is located in a warm temperate monsoon climate area with a mild climate type, distinct
seasons, and an annual average rainfall of 750 mm [31,32]. The land-use types in the study
area include cropland, forest land, bare land, water, and urban areas.
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Figure 1. The location and basic characteristics of the Yanghe River Basin. (a) Geographical locations
of the Yanghe River Basin in the Hebei province of China; (b) geographical location of the Yanghe
River Basin in Qinhuangdao City; (c) 10 m resolution remote sensing image of the Yanghe River Basin.

According to the water quality monitoring data from Hebei Environmental Protection
Administration, the main pollutants are N and P. TN and TP seriously exceed the standard;
this is especially true of TN, the levels of which are categorized as being inferior to Class V
(higher than 2 mg L−1) [33]. Additionally, large quantities of pesticides, chemical fertilizers,
livestock manure, and garbage enter the reservoir area, resulting in continuous deterioration
of the water quality of the Yanghe reservoir and the intensification of eutrophication, which
seriously threatens the water supply security.

2.2. Data Sources
2.2.1. Statistic Data

The county-level data between 2004 and 2015 were obtained from the annals of
statistics and include N and P fertilization, population density, planting area, livestock, and
poultry numbers, population numbers, and crop yields. These data were used to calculate
NANI, NAPI, and ECM. The raster data of the atmospheric nitrogen deposition with a
spatial resolution of 0.25◦ from 2004 to 2015 were obtained from the Regional Emission
Inventory in Asia 2.1 [34]. Among them, the majority of relevant parameters involved in
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the study were published in the bulletin of national economic and social statistics. Table 1
shows the variables used in this study and their acronyms.

Table 1. List of abbreviations for variables.

Variable Abbr.

nitrogen fertilizer application Nfer
atmospheric nitrogen deposition Ndep

crop nitrogen fixation Nfix
net food/feed imports of nitrogen Nim

human nitrogen consumption Nhum consumption
livestock nitrogen consumption Nliv consumption

nitrogen content of livestock products Nliv products
nitrogen content of crop products Ncro products
phosphorus fertilizer application Pfer

percentage of crop area in each grid crop (%)
percentage of urban area in each grid Urban (%)

non-food phosphorus input Pnon
net food/feed phosphorus imports Pim
human phosphorus consumption Phum consumption

livestock phosphorus consumption Pliv consumption
phosphorus content of livestock products Pliv products

phosphorus content of crop products Pcro products
nitrogen fertilizer used per cultivated area Ferc N

phosphorus fertilizer used per cultivated area Ferc P
percentage of urban land area in the total area Urbanization (%)

percentage of forest area in each grid Forest (%)
nitrogen and phosphorus N and P

2.2.2. Remote Sensing Data

In the study, 94 images, taken between 2004 and 2015, were processed online using the
GEE platform, specifically including multi-spectral data from the Landsat 5/8 and Sentinel
2 satellites (Table 2). As a result of the failure of the Landsat-7ETM+ Scan Lines Corrector,
the data strip of the acquired image was lost, which seriously affected the use of Landsat
ETM remote sensing images. Therefore, the year 2012 was not considered in this study. All
of the remote sensing images were used to estimate the export and describe the spatial
distribution of pollutants.

Table 2. Details of remote sensing data and satellite images used in the study.

Satellite Sensor Year Spectral Bands
(Numbers)

Spatial
Resolution

Number of
Images

Landsat5 TM 2004–2011 7 30 m 56
Landsat8 OLI 2013–2015 8 30 m 35
Sentinel-2 MSI 2015 13 10 m 3

3. Methods

The overall objective was to build a convenient, reliable, and accurate annual-scale
nutrient prediction model to predict nutrient input and export, and to assess the potential
risk of nutrient retention in the watershed. The framework of this study is shown in Figure 2.
Firstly, we integrated traditional balance models, including the NANI, NAPI, and ECM
models, and estimated the input and export of nutrients. Secondly, the Pearson correlation
coefficient was used to select the human activity indicators that have an obvious impact on
nutrient input and export, replacing the input variables of the traditional balance model.
Subsequently, a nutrient prediction model based on the SVM, RF, and MLR algorithms was
established, and the human activity indicators were used as the input data of the machine
learning model to predict the input and export of nutrients. Thereafter, on the basis of
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Google Earth Engine (GEE), the area information of land-use types in the Yanghe Reservoir
Basin was extracted using the multi-temporal fusion method and RF algorithm, and the
spatial distribution of nutrient input and export was described. Finally, on the basis of the
prediction results, we evaluated the potential risk of N and P retention in the watershed.
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Figure 2. Flowchart of this study.

3.1. Preprocessing

The land-use types have different ground features in different periods, which has a
certain impact on the amount of N and P exported to the river outlet. We classified different
land-use types in the study area from 2004 to 2015 for March to October based on the
multi-temporal image fusion and RF classification algorithms (see the Appendices A.1
and A.2 for specific operations).

To describe the spatial distribution of pollutants, we converted the statistical data into
human activity indicators on a spatial scale based on the area information of land-use types.
Finally, the county-level statistical data were rasterized to a 3 km resolution for running the
machine learning algorithm. The “create fishnet” tool in the data management tools, which
is a part of ArcGIS desktop software version 10.4, was used for the spatial analysis of data.
By drawing fishing nets, we were able to count the number of elements occupied by the
grid and then analyze the spatial distribution characteristics of the data [35,36].

3.2. Nutrient Input and Export Estimation Based on the Traditional Balance Model

Traditional balance models, including the input model (NANI and NAPI), and the
export model (ECM), were used to estimate the N and P input into the watershed and
exported into the river, respectively. On the one hand, the results of the traditional model
were used to select the human activity indicators that have a significant impact on nutrient
input and export; on the other hand, they were used as validation data for the prediction
model. The calculation process of NANI are represented in Equations (1) and (2):

NANI = Nfer + Ndep + Nfix + Nim (1)

Nim = Nhum consumption + Nliv consumption − Nliv products − Ncro products (2)

The NANI model is mostly composed of four trails, which include nitrogen fertilization
(Nfer), atmospheric nitrogen deposition (Ndep), crop nitrogen fixation (Nfix), and net
food/feed imports of Nitrogen (Nim). Nfer refers to the net fertilizer amount, which is the
amount of nitrogen fertilizer converted according to 100% nitrogen. For the Ndep, only
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the oxidized nitrogen (NOx) was considered since the ammonium nitrogen (NHx) is not
stable in the environment [10]. Nfix mostly includes symbiotic nitrogen fixation and non-
symbiotic nitrogen fixation. Both the peanuts and soybeans in the Yanghe Reservoir Basin
are symbiotic nitrogen fixation crops. On the basis of previous studies [37], the crop nitrogen
fixation rate is shown in Appendix A Table A6. Nim represents the net import of food and
feed, wherein the net content means the surplus or deficit between N consumption and
production. Nhum consumption and Nliv consumption denote the protein consumption
in human food and livestock feed, respectively. Nliv products represent the N content of
livestock products, which mainly refers to the meat, milk, eggs, and other livestock products.
The nitrogen consumption and excretion level of each species are shown in Appendix A
Table A7. Ncro products represent the N content of agricultural crop production, which is
shown in Appendix A Table A8.

The NAPI model chiefly includes phosphorus fertilizer application (Pfer), non-food
phosphorus input (Pnon), and net food/feed phosphorus imports (Pim). Among them,
Pnon primarily comes from phosphorus detergent. We calculated the NAPI and Pim using
Equations (3) and (4), as follows:

NAPI = Pfer + Pnon + Pim (3)

Pim = Phum consumption + Pliv consumption − Pliv products − Pcro products (4)

where Phum consumption and Pliv consumption represent human and livestock P con-
sumption, respectively. Pliv products and Pcro products refer to the P content of livestock
products and agricultural crop production, respectively. The calculation methods of Pfer
and Pim are similar to that of NANI. The units of these variables are tons P km−2 year−1.

The ECM method is a mathematical weighted equation to estimate the N and P exports
from different sources to the outlet of the Yanghe Reservoir Basin from 2004 to 2015. The
main pollution sources included domestic sewage, garbage, and excrement from the rural
region, urban residents, livestock, and land use (cropland, forest land, urban land, and bare
land). This method is often used to express the relationship between pollutants (rural and
urban areas), land use types, livestock, and N and P exports [38,39]. The formula of the
ECM (Equation (5)) is as follows:

L = ∑i=1 λijEij Ai (5)

where L represents the amount of nitrogen and phosphorus exports (t year−1); i is the
type of pollution source; j denotes the nutrient type, such as N and P; Ei represents the
annual export coefficient of each pollution source (kg km−2 year−1/kg ca−1 year−1) in
Table A9; λij is the fraction of nutrient exports from the pollution source i to the river outlet
in Appendix A Table A10; Ai is the area of land use type (km2) or the number of livestock
(capita) and the population (people). The areas covered by the different land-use types
from 2004 to 2015 were classified and extracted based on the multi-temporal fusion method
and the RF classification algorithm. The livestock and population data of each county were
derived from the local statistical yearbooks. We verified the results of the model with field
monitoring data from May to October 2015. The sampling points are shown in Figure 1c,
and the results are shown in Appendix A Table A11.

3.3. Prediction Model of Nutrient Input and Export

The primary purpose of machine learning model construction was to predict the N
and P input into the watershed and exported into the river on an annual scale. Secondly,
on the basis of the prediction results, the N and P export ratios were calculated. However,
the rest of the export ratio represents the degree of potential pollution risk to soil and water
quality caused by nutrient retention in the watershed.

To predict the input and export of N and P in 2004 and 2015, respectively, we set
up 4 targets to obtain four predictor variables, as shown in Table 3. On the basis of the
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estimation results of the traditional balance model, we used the Pearson correlation analysis
to determine seven human activity indicators that have a significant impact on the input
and export of N and P as the input data of the nutrient prediction model (See 4.1 for
details). Those indexes include N and P fertilizer used per cultivated area (Ferc N and
Ferc P (ton km2)); the percentage of urban land area in the total area (urbanization (%));
the percentage of forest area (Forest (%)), crop area (Crop (%)) and urban area (Urban (%))
in each grid; and the population density (ca km2), which is the average population per
unit area of land. Before constructing the model, we performed pre-processing to remove
autocorrelation, and transformed and unified the spatial scale of data, with a spatial
resolution of 3 km. The time scale of model input data was 2004–2015. We determined the
four variables predicted by the model, which are N and P inputs and exports. Thereafter,
we divided the 980 sample points according into the training set and the testing at a ratio
of 7:3. The SVM, RF, and MLR models were selected to construct the nutrient prediction
model. As compared with the traditional model, machine learning can identify an optimal
segmentation point, which can tackle both linear and nonlinear relationships. However,
the traditional model can-not directly tackle non-linearity. When training the model,
we configured and adjusted the super parameters to obtain the best performance, we
determined the iterative method from the best super parameters, and we set the number of
iterations to 100. Tenfold cross-validation was used to test the accuracy of the algorithm.
The determination coefficient (R2) and RMSE was used to evaluate the results of the
prediction model and the optimal model was selected based on this.

Table 3. Information on the four targets for the prediction of nutrient inputs and exports.

Targets Input Variables Predictor Variable Method

Targets 1 Ferc N; Urbanization (%); Forest (%);
Crop (%); Urban (%), Population density N Input

SVM, RF, MLR
Targets 2 Ferc P; Urbanization (%); Forest (%);

Crop (%); Urban (%), Population density P Input

Targets 3 Ferc N; Urbanization (%); Forest (%);
Crop (%); Urban (%), Population density N Export

Targets 4 Ferc P; Urbanization (%); Forest (%);
Crop (%); Urban (%), Population density P Export

3.3.1. Support Vector Machine (SVM)

SVM is a supervised learning algorithm that is mainly based on the principle of struc-
tural risk minimization and statistical learning theory [39]. To achieve the purpose of
accurate classification of various types of data, the interval maximization method was used
to find the maximum classification interval of the defined feature space in the data [40].
Moreover, in order to reduce the impact resulting from the limited sample data, the hy-
perplane analysis method was used to distance the sample data from this hyperplane [41].
When nonlinear problems are encountered, the kernel function can be used for mapping
analysis [41,42]. The algorithm identifies the optimal parameter combination using the
gradient descent method. The number of optimization iterations set by the program was
100. We used the sigmoid kernel function with hyperparametric penalty coefficient c,
which improved the generalization ability of the model, with a value of 1. The values of
hyperparameters gamma and coef0 were 0.7 and 0.4, respectively [36,43].

3.3.2. Random Forest (RF)

In this study, RF was used not only for land-use classification, but also for the N and P
input and export predictions. The RF method is an extension of the bagged classification tree
considering the ensemble learning theory, which can improve the accuracy of models [4,44].
RF is an integrated model that uses a set of independent classification or regression trees to
achieve classification or regression aims [36]. The advantage of the RF algorithm is that
it is not sensitive to the noise in the training set, and is more conducive to obtaining a



Remote Sens. 2022, 14, 2070 8 of 23

robust model and avoiding overfitting conditions [45]. The randomness of RF is reflected
in two aspects. The first is the randomness of samples [46]: a certain number of samples are
randomly selected from the training set as the root node samples of each regression tree.
The second is the randomness of features: when establishing each regression tree, a certain
number of candidate features are randomly selected, and the most appropriate feature is
selected as the splitting node. During parameter adjustment, the value of the max_depth
of the decision tree was 10. When the depth of the tree reaches the maximum depth, the
decision tree will stop operation no matter how many features can be branched. The
n_estimators denote the number of decision trees, and the value is 2000. The max_features
is one of the super parameters, which was set to 3. The maximum percentage of features
considered in the decision tree was 10%. The selection of parameter values was conducted
according to previous research [44–46].

3.3.3. Multiple Linear Regression (MLR)

Multiple linear regression is a widely used linear regression method [46]. A phe-
nomenon is often associated with multiple factors, for example it is more effective and
practical to predict or estimate dependent variables using the optimal combination of mul-
tiple independent variables than to predict or estimate only one independent variable [47].
To measure the error between the estimated value and the real value, a non-negative real
number function is usually selected as the loss function in the linear regression model.
The smaller the value of the non-negative real loss function, the smaller the error. The
least-squares method is generally applicable to parameters estimation [48]. We used the
MLR model to represent the relationship between the nutrient inputs, exports, and human
indicators, and to explore the change characteristics of nutrients as a result of intensive
human activities.

4. Results
4.1. Relationship between Human Activity Factors and Nutrient Input and Export
4.1.1. Nutrient Input and Export of Traditional Balance Model

Between 2004 and 2015, the input of N and P exhibited an upward and downward
trend, respectively, (Appendix A Figure A4). Therefore, we selected the year 2004 and 2015
for the comparative analysis. Figure 3 shows the comparisons of N and P input between
2004 and 2015. According to the figure, the N and P input significantly changed in this
period. The net import of food and feed in rural areas (Nim) was the main source of N
inputs in 2004, and in 2015, this was 30% lower than in 2004 (Figure 3a). In addition, crop
nitrogen fixation (Nfix) to N inputs accounted for the lowest contribution in those two
years. The percentage of atmospheric nitrogen deposition (Ndep) of N input increased from
22% in 2004 to 27% in 2015. Another interesting finding was that although the contribution
of N fertilizer applications (Nfer) to N inputs was only 15% in 2004, it was the main source
of NANI in 2015. As compared with 2004, the sources of P input in 2015 decreased to
varying degrees (Figure 3b). Although phosphorus fertilizer applications (Pfer) were the
main source of P inputs, their contribution decreased from 61% to 52%. The contribution
of non-food P inputs (Pnon) to P input was the lowest throughout, and it also decreased
in 2015. The net food and feed import in rural regions (Pim) of P input in 2015 was lower
than in 2004, with a decrease of 39%.

Figure 4 shows N and P exports from different pollution sources in the Yanghe River
Basin. We found that livestock was the main source of N and P exports, but the contribution
decreased in 2015 as compared with 2004. In addition, domestic wastes in rural and urban
areas, crop production, and land-use types were also sources of N and P exports. During
the study period, the N and P exports from urban life increased from 9.7% in 2004 to 10.8%
in 2015 (Figure 4a,b) and from 15.4% to 17.9% (Figure 4c,d), respectively. In particular,
the N and P exports from crop production increased significantly as compared with 2004,
increasing by 15% and 27%, respectively. On the contrary, those from rural life decreased
from 11% to 9.8% and 17% to 16%, which could be attributed to the rapid development of
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urbanization. In comparison, the contribution of crop production to N exports was higher
than that of P exports.
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4.1.2. Selecting Human Activity Indicators Based on the Balance Model

On the basis of the aforementioned results of the balance model (Figures 3 and 4),
we found that N and P fertilization, net food/feed imports of N and P, livestock, crop
production, and rural and urban life have obvious effects on the input and export of N
and P. Among them, Ferc N, Ferc P, urbanization (%), Forest (%), Crop (%), Urban (%), and
population density can be used to characterize the spatial region and dynamic changes
in the above variables. We employed the Pearson correlation analysis to determine the
correlations between human activity factors and nutrient inputs and exports (Figure 5).
During the study period, N and P inputs exhibited a significant positive correction with
human activity indicators (p < 0.01), including Ferc N and Ferc P, urbanization (%), Crop
(%), Urban (%), and population density. Especially for urbanization (%) and population
density, the high correlation coefficient (an R of 0.83 to 0.94) indicated that the densely
inhabited district was the main source of N and P inputs.
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Furthermore, N and P exports were significantly and positively correlated with ur-
banization (%), Urban (%), and population density in the Yanghe River Basin. In other
words, with the rapid development of urbanization, the population and sewage discharge
increased, increasing nutrient input and export. It is worth noting that there was a negative
correlation between the percentage of Forest (%) and N and P inputs and exports. The
correlation coefficient between N export, P export, and NANI, NAPI in the Yanghe River
Basin was higher than 0.8 (p < 0.01), which further suggests that the variation in N export
and P export were directly affected by the variations in NANI and NAPI.

4.2. Model Performance of SVM, RF, and MLR Based on Human Activity Factors

We constructed four targets to predict the input and export of nutrients, which uti-
lized seven human activity indicators. The input data set was from 2004 to 2015. There
were 980 groups of data in total, and each group of samples contained 7 characteristic
components. Among them, 686 sample points of the observed data were selected for model
modeling of different prediction variables, and the remaining 294 sample points of the
observed data were used to verify the accuracy of the evaluation model. The model was
trained using 10 cross-validation methods. R2 and RMSE coefficients were used to evaluate
the results of the prediction model and the optimal model was selected based on this.

Table 4 shows the performances of the regression models in the training stage and
the validation stage. For target 1, in order to predict N input, the R2 and RMSE in the
validation set were 0.95, 0.74, and 0.92, and 32.75, 61.09, and 49.34, respectively. Among
them, the RMSE unit was consistent with the input and export of nutrients. The SVM and
MLR models outperformed the RF model. For target 2, the predictive validity of SVM in
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predicting P input was good, with an R2 and RMSE of 0.94 and 5.18, respectively. In terms
of N and P exports, target 3 and target 4 demonstrated that the performances of the MLR
and SVM were better than that of the RF (R2 > 0.9 for SVM and MLR; the RMSE exhibited a
similar pattern). Those three models can be ranked as follows: SVM > MLR > RF. For the
SVM model in particular, the R2 of the validation set was above 0.91, and the value of RMSE
was smaller, indicating that it almost perfectly simulated nutrient inputs and exports.

Table 4. The performance evaluation of prediction models.

Variable Model
Training Validation

R2 RMSE R2 RMSE

Targets 1
SVM 0.95 36.65 0.95 32.75

RF 0.84 40.15 0.74 61.09
MLR 0.88 62.42 0.92 49.34

Targets 2
SVM 0.95 7.11 0.94 5.18

RF 0.97 3.26 0.71 9.32
MLR 0.91 11.49 0.94 9.91

Targets 3
SVM 0.93 1.21 0.91 1.45

RF 0.72 1.78 0.77 1.79
MLR 0.75 2.81 0.90 1.68

Targets 4
SVM 0.88 0.23 0.93 0.18

RF 0.83 0.32 0.85 0.31
MLR 0.77 0.41 0.93 0.24

Note: The corresponding results of SVM have been bold.

4.3. Spatial Variation of Nutrient Input and Export under Anthropogenic Activities Based on SVM
4.3.1. Variation Characteristics of Nutrient Input

Based on the evaluation results of the above machine learning model, the performance
of the SVM model was better than RF and MLR. Therefore, we predicted the input and
export of N and P in 2004 and 2015 based on the SVM model. The measured data and
simulated data of N and P input and export in 2004 and 2015 are fitted (Appendix A
Figures A5 and A6). The fitting results of N and P input show that R2 is 0.90 to 0.96, and
the R2 of N and P export is 0.89 to 0.97.

The N inputs increased from 10,066 tons km−2 year−1 in 2004 to 12,278 tons km−2 year−1

in 2015. The N inputs were concentrated in the southwest of the Yanghe River Basin. Com-
pared with 2004, N inputs increased 55% in 2015, with greater increases in the west than
in the south of the Yanghe River Basin (Figure 6a,b). There was little change in the north-
east. The P inputs in the Yanghe Basin decreased from 3192 tons km−2 year−1 in 2004 to
1655 tons km−2 year−1 in 2015 (Figure 6c,d). Moreover, the P inputs were distributed in the
western region of the Yanghe River Basin. During the study period, P inputs exhibited an
obvious decreasing trend, especially in the central and western regions.

4.3.2. Variation Characteristics of Nutrient Export

The spatial variation trend of N and P exports to rivers in the Yanghe River Basin
in 2004 and 2015 are shown in Figure 7. The riverine export of N and P decreased from
413 tons km−2 year−1 to 375 tons km−2 year−1 and 61 tons km−2 year−1 to 53 tons km−2

year−1, respectively. N and P exports were concentrated in the southwest of the Yanghe
River Basin. Among them, N and P exports from the western region were significantly
higher than those from the eastern region. This was mainly due to the rapid development
of urbanization in this area. As compared with 2004, the N export in the northern region
exhibited a decrease in 2015, but there was a significant increment in the southern region
(Figure 7a,b).
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4.4. Quantifying the Retention Risk of Nutrients in Watersheds

Figure 8a–e show the relationship between N and P input and export in 2004 and
2015 as simulated by the SVM prediction model. Among them, the purple dot and green
dot refer to the prediction results of the N and P input and export models for each grid in
the study area in 2004 and 2015, respectively. We found that there was a high correlation
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between the predicted values of N input, N export, and P input, and P export with an
R2 > 0.80. Interestingly, this finding demonstrates that the inputs and exports of N and P
were closely related to the impact of human activities.
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Additionally, the slopes of the N input and N export fitting curves illustrate that
the export ratios of riverine N were about 2.8% (0.0278) and 3.0% (0.0304) in 2004 and
2015, respectively (Figure 8a,b). Moreover, the export ratios of riverine P increased from
1.1% (0.011) in 2004 to 2.2% (0.0219) in 2015 (Figure 8d,e). As compared with 2004, the
export ratios of riverine N and P increased in 2015, and the export ratios of riverine nutrients
in the Yanghe River Basin were still far from the global export ratios of N (25%) and P
(3%) [49]. In Figure 8c, the dark blue area represents the export of N, and the purple area
represents the quantity of N retained in the watershed, reaching 97%. The same is true for
Figure 8f. The green area denotes the P export, and the blue area is the retention risk of P,
reaching 98%. The lower riverine nutrient export ratios were, as well as the higher input
ratios were, the larger quantity of N and P inputs were retained in the Yanghe River Basin.
The N and P retentions exacerbated the problem of water pollution and posed a potential
risk to the water environment in the Yanghe Reservoir.

5. Discussion
5.1. The Driving Factors of N and P Inputs

On the basis of the constructed nutrient prediction model, this study quantitatively
evaluated the nutrient input and export in the Yanghe Reservoir Basin. In our study, the
N input increased from 10,066 tons km−2 year−1 to 12,278 tons km−2 year−1, and the P
input decreased from 3192 tons km−2 year−1 to 1655 tons km−2 year−1. This result aligns
with other existing studies [47,48]. We found that Nim and Nfer were the main sources
of N input, and the Pfer was the main source of P input (Figure 3). The N and P inputs
were concentrated in the southwest of the Yanghe Reservoir Basin (Figure 6). The cause
of this phenomenon can be attributed to cropland expansion (with an increment of 71.6%)
from 2004 to 2015 (Appendix A Figure A3). N and P fertilizers are widely used in the crop
cultivation process. N and P loss and infiltration from the croplands directly or indirectly
polluted the surrounding surface water bodies and underground confluence [50].

5.2. The Driving Factors of N and P Exports

During the study period, we found that livestock breeding was the largest pollu-
tion source in the study area; the reason was that N and P in livestock excrement were
discharged into rivers, resulting in eutrophication [49]. According to survey statistics,
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there are numerous breeding farms distributed along the Maguying river upstream of the
Yanghe Reservoir [32]. Abundant pollutants produced by animal husbandry can easily
enter the river with rainfall-runoff [51] and potentially result in a load that is far beyond
the water environmental capacity of the river. Another reason is that pollutant emissions
from livestock and poultry farming are positively correlated with the economy and urban-
ization [52]. For example, with the rapid urbanization process, the urban population in the
Xiyang river increased by 20%, and the area of urban land increased by 15.5%, as compared
with 2004 (Appendix A Figure A3). The pollution of livestock and poultry breeding in
Yanghe Reservoir Basin has not been effectively controlled, and the pollution discharge
is excessive. Consequently, we should reinforce the management of farms and improve
the feces utilization rate, in order to reduce the threat of pollutants to the water source
quality. In our study, crop production sources accounted for a small share of the total
nutrient exports, which is different from the assessment by Lian et al. [13] regarding crop
production sources for N (28%). The main reason for this difference is that the rainfall in
the Yanghe Reservoir basin located in a semi-arid and semi-humid area (750 mm) is much
less than that in the Taihu Lake Basin, which is located in a humid area (1115 mm). Our
results are more similar to those of Zhang [12] who investigated the Baiyangdian basin, a
semi-arid area with an average rainfall of 520 mm.

5.3. The Potential Risk of Nutrient Pollution Is Related to Human Activities

According to the results of the N and P input and export prediction model, we found
that the export ratios of N and P during the study period were 2.8–3.0% and 1.1–2.2%,
respectively, and were far lower than the global N (25%) and P (3%) export ratios [12].
Low export ratios may be caused by the terrain [52]. The Yanghe Reservoir Basin is a
sub-basin of the Luanhe River Basin in the North China Plain. It is an alluvial plain with
flat terrain. Moreover, alongside a runoff decrement of 50.43% in the past 30 years, there
has been an increasing N and P retention risk since the intensity of the non-point source
pollutant scouring effect is proportional to the runoff [53]. Furthermore, the consumption
of water resources by human activities affected the drainage of rivers [54]. The water
consumption of the Yanghe Reservoir Basin far exceeded its water intake, and greatly
reduced the export of river nutrients. The low export ratio of N and P further indicates
that a large amount of N and P inputs were retained in the basin, which also demonstrates
that the potential risk of N and P pollution was inseparable from the impact of human
activities. Therefore, it is suggested that in research related to nutrient input and export,
human activity indicators can be used to replace the traditional statistical data to improve
the accuracy and convenience of N and P input and export estimations.

5.4. Implications of Nutrient Input and Export Prediction Model

As far as we are aware, this is the first study to construct a nutrient input and ex-
port prediction model for the Yanghe Reservoir Basin. This study is important for water
quality safety assessments of the Yanghe Reservoir, an important drinking water source.
Embedding human activity indicators in the prediction reduced the uncertainty of the
traditional balance model. Many studies illustrate that human activities significantly affect
the input and export of N and P [52,53], which is consistent with our research results. On
the basis of the correlation between water transparency and lake nutrients, Tyler et al.
used water transparency data to replace the concentrations of TN, TP, and chlorophyll
to predict the lake nutrient concentration [55]. In this study, we not only considered the
linear relationship between human activities and N and P input and export, but also the
non-linear relationship between them. It is worth noting that the SVM model’s performance
was better than that of RF or MLR. The SVM model can obtain robust results as a result of
its strong generalization ability [43]. Moreover, without feature selection, SVM can process
data with extremely high dimensions [56]. Therefore, the SVM model, which simplified the
original method, can be applied to the prediction of nutrient input and export.
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In the following, we outline various limitations of our study. Firstly, N and P inputs
and exports in different regions are dominated by various human activities. Thus, it
would be better to select human activity indicators according to local conditions. Secondly,
climate change, which affects rainfall, may also interfere with the balance of nitrogen
and phosphorus. This represents a good topic for study in the future. Thirdly, the multi-
temporal fusion method and the RF classification algorithm were applied in this study to
extract the area of land-use types, which has the advantage of identifying the land-use
types under different time scales. However, as a result of the statistical data limitations, this
study only estimated the emissions of pollutants on an annual scale, and as is well known,
agricultural activities have strong seasonality. The temporal and spatial characteristics of
NPSP on the seasonal or monthly scales remain to be explored, which is our future research
direction. Moreover, although the proposed framework demonstrated its efficacy, the matter
of data scarcity in the study area should be taken into account; therefore, comparisons with
other frameworks in regions with sufficient data will need to be made in future studies.

6. Conclusions

In this study, we built a convenient, reliable, and accurate nutrient prediction model
for estimating nutrient input and export and evaluating the potential nutrient retention
risk for drinking water sources. The prediction model reduced the uncertainty caused by
the traditional nutrient balance estimation methods, which rely on statistical data and a
large number of estimation coefficients. Remote sensing images and the multi-temporal
fusion method were used to select sample points, and the RF algorithm was incorporated
to identify the pollution sources such as forest land, bare land, cropland, water, and urban
land in the drinking water sources area. The overall classification low-end accuracy was
92%. The performance of the prediction model based on SVM was better than those based
on RF and MLR. The results of the prediction model were of the same order of magnitude
as those of traditional N and P estimation methods and demonstrated that the nutrient
prediction model is reliable. The export ratios of N and P under human disturbance were
2.8–3.0% and 1.1–2.2%, respectively. The excessive N and P (97% to 98%) in the riverine
system pose a potential risk to the drinking water sources. Next, we will introduce climate
change factors, including rainfall, into our nutrient prediction model in order to assess
the potential risks of the combined impact of human activities and climate change on
nutrient retention.
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Appendix A

Appendix A.1. Multi-Temporal Images Fusion

To reduce the influence of cloud masks, the percentage of clouds was restricted (less
than 20%) when synthesizing cloudless images. Thereafter, the cloud mask algorithm
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was used to calculate the image in the specified time and space, and the minimum cloud
synthetic image was reconstructed using the median synthesis method. The advantage of
GEE is that it can unify the coordinate system through an embedded algorithm to ensure
the geometric registration accuracy of data. According to the main pollution sources and
land cover in the Yanghe Reservoir Basin [38], the land use types in the study area are
mainly divided into croplands, forests, water, bare lands, and urban impervious areas.
Figure A1 shows the steps involved in remote sensing images processing.
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In general, as a result of the different ground characteristics of pollution sources in
various periods, multi-temporal remote sensing analysis is helpful to eliminate the errors
in extracting land use information [38,39]. On the basis of the GEE platform, this study
used multi-temporal remote sensing data and selected sample points in combination with
the field investigation in the study area from March to October 2015 (Table A1). Moreover,
three typical indexes, including NDVI (Normalized Difference Vegetation Index), NDWI
(Normalized Difference Water Index), and NDBI (Normalized Difference Built-up Index),
were used to construct the feature space of feature recognition in the classification task.
The total number of samples obtained was 10,339 from 2004 to 2015. These were randomly
assigned to the training set and the testing set at a ratio of 7:3 (Table A2).

Table A1. Principle of selecting sample points based on multi-temporal fusion.

Feature Type Optimal Temporal Images Sample Point Selection Standard

Forest land and crop land March to May The cultivated land crops have not been sown. The forest land
has begun to turn green (See Appendix A Figure A2a).

Bare land and urban land June to August
The crop land has high vegetation coverage, which is easy to
distinguish between urban land and bare land (See Appendix A
Figure A2b).

Water September to October The water body information is relatively clear and will not be
affected by vegetation coverage (See Appendix A Figure A2c).
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Figure A2. The feature changes for different periods. (a) March to May; (b) June to August;
(c) September to October.

Table A2. The total number of sample points selected.

Type of Samples Total Count

Urban land 2057
Forest land 2486
Crop land 2365

Water 1898
Bare land 1533

Appendix A.2. Verification of Classification Results

Kappa coefficient and the overall accuracy were used to evaluate the classification
accuracy of land types extracted from GEE [57]. To obtain more detailed ground feature
information for the Yanghe Reservoir Basin, several field investigations were carried out.
The Kappa coefficient value and the overall accuracy for each year are shown in Appendix A
Table A3. For example, in 2015, the Kappa coefficient and the overall accuracies were 94.0%
and 95.2%, respectively, which was enough to demonstrate that the classification results are
reliable (Appendix A Table A4). Figure A3 is the area variation of land use types extracted
based on GEE in 2004 and 2015. The main land-use types were forests and cropland,
followed by urban land in the Yanghe Reservoir Basin. Compared with 2004, under the
interference of human activities, the crop land, forest land, and urban area increased in
2015, while bare land showed a decreasing trend. (Table A5). During this period, we found
that a portion of crop land areas was transformed into forest land and water, which is
mainly because according to the urban and rural planning of Qinhuangdao City, the study
area implemented ecological protection measures, such as strengthening afforestation and
a scheme for returning farmland to water.

Table A3. Classification accuracy evaluation.

Year Overall Accuracy Kappa Coefficient

2004 0.94 0.92
2005 0.93 0.91
2006 0.95 0.94
2007 0.93 0.91
2008 0.93 0.92
2009 0.96 0.93
2010 0.92 0.91
2011 0.94 0.91
2013 0.93 0.92
2014 0.93 0.91
2015 0.95 0.94
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Table A4. Accuracy evaluation of land use types classification for 2015.

Land Use Types
Ground Real Data

Class Sum User’s (%)
Urban Land Forest Land Crop Land Water Bare Land

Urban land 177 4 3 0 3 187 94.65
Forest land 2 216 5 0 3 226 95.58
Crop land 2 4 205 3 1 215 95.35

Water 0 3 4 165 0 172 95.93
Bareland 4 1 3 0 131 139 94.24

Actual sum 185 228 220 168 138 939
Producer’s (%) 95.68 94.74 93.18 98.21 94.93

Overall accuracy 95.21 Kappa 93.97
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Table A5. Pollution source area extracted by classification in 2004 and 2015.

Type 2004 Classified Area (km2) 2015 Classified Area (km2)

Urban land 52.5 68.6
Forest land 275.8 321.1
Crop land 279.4 306.8

Water 49.3 40.3
Bare land 97.7 17.9

Table A6. Crop nitrogen fixation coefficient (kg ha−1 year−1) [58–60].

Types Biofixation Rate

Symbiotic N fixation
Soybeans 96
Peanuts 80

Non-symbiotic fixation
Rice 30
Corn 15
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Table A7. Animal nutrient consumption and excretion [61].

Animal
Species

N Consumption and Excretion (kg N ca−1 year−1) P Consumption and Excretion (kg P ca−1 year−1)

Consumption N Excretion Consumption P Excretion

Pigs 16.68 11.51 3.17 4.59
Cattle 54.82 48.79 9.78 10.99
Sheep 6.85 5.75 1.06 1.26

Livestock 0.6 0.2 0.12 0.18

Note: We assumed that spoilage and inedible components caused a 10% loss of animal products available for
consumption [62].

Table A8. N and P content of agricultural crop production (g kg−1) [61].

Crops Corn Wheat Paddy Soybean Peanut Vegetable Apple Peach Pear Grape

N 14.08 17.92 11.84 56.16 19.36 2.72 0.32 0.8 0.48 0.8
P 2.44 1.88 1.1 4.65 4.65 0.3 0.12 0.13 0.13 0.12

Note: We assumed that spoilage and inedible components caused a 10% loss of animal products available for
consumption [62].

Table A9. The export coefficients used in this study for different pollution sources in the Yanghe
Reservoir Basin [12,58].

Pollution Source Items
Export Coefficient

Unit
TN TP

Land use Crop production 1.85 0.15 tons km−2 yr−1

Livestock

Pigs 1.85 0.24

Kg ca−1 yr−1Cattle 15.33 1.28
Sheep 0.37 0.12

Poultry 0.01 0.004

Rural life

Domestic
sewage 0.34 0.04

Kg ca−1 yr−1
Domestic
garbage 1.13 0.38

Domestic
excrement 0.11 0.02

Urban life Urban residents 0.85 0.2 Kg ca−1 yr−1

Others
Forest 0.3 0.16

tons km−2 yr−1Urban land 0.73 0.02
Others land use 0.7 0.08

Table A10. Fraction of nutrients exported (λij) to the rivers [63,64].

Sources Fraction (λij)

Land use 0.07
Livestock 0.3

Domestic sewage 0.3
Domestic garbage and excrement 0.1
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Table A11. Calibration of ECM model in Yanghe River watershed (755 km2) in 2015.

Land-Use Types Areas (km2) Animals Amount (Capital) Population Amount (People)

Crop land 306.8 Pig 15,286
Urban 238,200Forest 321.1 Cow 878

Urban 68.6 Sheep 5762
Rural 1,212,700Others 58.2 Livestock 177,316

Estimated TN load 375.69 t Estimated TP load 53.25 t

Watershed outlet
flow

1.690 × 108

m3 year−1

Average TN
concentration (from

May to October)
2.15 mg L−1

Average TP
concentration (from

May to October)
0.29 mg L−1

Observed TN load 363.35 t Observed TP load 49.01 t
relative error 3.30% relative error 8.60%
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