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Abstract: Roads are closely related to people’s lives, and road network extraction has become one of
the most important remote sensing tasks. This study aimed to propose a road extraction network with
an embedded attention mechanism to solve the problem of automatic extraction of road networks
from a large number of remote sensing images. Channel attention mechanism and spatial attention
mechanism were introduced to enhance the use of spectral information and spatial information
based on the U-Net framework. Moreover, residual densely connected blocks were introduced to
enhance feature reuse and information flow transfer, and a residual dilated convolution module was
introduced to extract road network information at different scales. The experimental results showed
that the method proposed in this study outperformed the compared algorithms in overall accuracy.
This method had fewer false detections, and the extracted roads were closer to ground truth. Ablation
experiments showed that the proposed modules could effectively improve road extraction accuracy.

Keywords: road extraction; U-Net; attention mechanism; residual densely connected blocks;
dilated convolution

1. Introduction

Road network plays an important role in real-world applications, such as intelligent
city and intelligent traffic management [1,2]. As an important means of obtaining maps
of road networks, road extraction has received extensive attention from scholars in this
field. At present, road extraction from images is a basic research task of remote sensing.
Compared with the traditional visual interpretation of remote sensing images, the auto-
matic road interpretation algorithm of remote sensing images can obtain road network
information quickly and at a low cost. However, their manifestations in remote sensing
images are significantly different due to the large differences in shape, width, length, and
material of road networks in different regions. Therefore, accurate extraction of road
network information from remote sensing images is still a challenging problem.

So far, a series of road extraction algorithms have been developed, which can be mainly
divided into two categories: traditional road extraction algorithms and deep learning-based
road extraction algorithms.

In the traditional road extraction algorithm, some scholars used a template match-
ing algorithm for semi-automatic extraction, including a rectangular template matching
algorithm [3], a circular template matching algorithm [4], and a T-shaped template match-
ing algorithm [5]. This type of semi-automatic template matching algorithm had high
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requirements for the adaptive ability of the template, and had defects such as inaccu-
rate extraction and unsmooth roads for complex road networks with frequent changes in
curvature and width.

Some scholars focused on the positive effect of spectral features of remote sensing
images on extraction accuracy. Shi et al. [6] combined the spectral information, spatial
information, and shape features of remote sensing images to obtain a road binary map.
Coulibaly et al. [7] combined the spectral angle algorithm with Lowe’s scale-invariant
features transform descriptors to achieve high-quality extraction of road networks. Vector
data were also introduced into the road network automatic extraction algorithm to assist
road extraction and improve the extraction accuracy. Cao et al. [8] introduced GPS data
in the process of road centerline extraction. Manandhar et al. [9] introduced volunteer
geographic information to assist road network extraction.

In traditional road extraction methods, satisfactory results have been achieved. How-
ever, since traditional methods need to manually design road feature extraction algorithms
and adjust the threshold parameters, they are not suitable for road extraction from large-
scale and complex remote sensing data.

Some scholars used machine learning algorithms to quickly extract road networks
from remote sensing images to solve the aforementioned problems. Mokhtarzade et al. [10]
used BP neural networks with a different number of iterations of different hidden layer
sizes for road extraction. M. Song et al. [11] used the support vector machine method for
road extraction. Maurya et al. [12] first removed non-road areas based on morphological
features, and then extracted road areas by K-means clustering. Seppke et al. [13] proposed
a parallel super-pixel-based road tracking method combining geometric and topological
representations. In the analysis framework of adaptive mean shift, Huang et al. [14] used
mean shift to obtain an object-oriented representation of hyperspectral data, and then used
a support vector machine for feature interpretation.

Recently, deep learning is widely used in remote sensing and has shown good per-
formance for image classification [15–17] and segmentation tasks [18–22]. Wei et al. [23] pro-
posed to use a patch-based convolutional neural network for road extraction.
Alshehhi et al. [24] further developed a neural network that can extract roads and buildings
simultaneously. Zhong et al. [25] proposed to use a fully convolutional neural network
for road extraction. Based on the fully convolutional neural network, a series of encoder-
decoder neural networks are developed. Panboonyuen et al. [26] used the SegNet structure
as the benchmark network for road segmentation, and used deconvolution to replace
the residual up-sample of the fully convolutional neural network. Zhang et al. [27] com-
bined the advantages of U-Net structure to extract scale information with the advantage of
residual structure to connect different features maps. To make the network easier to train,
Xu et al. [28] combined the U-Net structure with a densely connected network. In 2017,
LinkNet was proposed by Chaurasia et al. [29]. Zhou et al. [30] used LinkNet structure
and dilated convolution to segment roads and became the best solution in DeepGlobe-2018.
Subsequently, a variety of improved methods based on the U-Net structure are proposed.
He et al. [31] added a pyramid pooling structure to the U-Net structure, and used a struc-
tural similarity loss function to constrain the network. Wulamu et al. [32] extracted features
for roads at different scales through different convolutional layers.

Besides, some scholars focused on the image of the loss function on the road extraction
accuracy. He et al. [31] used a structural similarity loss function to constrain the network
training process to enhance the detailed information of the road extraction results and
avoid over-smoothing the extraction results. Wei et al. [23] used road structure information
to adjust the cross-entropy loss function. Mosinska et al. [33] proposed a topological-aware
loss function to solve the problem of abnormal road network topology in road extraction
results, which effectively reduced road network topological errors. These loss functions
only considered strengthening the use of road network structural information and do not
fully consider the structural differences of road training samples [34].
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In recent years, as a way to recalibrate feature maps, the attention mechanism is widely
used in the field of computer vision [35–40]. The attention mechanism can give a higher
weight to the discriminative features and reduce the weight of unnecessary information,
effectively improving the recognition accuracy.

Therefore, we propose a Road Extraction convolutional neural Network with an
embedded Attention mechanism (RENA) for remote sensing images. In the proposed
network, we embed the spatial attention mechanism and the channel attention mechanism
based on the U-Net. The spatial attention mechanism is used to improve the spatial detail
information of road extraction results, and the channel attention mechanism is used to
recalibrate the spectral features of remote sensing images. Under this U-Net framework,
residual densely connected blocks are also embedded [41] to integrate the information
flow transmission advantages of residual densely connected blocks. Besides, we also
introduce a residual dilated convolution module to enhance the ability to extract multiscale
information.

The main contributions of this study are summarized as follows:

1. This study uses the U-Net structure to achieve end-to-end road network extraction
from remote sensing images.

2. This study designs an attention module that combines spatial attention and channel at-
tention to enhance spatial detail information and promote the use of spectral features.

3. Based on the U-Net structure, this study embeds the residual dense connection blocks
to achieve information flow transfer and feature reuse, and uses a residual dilated
convolution module to achieve multiscale information extraction.

The rest of the paper is organized as follows. Section 2 of the paper presents the details
of the proposed method. Section 3 of the paper is the experimental configurations and
experimental results including the ablation experiments. Section 4 is the conclusion part of
the paper.

2. Methodology
2.1. U-Net Framework with Embedded Attention Mechanism

U-Net framework is a network of encoding and decoding architecture, which is widely
used in remote sensing images semantic segmentation [42–45] and classification tasks [46].

The U-Net framework consists of two parts, namely the encoder layer and the decoder
layer. The encoder is used for pixel-by-pixel semantic feature extraction of remote sensing
images, and the context information of the image is extracted by it. The decoder layer
is used to decode the feature maps and locate the region of interest (ROI) in the image
to finally obtain semantic segmentation results. In the U-Net framework, in order to
effectively transfer the information of low-level feature maps to the high-level feature maps,
the feature maps extracted by the encoder layer combine with the feature maps extracted
by the decoder layer in the form of a skip connection to achieve effective fusion of low-level
feature maps and high-level feature maps.

The attention mechanism is mainly used to recalibrate the weights of the feature maps.
At present, there are three main categories of attention mechanisms used in the field of
remote sensing, including spatial attention mechanisms, channel attention mechanisms,
and temporal attention mechanisms. For the spatial attention mechanism, it is a way to
recalibrate the spatial information of remote sensing images. The spatial attention mecha-
nism reduces the dimension of the feature maps to two dimensions by performing feature
compression on the feature maps, and obtains the two-dimensional weight through the
normalization function to guide the feature maps for spatial recalibration, so that high-
frequency information gets higher weight. For the channel attention mechanism, it is to
recalibrate the weight of the image channel direction. The channel attention mechanism
obtains the global feature of the image channel direction through the global pooling opera-
tion, and uses it as the weight of the feature maps to guide the feature maps to recalibrate
the channel direction. Make discriminative features get higher weights. In this paper, we
extract the global mean weight and global maximum weight of the image through mean
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pooling and max pooling, respectively. The temporal attention mechanisms are a way of
empowering temporal information and are mainly used to process multi-temporal remote
sensing data. In this paper, multi-temporal data is not used, therefore, only spatial attention
mechanism and channel attention mechanism are used.

In this paper, the U-Net framework is used as the main frame. The RGB three-channel
remote sensing image is adopted as the input data of the network, and the binary image
road network map is obtained through end-to-end network processing. Among them, the
network output results are two types of results, road, and non-road. The U-Net framework
includes four encoder layers and four decoder layers. The four encoder layers are used to
extract image features of different scales, and the four decoder layers are used to restore
image details, and realize the information flow transmission and the reuse of different levels
of feature maps by means of skip connections. The spatial attention block and the channel
attention block are combined in a cascaded form and jointly embedded into the U-Net
framework, which enhances the utilization of spectral information while improving spatial
details. Residual dense connection blocks are embedded in each encoder layer and decoder
layer, which are used to connect feature information at different levels to achieve efficient
transmission of information flow. In addition, the residual dilated convolution module is
added to the last encoder layer to further expand the receptive field. The flowchart of the
proposed method is listed in Figure 1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

operation, and uses it as the weight of the feature maps to guide the feature maps to re-

calibrate the channel direction. Make discriminative features get higher weights. In this 

paper, we extract the global mean weight and global maximum weight of the image 

through mean pooling and max pooling, respectively. The temporal attention mecha-

nisms are a way of empowering temporal information and are mainly used to process 

multi-temporal remote sensing data. In this paper, multi-temporal data is not used, there-

fore, only spatial attention mechanism and channel attention mechanism are used. 

In this paper, the U-Net framework is used as the main frame. The RGB three-channel 

remote sensing image is adopted as the input data of the network, and the binary image 

road network map is obtained through end-to-end network processing. Among them, the 

network output results are two types of results, road, and non-road. The U-Net frame-

work includes four encoder layers and four decoder layers. The four encoder layers are 

used to extract image features of different scales, and the four decoder layers are used to 

restore image details, and realize the information flow transmission and the reuse of dif-

ferent levels of feature maps by means of skip connections. The spatial attention block and 

the channel attention block are combined in a cascaded form and jointly embedded into 

the U-Net framework, which enhances the utilization of spectral information while im-

proving spatial details. Residual dense connection blocks are embedded in each encoder 

layer and decoder layer, which are used to connect feature information at different levels 

to achieve efficient transmission of information flow. In addition, the residual dilated con-

volution module is added to the last encoder layer to further expand the receptive field. 

The flowchart of the proposed method is listed in Figure 1. 

 

Figure 1. Schematic diagram of the proposed road extraction network. 

2.2. U-Net Framework 

In the proposed U-Net road extraction framework, we use four encoder layers and 

four decoder layers, and add the feature maps obtained by the corresponding encoder 

layers and decoder layers through skip connections. 

For the four encoder layers, we adopt the pre-trained model of the ResNet34 network 

to speed up the model convergence. In each encoder layer, there are multiple residual 

blocks (ResBlock). For each ResBlock, it consists of two convolutional layers, two batch 

normalization layers, and a rectified linear unit (ReLU). Among them, the convolution 

layer is used to extract remote sensing image feature information. The batch normalization 

layer is used to normalize the data distribution to speed up the convergence of network 

training, avoid gradient disappearance or gradient explosion, and at the same time, avoid 

overfitting of the trained model. The ReLU is used to perform nonlinear processing on the 

data to enhance the model’s ability to fit nonlinear relationships. In the encoder layer, the 

first ResBlock of the second to fourth layers of it also includes a down sampling process, 

which down-samples the feature maps and increases the number of feature maps chan-

nels. In the U-Net framework, there are four decoder layers. In each decoder layer, the 

structure is roughly the same as that of the encoder layer, including a transposed convo-

lution layer, three batch normalization layers, and three ReLU activation functions. 

Figure 1. Schematic diagram of the proposed road extraction network.

2.2. U-Net Framework

In the proposed U-Net road extraction framework, we use four encoder layers and
four decoder layers, and add the feature maps obtained by the corresponding encoder
layers and decoder layers through skip connections.

For the four encoder layers, we adopt the pre-trained model of the ResNet34 network
to speed up the model convergence. In each encoder layer, there are multiple residual
blocks (ResBlock). For each ResBlock, it consists of two convolutional layers, two batch
normalization layers, and a rectified linear unit (ReLU). Among them, the convolution
layer is used to extract remote sensing image feature information. The batch normalization
layer is used to normalize the data distribution to speed up the convergence of network
training, avoid gradient disappearance or gradient explosion, and at the same time, avoid
overfitting of the trained model. The ReLU is used to perform nonlinear processing on
the data to enhance the model’s ability to fit nonlinear relationships. In the encoder layer,
the first ResBlock of the second to fourth layers of it also includes a down sampling
process, which down-samples the feature maps and increases the number of feature maps
channels. In the U-Net framework, there are four decoder layers. In each decoder layer,
the structure is roughly the same as that of the encoder layer, including a transposed
convolution layer, three batch normalization layers, and three ReLU activation functions.
Among them, the transposed convolution is a parameter learnable up sampling operation
on the feature maps.
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2.3. Channel and Spatial Attention Module (CSAM)

In the U-Net framework, after processing through the encoder layer, the size of the
feature maps becomes smaller, and the number of channels increases. Conversely, after
being processed by the decoder layer, the number of channels in the feature maps decreases,
the size becomes larger, and the spatial information increases. Therefore, in order to
maintain the channel information and spatial information of the encoder layer and the
decoder layer, we embed the channel and spatial attention modules (Figure 2) after it.
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Figure 2. The CSAM schematic.

The channel attention block (CAB) includes pooling layers, fully connected layers, and
convolutional layers. Through the maximum value pooling and the mean value pooling,
the maximum value and the mean value features are extracted from the feature maps
respectively. Then, the maximum value feature and the mean value feature are respectively
converted into a one-dimensional vector through the fully connected layer, and the one-
dimensional vector is normalized by the sigmoid function to obtain the maximum channel
direction weight and the mean channel direction weight. Subsequently, the element-wise
multiplication is performed on the two channel weights and the input feature maps to
obtain the recalibrated feature maps respectively. Finally, the dimensionality reduction
is performed on the result of concatenating two recalibrated feature maps and using
convolutional layers.

The channel attention block can be expressed in the following form:

f mca = cat( f minput ⊗ ξ
(
wca ◦ pavg( f minput) + bca

)
, f minput ⊗ ξ

(
wca ◦ pmax( f minput) + bca

)
) (1)

Among them, f mca represents the feature maps processed by the channel attention block,
f minput represents the input feature maps, wca represents the convolution kernel of the
channel attention block, bca represents the bias term of the channel attention block, and ξ(.)
represents the sigmoid function. ◦ represents the convolution operator. and ⊗ represents
the element-wise multiplication operation. pavg(.) represents the mean value pooling
operator, pmax(.) represents the maximum value pooling operator, and cat(.) represents
the map cascade operation.

The spatial attention block (SAB) includes convolutional layers and 1 × 1 convolutional
layers. The feature maps are extracted through the convolution layer, and then the feature
maps are reduced to single-channel features through the 1 × 1 convolution layer, and the
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single-channel feature map is normalized through the sigmoid function to obtain the spatial
weight. Then, element-wise multiplication is performed on the spatial weights and the
input feature maps to obtain the recalibrated feature maps. Finally, a convolutional layer is
used to perform convolution operation on the recalibrated feature maps.

The spatial attention block can be expressed in the following form:

f msa = f minput � ξ
(
wsa ◦ f minput + bsa

)
(2)

where f msa represents the feature maps processed by the spatial attention block, f minput
represents the input feature maps, wsa represents the convolution kernel of spatial attention
block, bsa represents the bias term of spatial attention block

After being processed by the channel attention block and the spatial attention block
respectively, the feature maps obtained by the two modules are fused in a cascaded manner,
and 1 × 1 convolutional layers are used for dimensionality reduction processing to obtain
the final feature map.

The fusion process of channel attention and spatial attention can be expressed as:

f m f use = δ
(

w f use ◦ cat( f mca, f msa) + b f use

)
(3)

where f m f use represents the fused feature maps, w f use represents the convolution kernel of
spatial attention block, b f use represents the bias term of spatial attention block, δ(.) and the
ReLU function.

2.4. Residual Densely Connected Blocks (RDCB)

To address the information flow transfer problem, Huang et al., proposed densely
connected blocks (DB) [41]. Densely connected blocks have been widely used in the field
of computer vision due to their powerful information transfer and information extraction
capabilities [41,47]. By using multiple skip connections, the low-level feature maps are
connected with the high-level feature maps, while maintaining the characteristics of the
feedforward layer, the low-level feature maps information is effectively transferred to
the high-level feature maps. In the encoder layer and the channel attention block, the
feature maps become smaller after being processed by the encoder layer, and the spatial
information of the feature maps is further compressed after being processed by the channel
attention block. In order to further utilize the information of the input feature maps, we use
residual densely connected blocks to calculate the residual between the input feature map
and the DB-processed feature map through the residual structure. The residual densely
connected block is shown in Figure 3.
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In the proposed network, in order to preserve the spatial features of the feature map,
RDB is used for feature extraction on feature maps. As shown in Figure 1, after using
CSAM to recalibrate the features of the encoder layer and the decoder layer, we use RDB
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to perform feature extraction on the recalibrated feature maps to extract information at
different scales.

2.5. Residual Dilated Convolution Module (RDCM)

Dilated convolutional layers are widely used to extract features under different recep-
tive fields to extract features at different scales. A larger receptive field is more favorable
for extracting large objects, and a small receptive field can extract the feature information of
small objects. The dilated convolution does not reduce the spatial resolution of the image,
and at the same time, by setting the dilation rate, it realizes the operation of expanding the
receptive field to different degrees.

In this paper, after all of the encoder layer feature extraction, we use a residual dilated
convolution module to extract the feature information of different scale targets as shown in
Figure 4. The residual dilated convolution module mainly includes four dilated convolution
layers with dilation rates of 1, 2, 4, and 8, which are used to extract feature information
under four receptive fields and four rectified linear units. In this module, the residual
structure is used to perform element addition operations on the extracted four kinds of
feature information, so as to fully integrate the feature information at different scales.
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The residual dilated convolution module can be defined as:

f mrdcm1 = frdcm
(

f minput, dilation = 1
)

(4)

f mrdcm2 = frdcm( f mrdcm1, dilation = 2) (5)

f mrdcm3 = frdcm( f mrdcm, dilation = 4) (6)

f mrdcm4 = frdcm( f mrdcm3, dilation = 8) (7)

f mrdcm = f mrdcm1 + f mrdcm2 + f mrdcm3 + f mrdcm4 (8)

Among them, f minput represents the initial output feature maps, frdcm(.) represents
the dilated convolution layer. dilation = 1, 2, 4, 8 represent the dilation rates of 1, 2, 4, and
8, respectively. f mrdcm1, f mrdcm2, f mrdcm3, and f mrdcm4 represent the output feature maps
at different dilation rates, respectively. f mrdcm represents the final output of the residual
dilated convolution module.

As shown in Figure 5, we list the schematic diagrams of dilated convolution layers
with dilation rates of 1 and 2, respectively.
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3. Experiments and Analysis
3.1. Experimental Dataset Information

To verify the effectiveness of the proposed method, we conduct comparative exper-
iments using the Deep Globe Road Extraction dataset. The Deep Globe Road Extraction
dataset is the dataset used in the CVPR Deep Globe 2018 road extraction challenge. The
dataset includes 6226 training images, 1243 verification images, and 1101 testing images.
The size of each image is 1024 × 1024, and the image resolution is 0.5 m.

3.2. Road Extraction Network Training Configuration Information

In the process of network training in this paper, two loss functions are used to constrain,
which are binary cross entropy and dice coefficient loss, respectively.

As shown in Table 1, the parameter configuration information of the main modules of
the proposed network is listed.

Table 1. Parameter configuration of the proposed network main module.

Module Name Module Composition Parameter Configuration

Channel and Spatial
Attention Module

channel attention block See the configuration information of the channel attention block
below for details

spatial attention block See the configuration information of the spatial attention block
below for details.

convolutional layer (input channel = nFeat × 2, output channel = nFeat, kernel size
= 3 × 3, stride = 1, pad = 1), ReLU

Channel Attention Block

pooling layer average pooling layer: Adaptive Average Pooling
pooling layer max pooling layer: Adaptive Max Pooling

fully connected layer layer 1: (input channel = nFeat, output channel = nFeat/16,
kernel size = 1 × 1, stride = 1, pad = 0), ReLU

fully connected layer layer 2: (input channel = nFeat/16, output channel = nFeat,
kernel size = 1 × 1, stride = 1, pad = 0), Sigmoid

fully connected layer layer 3: (input channel = nFeat, output channel = nFeat/16,
kernel size = 1 × 1, stride = 1, pad = 0), ReLU

fully connected layer layer 4: (input channel = nFeat/16, output channel = nFeat,
kernel size = 1 × 1, stride = 1, pad = 0), Sigmoid

convolutional layer layer 1: (input channel = nFeat × 2, output channel = nFeat,
kernel size = 3 × 3, stride = 1, pad = 1), ReLU

Spatial Attention Block

convolutional layer layer1: (input channel = nFeat, output channel = nFeat, kernel
size = 3 × 3, stride = 1, pad = 1), ReLU

convolutional layer layer2: (input channel = nFeat, output channel = 1, kernel
size = 1 × 1, stride = 1, pad = 0), Sigmoid

convolutional layer layer3: (input channel = nFeat, output channel = nFeat, kernel
size = 3 × 3, stride = 1, pad = 1), ReLU



Remote Sens. 2022, 14, 2061 9 of 18

Table 1. Cont.

Module Name Module Composition Parameter Configuration

ResidualDilated
Convolution Module

Dilated convolutional layer layer 1: (input channel = nFeat, output channel = nFeat, kernel
size = 3 × 3, stride = 1, pad = 1, dilation = 1), ReLU

Dilated convolutional layer layer 2: (input channel = nFeat, output channel = nFeat, kernel
size = 3 × 3, stride = 1, pad = 1, dilation = 2), ReLU

Dilated convolutional layer layer 3: (input channel = nFeat, output channel = nFeat, kernel
size = 3 × 3, stride = 1, pad = 1, dilation = 4), ReLU

Dilated convolutional layer layer 4: (input channel = nFeat, output channel = nFeat, kernel
size = 3 × 3, stride = 1, pad = 1, dilation = 8), ReLU

Residual Densely
Connected Blocks

convolutional layer (input channel = nFeat, output channel = nFeat/2, kernel
size = 3 × 3, stride = 1, pad = 1), ReLU

1 × 1 convolutional layer (input channel = nFeat/2, output channel = nFeat, kernel
size = 1 × 1, stride = 1, pad = 0)

nFeat is 64, 128, 256, 512 after processing by different encoder layers, and corresponding to 256, 128, 64 in different
decoder layers.

The PyTorch framework is used for network training. The ADAM is used as the
network optimizer. The network learning rate is 1 × 10−3, the network batch size is 4,
and the training epoch is 40. In the model training process, PyTorch v1.8 in the Windows
environment is used, the CPU used is AMD 5600X@4.5GHz, and the GPU used is NVIDIA
RTX3090 with 24 G memory. The training process took 40 h.

3.3. Comparison Algorithms and Quantitative Evaluation Metrics

To better verify the effect of the proposed method, we selected three mainstream
remote sensing image road network extraction algorithms for comparison, including the
U-Net method [30], LinkNet34 method [29], and D-LinkNet [30], which is the best solution
in DeepGlobe-2018 and the state-of-the-art method. Among them, all the comparison
algorithms were retrained with the same data and training epochs as in this study.

In quantitative evaluation experiments, five mainstream quantitative metrics are
used to evaluate the performance of road extraction algorithms, which include accuracy,
precision and recall, F1 score, and IoU (Intersection over Union) [48].

The accuracy is used to calculate the proportion of all correctly predicted samples to the
total samples. It is an overall performance evaluation indicator, which is defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

where TP is true positive, representing the number of samples that predict positive samples
as positive samples. FP is false positive, representing the number of samples that predict
negative samples as positive samples. TN is true negative, representing the sample that
predicts negative samples as negative samples. FN is false negative, representing the
number of samples that predict positive samples as negative samples.

The precision is the proportion of correctly predicted positive samples to all predicted
positive samples, which is defined as follows:

Precision =
TP

TP + FP
(10)

The recall is the proportion of samples that are predicted to be positive among the
samples that are actually positive, which is defined as follows:

Recall =
TP

TP + FN
(11)



Remote Sens. 2022, 14, 2061 10 of 18

The ranges of accuracy, precision, and recall are 0–1, and the higher the value, the
better the performance of the two-class model.

F1 score is an indicator used in statistics to measure the performance of the binary
classification model. It is a harmonic average indicator of the precision rate and recall rate of
the model, which is used to balance the precision rate and the recall rate. Its value range is
0–1, and the higher the value, the better the performance of the binary classification model.
The F1 score is defined as follows:

F1 − score =
2TP

2TP + FP + FN
(12)

IoU is a standard that measures the accuracy of detecting corresponding objects in
a specific dataset. It is used to measure the correlation between the true value and the
predicted value. The higher the correlation, the higher the IoU value. The IoU is defined
as follows:

loU =
TP

TP + FP + FN
(13)

3.4. Visual Evaluation Results

The effect of the proposed method was verified in the visual evaluation. According to
the density of the road network, visual evaluation from two aspects, dense road network,
and sparse road network, was conducted to verify the extraction ability of the proposed
method in densely built-up areas and open areas, respectively.

3.4.1. Visual Evaluation Results for Dense Road Network

Three samples were selected for analysis in the densely built-up area, as shown in
Figure 6. The results using LinkNet34 and D-LinkNet showed that all roads were effectively
identified, but in these two methods, a large number of false detection samples, that is, the
nonroad areas, were identified as road areas, and the result roads obtained by these two
methods were wider than ground truth. U-Net and the proposed method could obtain
similar results as ground truth with relatively few false detections, but could not identify
areas occluded by trees. In the lower-left corner of Figure 6, U-Net and the proposed
method had broken roads. From the remote sensing images, it was seen that trees were
present in this area. In addition, the U-Net framework extraction results showed multiple
fine false detection roads.

As shown in Figure 7, the three comparison algorithms had different degrees of false
detection in the upper left corner of Figure 7, and the proposed method had fewer false
detections. In terms of missed detection, LinkNet34 and D-LinkNet missed relatively few
cases, while U-Net and the proposed method were relatively more.

In Figure 8, D-LinkNet had many false detections in the large-scale road network
above the figure, and some buildings were identified as roads. The LinkNet34 method
could identify roads more completely, but many false detections still existed. Moreover,
the identified road width was wider than ground truth. The proposed method had few
false detections, but some missed detections existed. The proposed method was closer to
ground truth in terms of road shape and road width.

3.4.2. Visual Evaluation Results for Sparse Road Network

Another three samples in the open area were selected for analysis. As shown in
Figure 9, U-Net, LinkNet34, and RENA methods could extract roads effectively, while
D-LinkNet could not extract complete roads. In addition, the roads extracted using U-Net,
and RENA methods were closer to ground truth in morphology, while LinkNet34 had false
detections. As shown in Figure 10, compared with ground truth, U-Net, LinkNet34, and
D-LinkNet had different degrees of false detection, while RENA had no false detection. As
shown in Figure 11, the remote sensing image showed that there were two parallel roads.
The U-Net and RENA methods could effectively extract the road and divide it into two
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roads, while LinkNet34 and D-LinkNet recognized the two parallel roads as a single road.
In addition, LinkNet34 and D-LinkNet had false detections in the upper left corner.
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From the six sets of visual experiments in densely built-up areas and open areas, it
was seen that LinkNet34 and D-LinkNet could completely extract the road network, but
many false detections were present, and the shape of the extracted road was different from
that of ground truth. U-Net and RENA had fewer false detections, but the cases of missed
detection were present, and U-Net had some fine false detection roads. In addition, the
roads extracted by U-Net and RENA were closer to ground truth in morphology, and the
road width was also closer to ground truth.

3.5. Quantitative Evaluation Results

This study used 101 images with a size of 1024 × 1024 for road extraction experiments
to validate the proposed method in quantitative evaluation, and calculated quantitative
evaluation indicators with the real label results. The results are shown in Table 2.

Table 2. Quantitative evaluation results.

Method Accuracy Precision Recall F1_Score IoU

U-Net 0.988 0.769 0.782 0.763 0.630
LinkNet34 0.978 0.539 0.966 0.680 0.528
DlinkNet 0.982 0.584 0.975 0.724 0.576

RENA 0.989 0.784 0.770 0.764 0.631
Note: Bold font indicates column maximum.

As shown in Table 2, the RENA method achieved the highest accuracy in four out of
five metrics, indicating that the proposed method outperformed the compared algorithms
in road extraction accuracy. In the recall indicator, the D-LinkNet obtained the highest
accuracy, indicating that it had fewer missed detections, which was consistent with the
conclusion of visual evaluation.

In the precision indicator, U-Net and RENA scored higher than LinkNet34 and D-
LinkNet, indicating that U-Net and RENA had less false detection. In the recall indicator,
LinkNet34 and D-LinkNet scored higher than U-Net and RENA, indicating that LinkNet34
and D-LinkNet had fewer missed detections. It was difficult to achieve high precision and
high recall at the same time due to their mutual influence. Therefore, the methods were
evaluated in terms of accuracy, F1-score, and IoU. The proposed method was higher than
the compared algorithms in terms of three overall indicators for evaluation, indicating that
the proposed method was better than the compared algorithms.

3.6. Discussion

This study conducted ablation experiments on channel attention block, spatial atten-
tion block, residual dense connection block, and residual dilated convolution module to
verify the actual effect of each proposed module in road extraction experiments.

As shown in Table 3, RENA without removing any module achieved the highest
accuracy among the four metrics and the second-best accuracy among one metric. In
addition to a certain increase in the precision of removing the channel attention block, the
results after removing each module had a certain degree of reduction in accuracy, indicating
that the modules proposed in this study had a positive effect on accuracy improvement.

Table 3. Quantitative evaluation results of ablation experiments.

Method Accuracy Precision Recall F1_Score IoU

RENA 0.989 0.784 0.770 0.764 0.631
CAB removed 0.988 0.807 0.722 0.747 0.611
SAB removed 0.988 0.784 0.745 0.750 0.611

RDCM removed 0.987 0.758 0.748 0.734 0.595
RDCB removed 0.987 0.739 0.763 0.732 0.596

Note: Bold font indicates column maximum.
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As shown in Table 3, in terms of recall, the result with a module removed was lower
than the result without the module removal to a certain extent, indicating that the result
with the module removal had more wrong selections than RENA. Combinedwith Figure 12,
it was seen that in addition to the original RENA results, the results without the removed
modules had varying degrees of false selection, which was in line with the conclusion
indicated by the quantitative indicators. For residual dilated convolution module and
residual densely connected blocks, the model dropped more in accuracy, F1-score, and IoU
after removing these two modules. It showed that residual dilated convolution module
and residual densely connected blocks contributed more to the model in feature extraction.
The spatial attention block and channel attention block were used as feature recalibration
modules; the model accuracy decreased to a lesser extent after removal. The results showed
that all the proposed modules could positively affect the experimental results; the residual
dilated convolution module and residual densely connected blocks contributed more to the
network, and the attention module contributed relatively less.

Figure 12. Visual evaluation results of the second group of sparse road networks.

In the overall indicators Accuracy, F1-score and IoU, the original RENA results were
higher than the results with the removal of modules, indicating that the proposed module
could effectively enhance the performance of road extraction.

4. Conclusions

In this study, we used U-Net as the main framework to construct an end-to-end road
extraction network with the embedded attention mechanism. From remote sensing images,
we obtained road and non-road binary images, and extracted the road network from
the input. In this network framework, the use of spectral information of remote sensing
images was strengthened through the channel attention mechanism, and the detailed
information in the road extraction results was enhanced through the spatial attention
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mechanism. Residual densely connected blocks were introduced in the network to enhance
the information flow transfer and feature reuse of feature maps at different levels. At the
same time, we introduced a residual dilated convolution module to enhance the extraction
ability of road networks of different scales. Visual and quantitative experiments showed
that the proposed method had higher overall accuracy and lower false detection rate than
the comparison algorithms. Ablation experiments showed that the proposed modules
could effectively improve the accuracy of road extraction.

However, in the case of missed detection, the proposed method still had certain
shortcomings, and when faced with information occlusion such as vegetation, the proposed
method still had certain defects. Future studies should employ hyperspectral imagery
to better use spectral information to address the aforementioned issues. In addition,
future studies should introduce more input information, such as Open Street Map road
information, to assist the road extraction work and improve the road extraction accuracy.
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