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Abstract: There is a growing need for algorithms to automatically detect objects in satellite images.
Object detection algorithms using deep learning have demonstrated a significant improvement in
object detection performance. However, deep-learning models have difficulty in interpreting the
features for inference. This difficulty is practically problematic when analyzing earth-observation
images, which are often used as evidence for public decision-making. In addition, for the same reason,
it is difficult to set an explicit policy or criteria to improve the models. To deal with these challenges,
we introduce a feature attribution method that defines an approximate model and calculates the
attribution of input features to the output of a deep-learning model. For the object detection models
of satellite images with complex textures, we propose a method to visualize the basis of inference
using pixel-wise feature attribution. Furthermore, we propose new methods for model evaluation,
regularization, and data selection, based on feature attribution. Experimental results demonstrate
the feasibility of the proposed methods for basis visualization and model evaluation. Moreover, the
results illustrate that the model using the proposed regularization method can avoid over-fitting and
achieve higher performance, and the proposed data selection method allows for the efficient selection
of new training data.

Keywords: object detection; satellite imagery; feature attribution; deep learning; XAI; interpretability;
explainability; SHAP value; active learning; vehicle detection

1. Introduction

In recent years, many optical satellites have been planned and operated for high-
resolution earth observation owing to the increasing number of image sensors they have
onboard. They are making it possible to obtain higher-resolution images than before, and
the constellation of many small and light satellites has made it possible to capture images
at a high frequency. High-resolution satellite images have a wide range of applications;
for example, they can be used to assess disaster damage, create and update topographic
maps, and detect vehicle locations [1–3]. The availability of many satellite images through
spatiotemporal high-resolution satellite observations has increased the need for algorithms
to automatically recognize geographic objects [4].

Image-recognition algorithms based on deep learning (DL), especially convolutional
neural networks (CNNs), have made significant progress. This is due to the large numbers
of datasets used as training data [5]. The dramatic improvement in computer performance
has made it possible to handle the high computational load of DL [6]. There are two
main reasons for such high performance of DL in image recognition: (a) the features to
be extracted are determined by learning rather than heuristically, and (b) the introduction
of deeper layers in the network allows for more flexible modeling of highly nonlinear
problems [7]. Because of these features, CNNs have been widely applied to general
object detection models, including many geographic object detection models for satellite
images [4].
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However, DL models are faced with the so-called “black box” problem. The DL
models have difficulty in interpreting the features used to make the inferences. The model’s
features are essential for the inference, and the difficulty in interpreting them is practically
problematic and highly controversial. The General Data Protection Regulation (GDPR),
presented by the EU in 2018, clearly states that service providers are responsible for
protecting users’ rights and ensuring appropriate interventions for data-based decisions [8].
The Defense Advanced Research Projects Agency (DARPA) is actively investing in the
research and development of artificial intelligence (AI) that humans can understand and
trust, such as the explainable artificial intelligence (XAI) project [9]. Considering that
the analysis results of earth-observation data are often used as the evidence for public
decision-making, such as urban planning and environmental monitoring, it is necessary to
indicate the model’s features as the basis for model inference. Another issue owing to the
same reason is that it is difficult to explicitly formulate policies and criteria for improving
the models. To formulate these policies and criteria appropriately, efficient training of the
models is required. Particularly for object detection model training, the cost of creating
training data of object classes and regions is high; therefore, it is necessary to ensure an
efficient performance by training the models with the minimum possible amount of data.
Thus, the black-box problem of DL poses several issues in the application of object detection
models to satellite images.

Research on XAI, which guarantees the interpretability of machine-learning models
including DL, and that of input–output relationships, has been conducted to address these
problems. In general, there is a trade-off between the interpretability of the inference of
a machine-learning model and its general performance; it is difficult to achieve both [10].
A group of methods called feature attribution (FA) methods has been proposed to obtain
the attribution of input features to the output of machine-learning models [11]. FA is an
indicator that indicates the basis for an inference result of a model by approximating the
model to make it easy to interpret, and it can be calculated without changing the model
architecture. In the FA for DL, the most common method is to calculate the attribution
of each input feature by computing the gradient of the input to the output [12]. Because
simple gradients enhance the noise, several improvement methods have been proposed
to reduce it [13–20]. However, most applications of FA to such DL models are limited to
the simple visualization of the feature attribution. In addition, FA applications are for
classifier models; there are few models to which the FA is applied for object detection.
Gudovskiy et al. [21] applied the FA to Single-Shot Detector (SSD) and calculated the FA
for each super-pixel defined by region segmentation to reduce noise and computational
complexity. It is only applied as a visualization index, and there are challenges in its
applicability when a detection target is a small object in the image, or the image texture is
complex, for example, vehicles in satellite images.

Following the above background, we propose novel FA-based methods for basis
visualization, model evaluation, and regularization for DL-based object detection models
for satellite images. For this, the super-pixel-wise FA, presented in Gudovskiy et al. [21], is
insufficient because the image texture is often complicated, and the target ground objects
may appear small in the images. The proposed method sets the input feature to be the
target of FA to each pixel of the image and calculates the pixel-wise FA. We also propose a
method that uses FA as a qualitative basis indicator and for quantitative model evaluation
and regularization. In object detection models, the object region to be detected corresponds
to the feature region. The model should focus on the feature region. Accordingly, it is
suggested that it is possible to quantitatively evaluate if the model focuses on the features
from object regions and FA.

The attribution to features that should not be based on inference can be calculated,
suggesting that the regularization term can be set to reduce the magnitude of this attribution.
Attention mechanisms, which incorporate a structure that selectively learns the features
to be focused on the model, are often used to improve the performance of DL models.
It has also been proposed to use the saliency map of features of interest in the attention
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mechanism as the inference basis for the model [22]; however, this method requires changes
to the architecture of the inference model itself. FA can be obtained without making any
changes to the architecture of the inference model. Therefore, it is expected to have the
advantage of identifying features of interest and feeding them back to the learning process
without changing the architecture of the inference model.

Furthermore, FA can be used as an indicator for selecting additional training data. The
learning framework for efficiently selecting additional training data is one of the methods
of active learning. Active learning methods have been actively studied in recent years
because the amount of data required for training increases with the advancement of DL
models. However, there are few data selection methods based on FA.

The contributions of this paper can be summarized as follows:

1. We present an integrated model improvement framework based on FA as a first work.
The entire framework has a model-agnostic property since we use model-agnostic FA.
This framework is applicable to any object detection model.

2. A novel approach using pixel-wise FA for the basis visualization of DL-based object
detection models in satellite images, in which texture is often complicated, and the
target objects may be small, is proposed.

3. A new metric for quantitatively evaluating models is developed using FA and infor-
mation on object regions (bounding box) of training data. Accordingly, a quantitative
evaluation can be performed to check if the model focuses on the valuable features.
Existing metrics such as precision and recall can evaluate models only based on
the model’s output, but the proposed metric can evaluate models based on focused
input features.

4. A regularization term that acts to reduce the FA of features that should not contribute
to inference is formulated to feed the FA back for learning without changing the
model architecture.

5. A novel data selection approach is formulated by using FA to quantify the degree to
which model inference is based on the valuable features of unknown training data.
The proposed method can be applied to any object detection model.

Experimental results validate the effectiveness of the proposed methods for basis visu-
alization and model evaluation. Furthermore, the results suggest that the model with the
regularization method can avoid overtraining and achieve significant performance, and the
data selection method allows for the efficient selection of new training data. These methods
for model evaluation, regularization, and data selection are regarded as explicit criteria to
improve object detection models. For more details on the implementation and experiments,
please refer to our GitHub (https://github.com/hiroki-kawauchi/SHAPObjectDetection,
accessed on 16 April 2022).

The rest of this paper is organized as follows: Section 2 briefly introduces FA methods
and object detection models of satellite imagery. The details of the proposed methods are
presented in Section 3. Section 4 describes the experimental results and presents a detailed
discussion. Section 5 concludes the paper.

2. Related Work
2.1. Feature Attribution Methods

This brief review discusses FA methods for DL models and DL-based object detection
models. A more general overview of FA can be found in [10,23].

2.1.1. Feature Attribution Methods for Deep Learning Models

When the inputs of a DL model are x = [x1, . . . , xN ] ∈ RN , and the outputs are
f (x) = [S1(x), . . . , SC(x)] (where C is the dimensionality of the output), FA is a method for
determining the attribution

Rc = [Rc
1, . . . , Rc

N ] ∈ RN (1)

https://github.com/hiroki-kawauchi/SHAPObjectDetection
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of each input feature xi to an output f (x), where Rc
i is the FA of xi to Sc(x). Methods

based on forward propagation of perturbations [19,20] and on backpropagation [13–20]
have been proposed as FA methods for DL. The methods based on forward propagation
of perturbations directly calculate the attribution of input features by removing, masking,
or modifying some of the input features (adding perturbations); performing the forward
propagation on the new input; and measuring the difference from the actual output. These
methods can directly estimate the marginal effects of features; however, they tend to be
computationally expensive. Therefore, methods based on backpropagation, which are more
advantageous in terms of the computational complexity, have become the mainstream.

The backpropagation-based methods obtain a saliency map of input-feature attribu-
tions by back-propagating the gradient from the output to the input space; their basic
framework was proposed in [12]. In this framework, referring to the weight vector in
the linear-regression model, which can be interpreted as the importance vector for the
corresponding feature, the explanation model:

f (x) ≈ wTx + b (2)

is defined for the output f (x) of a nonlinear deep-learning model. To calculate the weight
vector w, the first-order Taylor series expansion of the input vector x of the output f (x) is
used, and the gradient

w =
∂ f (x)

∂x

∣∣∣∣
x=x0

(3)

(or its absolute value or square) is defined as the importance. Back propagation-based
methods can compute the attribution of all input features in a single propagation of
the network. However, it has been established that simply using the gradient as the
importance may lead to inaccurate feature attribution calculation of the model due to
nonlinear saturation or discontinuous or negative gradients [14]. Therefore, methods such
as gradient * input [15], LRP (Layer-wise Relevance Propagation) [13], DeepLIFT [16], and
IG (Integrated Gradients) [18] have been proposed to partially address such problems while
allowing for an increase in computational complexity. The gradient * input method was
proposed to alleviate the above problem by multiplying the input by the gradient. The IG
method sets an arbitrary baseline x̄ for the input and multiplies the Riemann integral along
the linear path from x̄ to x to the original feature x. In particular, this method theoretically
satisfies the properties that FA should satisfy—sensitivity, implementation invariance,
linearity, symmetry, and completeness [18]. Ribeiro et al. [24] proposed LIME as a unified
method of FA for machine-learning models, including deep-learning models.

Lundberg and Lee [11] demonstrated that FAs, such as LRP, DeepLIFT, IG, and LIME,
could be understood in a unified framework called additive feature attribution methods.
They proposed the SHAP values, an additive feature attribution method that supports
the Shapley value in cooperative game theory. Due to reliance on game theory, SHAP
values guarantee the following specific important properties: local accuracy, missingness,
and consistency in explanations. Because it is difficult to calculate the exact SHAP values,
several methods have been proposed to estimate them according to the models. As an
approximation to the SHAP value, Lundberg and Lee [11] proposed Gradient SHAP.
Gradient SHAP computes the SHAP value by suppressing noise using SmoothGrad [25]
while using IG as a base. SmoothGrad smooths the input image by generating samples
with Gaussian noise added to the input image of the model, and then takes the average
of the FAs calculated from these samples as the final FA. In IG, noise is generated because
the path integral is linear. In contrast, Gradient SHAP ensures the nonlinearity of the path
by taking random points on the path and averaging their outputs, and further suppresses
the noise by SmoothGrad. Gradient SHAP is easy to implement and can compute the
SHAP value with less noise and lower computation than IG. Based on these points, we
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use Gradient SHAP as FA in this work. Lundberg and Lee [11] only tested the validity of
SHAP values as a basis for image classification models and not for object detection models.

2.1.2. Feature Attribution Methods for Object Detection Models

In the study of explainability of DL-based object detection models, several methods
other than FA have also been proposed [22,26]. However, FA is the most common because
theoretical analyses, such as SHAP values, have improved. Gudovskiy et al. [21] proposed
an E2X framework using an IG-based designed SHAP estimator as FA and applied it to
SSD trained on the VOC07+12 dataset [27].

Gudovskiy et al. [21] pointed out that noise increases in IG owing to the strong
assumption of independence of features, and the following method is adopted in E2X to
suppress the noise. In E2X, the image is divided into super-pixels by region segmentation,
and each super-pixel is treated as an input feature. It averages out the noise in each
pixel and suppresses the noise during visualization. Furthermore, E2X relaxes the above
assumption by changing the Riemann integral of the linear path of IG to random sampling.
Although E2X achieves effective visualization with less noise, it has several problems. First,
there is no logical relationship between this super-pixel segmentation algorithm and SSD.
Second, there are challenges in its applicability when a detection target is a small object
in the image, or the image texture is complex, for example, in remote sensing images.
Furthermore, in E2X, FA is not used as an indicator for model evaluation, regularization, or
data selection.

2.2. Object Detection in Satellite Imagery

In recent years, numerous object detection approaches have been studied to detect
various geospatial objects by the earth-observation community. Many of these works are
based on DL-based object detection methods proposed by the computer-vision community.
Generally, the existing DL-based object detection methods can be divided into two streams
based on whether or not to generate region proposals [28]. The two streams are region
proposal-based methods and regression-based methods. Region proposal-based methods
consist of two stages for object detection. The first generates a series of candidate-region
proposals that may contain objects. The second stage aims to classify the candidate-region
proposals into object classes or backgrounds and adjusts the coordinates of the bounding
boxes. Regression-based methods simplify the detection process into a regression prob-
lem. Compared with the region proposal-based methods, these methods are considerably
simpler and computationally more efficient. Although region proposal-based methods
have been used in most studies by the earth-observation community, some recent studies
have been based on regression-based methods [4]. Regardless of whether the method is
regression-based or region proposal-based, if it is an end-to-end DL-based model, it is easy
to obtain FA using backpropagation calculation. Therefore, FA is a versatile method to
ensure the explainability of DL-based object detection models for many geographic objects.
In addition, the cost of creating annotation data for geographic objects is high, and there is
a need for a framework for efficient learning with fewer images.

3. Method

We propose methods for visualizing the basis of inference, model evaluation, reg-
ularization, and data selection based on pixel-wise FA, as shown in Figure 1. For the
above-mentioned reasons, Gradient SHAP is used as the FA. These methods can be applied
to any DL-based geographic object detection model because Gradient SHAP can be applied
to any DL model and is simple to implement. In Section 3.1, we outline the computation
of FA by SHAP. Subsequently, the four methods for visualization of the basis of inference,
evaluation, regularization, and data selection are described in Sections 3.2–3.5, respectively.
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Figure 1. Overview of the proposed methods for visualizing the basis of inference, model evaluation,
regularization, and data selection based on pixel-wise FA.

3.1. Outline of the Computation of FA by SHAP

In the proposed method, SHAP is used to obtain FA. SHAP assumes that, in the
neighborhood of an input x = [x1, . . . , xN ] ∈ RN , the output f (x) = [ f1(x), . . . , fC(x)] ∈ RC

can be approximated as g(z) = [g1(z), . . . , gC(z)], where z is a binary vector {0, 1}N . SHAP
uses the framework of additive feature attribution, and gc(z) is represented by the following
linear function

gc(z) = Rc
0 +

N

∑
i=1

Rc
i zi, (4)

where Rc
0 is constant, and Rc

i is the FA of zi to gc(z) (approximately corresponding to the
FA of xi to fc(x)). According to cooperative game theory, the additive feature attribution
is uniquely determined and called the Shapley value. The additive feature attribution
satisfies the three desirable properties of FA, namely, local accuracy, missingness, and
consistency. However, owing to the high computational complexity of the exact solution,
we use Gradient SHAP, which is an approximate SHAP value for the DL model proposed
by Lundberg and Lee [11]. Gradient SHAP is a back-propagation-based method; the
explanation model is defined in Equations (2) and (3). An explanation model is one of the
linear additive models, as shown in Equation (4). The method of calculating the Gradient
SHAP is described in detail as follows: first, we generate n samples of the input image x
with Gaussian noise. Next, a random point on the path from the baseline x̄ to each sample is
taken, and the gradients at these points are calculated. Finally, the average of these gradient
values is calculated as FA. Thus, the Gradient SHAP for a feature xi is calculated as:

Rc
i = (xi − x̄i) ·

1
n

n

∑
j=1

∂ fc(x)
∂(xi)

∣∣∣∣∣
x=x̄+ε(x+δ−x̄)

, (5)

where ε and δ are sampled from the uniform distribution U
(
0, σ2) and normal distribution

N (0, 1), respectively. Gradient SHAP can efficiently calculate noise-suppressed FA, even for
the DL models, with strong nonlinearity by sampling and smoothing in the neighborhood
of an input.

3.2. Visualization of the Basis of Inference

We propose a method to visualize the basis for inferring geographic object detection
models using FA. In general, the outputs of an object detection model are position informa-
tion, the existence probability of an object, and class probability. The existence probability
or class probability of an object are set as the target of the FA calculation. Because this
work focuses on remote-sensing images, in which texture is often complicated, and the
target objects may be small, and each pixel of the image is assumed to be an input feature
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of Gradient SHAP. The FA calculation outputs a two-dimensional saliency map that is the
same size as the original image. However, if each image pixel is set as an input feature,
the noise becomes more intense, resulting in a salient map with low visibility; therefore,
the distributions of positive and negative components are separated before visualizing
Gradient SHAP. This visualization of the saliency map allows for the visualization of the
basis for the inference of geographic object detection models.

3.3. Evaluation of Learning

In object detection models, the object region to be detected corresponds to the feature
region that the model needs to focus on. Accordingly, it is suggested that, from the object
regions and FA, it is possible to quantitatively evaluate if the model focuses on the features
that need to be focused on. In detail, the saliency map calculated by Gradient SHAP is
aggregated and indexed in units of bounding boxes of the ground truth (GT). A bounding
box is a rectangle that indicates the object’s detected region in the object detection model.
The pixels inside the bounding box of the GT are considered to be features that contribute
positively to the output, and aggregating by the bounding box can also suppress the effect
of noise in the Gradient SHAP for each pixel. Figure 2 shows a conceptual diagram of the
method for the evaluation of learning.

Figure 2. Conceptual diagram of the method for the evaluation of learning. The background image
illustrates the saliency map of FA.

By comparing this metric at different learning steps, we can quantitatively assess
whether the model focuses on the valuable features. Since this cannot be evaluated with
existing metrics such as precision and recall, models based on unreasonable features could
not be excluded only by evaluation with existing indices. Accordingly, this metric should
be helpful for reasonable model improvements. However, Gradient SHAP has the property
of completeness, which means that the sum of the attributions of a specific input x, given
a particular baseline x̄, is equal to the difference in the outputs of the model when they
are used as inputs, i.e., ∑N

i=1 Rc
i (x) = f (x)− f (x̄). This property is helpful for FA scaling.

However, if the values of the network outputs are different at each stage of learning, the
sum of the FAs are different and cannot be compared; therefore, normalization is required.
This study standardized the FA to make it a comparable learning metric. A quantitative
evaluation can be formulated with the indicator to evaluate if the model focuses on the
valuable features. The evaluation metrics for learning with FA are expressed as follows:

µinbbox =
1
ns

∑
i∈S

(
Rc

i − µall

σall

)

σinbbox =

√√√√ 1
ns

∑
i∈S

{(
Rc

i − µall

σall

)
− µinbbox

}2

,

(6)

where µall and σall are the sample mean and standard deviation of all Rc
i , respectively, S

is the index set of features inside the GT bounding box, and nS is the number of elements
in S.
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3.4. Regularization

The same framework as for the evaluation method can be applied for regularization.
The attribution of features that should not be based on inference can be calculated, sug-
gesting that a regularization term can be set to reduce the magnitude of this attribution.
Because features outside the bounding box should not contribute positively to the output,
the model is regularized by imposing penalties on features that have positive SHAP values
outside the bounding box of the GT. Figure 3 shows a conceptual diagram of the method
for the regularization.

Figure 3. Conceptual diagram of the method for the regularization. The background image illustrates
the saliency map of FA.

Specifically, we set the error function Ltotal, which is the error function of the original
model Lmodel, plus the regularization term LSHAP, as

Ltotal = Lmodel + λSHAPLSHAP

LSHAP =

{
1
ns

∑
i∈S

(
Rc

i − µall

σall

)}2

,
(7)

where λSHAP is a hyperparameter, S is the index set of features with positive SHAP values
outside the bounding box, and nS is the number of elements in S. FA can be obtained
without making any changes to the architecture of the inference model; therefore, it is
expected to have the advantage of being able to identify the features of interest and feed
them back to the learning process without changing the architecture of the inference model.

The detailed mechanism of this regularization term is described below. Gradient SHAP
defines an explanation model, as shown in Equation (2). For calculating w, the first-order
Taylor-series expansion of x of the output f (x) is used, and the gradient is defined as FA.
Gradient SHAP uses the product of the gradient and the input, and the regularization term
restricts the value of this gradient. This means that it regularizes the weight w in the linear
explanation model, which corresponds to Lasso regression in the linear-regression model
because we use the L2 norm. This regularization of the weight vector corresponding to
each feature is expected to prevent overfitting and improve the generalization performance.
Typical model-agnostic regularization methods for DL include Weight Decay and Dropout,
which correspond to L2 regularization. However, these regularization methods regularize
the neural network weights equally. For efficient regularization, weights corresponding to
features that should not be focused on should be regularized; by using FA, we can identify
features that should not be focused on and regularize the weight vector.

3.5. Data Selection

Furthermore, FA can be used as an indicator for selecting additional training data.
The learning framework to efficiently select the additional training data is one of the
methods of active learning, which has been actively studied in recent years because the
data required for training have been increasing with the advancement of DL models.
Many methods have been proposed in the framework of active learning to select data for
annotation from unlabeled data sets. One of the effective methods of active learning is
uncertainty sampling. This method assigns GT labels to the samples that are ambiguous
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inference results. By assigning labels to such samples, a discriminator can be trained
to correctly discriminate the complex samples near the discrimination boundary [29,30].
The Least-Confidence method (LC) is typically used as a measure of the ambiguity of
the inferred results; LC defines the sample with the lowest inferred class probability as
the most ambiguous sample. However, LC cannot account for cases where the model is
focusing on features that should not be focused on. Therefore, we propose a method that
can take into account data that are not focused on reasonable features by using FA. We
consider samples that are difficult to be inferred based on valuable features to be samples
with significant uncertainty. Such samples can be identified by comparing the proposed
evaluation metric. Similar to the evaluation method for learning, when the FA aggregated
in the bounding box is small, the data are difficult to infer based on the valuable features.
However, because there are no annotated data, these data cannot be aggregated in the GT
bounding box. Therefore, the output label of the inference of the initial model is defined
as a pseudolabel, and the FAs are aggregated in that bounding box. The formulation is
the same as in Equation (6), except for the use of pseudolabels. The datasets with small
values for this indicator are annotated preferentially. In remote sensing images, the priority
of such annotations becomes particularly problematic when selecting cross-city datasets,
where the model trained in one city is subsequently trained in another city to improve
its generalization performance. We use the proposed method as a metric to select the
training dataset of the city that will improve the generalization performance the most from
image datasets of multiple cities. The proposed method described above allows for efficient
learning with little annotation data. Figure 4 shows a conceptual diagram of the method
for data selection.

Figure 4. Conceptual diagram of the method for the data selection. The background image illustrates
the saliency map of FA.

4. Experiments and Discussion

In this experiment, we validate the proposed methods. These were developed for
object detection models for small objects in satellite images with complex textures by
applying them to the problem of vehicle detection in the satellite images. The details of the
experiment and the discussion of the results are described below.

4.1. Datasets

Various datasets are now available for models to detect vehicles in remote sensing im-
ages, such as satellite and aerial images [31]. Among these datasets, the COWC dataset [32]
(https://gdo152.llnl.gov/cowc/, accessed on 16 April 2022) with the multi-city dataset is
used in this experiment. To validate the regularization and data selection methods that
reduce overfitting and enable learning with less data, it is necessary to apply them to real
problems in object detection models for remote-sensing images. Since overfitting and data
selection are particularly problematic in training and preparing the annotated data on
cross-city datasets, we use the COWC dataset, which is appropriate for such problem set-
tings. The COWC dataset contains aerial images with a resolution of 15 cm ground sample
distance (GSD), which is twice as good as WorldView-3, widely used commercial satellite

https://gdo152.llnl.gov/cowc/
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imagery. Therefore, images were downsized to 30 cm GSD using Bicubic interpolation.
Because the 32,716 cars in the annotated images of the dataset were annotated as points,
the size of the GT bounding box for object detection was kept constant at 20 pixels (6 m)
squared. Each image was divided into 416 × 416 pixels. Among the COWC dataset, the
four distinct locations with three-band RGB images are Potsdam, Selwyn, Toronto, and
Utah. The dataset of Utah (1266 images with 19,807 cars) was used to provide baseline
model training and validation datasets (80% and 20%, respectively). Because the images of
other cities differ significantly from the Utah images in terms of the background texture,
they were used as test data to examine the change in generalization performance when
regularization and data selection methods were applied.

4.2. Implementation Details

In this experiment, we used YOLOv3 [33] and Mask R-CNN [34], popular regression-
based and region proposal-based object detection models, respectively [35]. YOLOv3 inputs
an RGB image and outputs a bounding box, object confidence (objectness score), and object
class probability for each grid that divides the image. In addition, YOLOv3 uses a structure
called Feature Pyramid Network for multi-scale estimation, and the output is calculated
at each of the three scales. Mask R-CNN inputs an RGB image and outputs a bounding
box and corresponding object class probability. To compute the gradient SHAP, we need
to target a 1D output; therefore, we set the class probability of each object as a target and
computed the FA for each pixel of the input. For computing the Gradient SHAP, we used
Captum, a model interpretability and understanding library for PyTorch.

As backbone networks, we used Darknet53 [33] for YOLOv3 and Resnet101 [36] for
Mask R-CNN. The weights of the original YOLOv3 and Mask R-CNN pre-trained on
the COCO dataset [37] were used as the initial values. The training of models in this
experiment meant fine-tuning on the COWC dataset. We trained up to 2000 epochs, where
four images constitute one mini-batch, and 16 mini-batches constitute one epoch. Stochastic
gradient descent (SGD) was used to update the parameters, and the momentum was set
to 0.9. The weight decay was also set, and its hyperparameter was set to 0.0005. Random
placing, exposure, saturation, hue, and left–right flipping were used as data augmentation
techniques. The learning-rate parameter lr was set to 0.001, and its scheduler was set
to (Epoch/100)4 × lr up to 100 epochs, lr between 100 and 1500 epochs, and lr/10 after
1500 epochs. We ignored the outputs with class scores below 0.7 during training and 0.5
during inference. All experiments were implemented using the PyTorch framework and
run on an NVIDIA TITAN RTX GPU(24 GB memory) completed in 3–6 h. For other detailed
libraries, algorithms, and settings, please refer to our GitHub mentioned above.

Figure 5 shows some results of training the baseline models under the above training
setup. We classified an output as true positive (TP) when the IoU (Intersection over Union)
of the bounding boxes of the output and the corresponding GT was more significant than
0.50, false positive (FP) when no such GT existed, false negative (FN) when no such output
existed, and true negative (TN) when both did not exist. As for performance indicators for
object detection, we used the commonly used Precision (P), Recall (R), F1-score, and Average
Precision (AP). P and R are computed as TP/(TP + FP) and TP/(TP + FN), respectively.
Moreover, the F1-score and AP can be computed as follows:

F1 =
2 ∗ P ∗ R
(P + R)

(8)

AP =
n

∑
k=1

P(k)∆R(k), (9)

where P(k) and ∆R(k) = R(k)− R(k− 1) denote Precision and Recall difference, respec-
tively, when using the k-th threshold. The model’s performance metrics, Precision, Recall,
F1-score, and AP, described below, are listed in Table 1.
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Figure 5. The detection results of the baseline model trained on the Utah city dataset. The top, middle,
and bottom rows show the bounding boxes of GT, YOLOv3, and Mask R-CNN outputs, respectively.

Table 1. Precision, Recall, F1-score, and AP of the baseline model.

Precision Recall F1-Score AP

YOLOv3 0.9491 0.7357 0.8289 0.7084
Mask R-CNN 0.9559 0.7801 0.8591 0.7567

4.3. Visualization of the Basis of Inference

We tested the effectiveness of Gradient SHAP as a visualization metric by applying it
to the benchmark YOLOv3. As detailed settings of Gradient SHAP, baselines were set to
black images, the number of samples was set to 10, and the standard deviation of noise was
set to (max−min)× 0.1. Figure 6 shows the visualization results of positive outputs using
pixel-wise Gradient SHAP. For visualization, the FA of each pixel is normalized from −1
to 1. For the output of TP, we can see that the FA on and around the detected object region
is significant, indicating that the inference was based on the features on and around the
object region. In the case of FP, FA around the target-object region is significant; however,
the distribution of FA is more long-tailed than that of TP. Judging from the inference results
alone, the model seems to have responded strongly only to the wrong object region; however,
judging from the FA, it can be interpreted that the model inferred FP as a result of focusing
on a large region around the wrong object and making uncertain inferences. We compare the
proposed pixel-wise visualization with E2X [21], an existing superpixel-wise SHAP-based
visualization method. Figure 7 shows the visualization results of positive outputs using E2X.
These experimental results show that super-pixel-wise visualization is insufficient for object
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detection in images with detailed textures, such as satellite images, and that pixel-wise
visualization is valid. Thus, it was confirmed that it is possible to visualize the basis of
inferring the outputs of TP and FP as positive by the proposed method.

Figure 6. Visualization results of positive outputs using pixel-wise Gradient SHAP. The left image
shows the inferred results, the center image shows the distribution of positive values, and the right
image shows the negative values.
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Figure 7. Visualization results of positive outputs using E2X [21]. The left image shows the inferred
results, the center image shows the distribution of positive values, and the right image shows the
negative values.
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In the case of FN, the target output of FA was the one that had the most significant
IoU with the GT among the outputs that were not positive. Figure 8 demonstrates that, in
the case of FN, the FA is also more significant around the object of interest but distributed
over a slightly wider area. As described above, it was confirmed that the basis of inference
can be visualized by creating a saliency map with FA for each model’s output. On the
other hand, as shown in Figures 6 and 8, the positive and negative values of FA are mixed,
resulting in a rather noisy distribution. This is because the FA input is set to each image
pixel. It increases the effect of the nonlinearity of the DL model. This is not a significant
problem when illustrating the region of the basis of model inference because our interest
in the interpretability of object detection models lies in knowing which part of the model
inference it is based on. However, it requires consideration when calculating the indices for
evaluation of learning, regularization, and data selection.

Figure 8. Visualization results of false-negative outputs by pixel-wise Gradient SHAP. The left image
shows the inferred results, the center image shows the distribution of positive values, and the right
image shows negative values.

4.4. Evaluation of Learning

Next, the validity of the method for evaluating learning using FA was tested on
YOLOv3. The detailed settings of Gradient SHAP are the same as in the previous section.
By performing the evaluation using the evaluation metrics defined in Equation (6) and
the visualization using the FA saliency map at each stage of learning, we can identify
whether the progress of learning in a way that focuses on the correct features can be
verified. Because the FA is using a bounding box, the noise effect due to the nonlinearity of
the model can be suppressed, as mentioned in the previous section. Figure 9 and Table 2
show the saliency map, performance evaluation, and evaluation metrics of FA for 100, 200,
1000, and 2000 epochs.
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Table 2. µinbbox, σinbbox, Precision, Recall, F1-score, and AP of the training YOLOv3.

Epoch µinbbox σinbbox Precision Recall F1-Score AP

100 10.58 12.85 0.9414 0.5338 0.6813 0.5071
200 13.99 11.80 0.9625 0.6837 0.7995 0.6665

1000 12.83 10.23 0.9249 0.7229 0.8115 0.6768
2000 14.12 11.02 0.9491 0.7357 0.8289 0.7084

Figure 9. Visualization results of positive outputs by pixel-wise Gradient SHAP at each step.

The evaluation metrics are calculated with the FAs for all TPs, aggregating them in the
bounding box of the corresponding GT and calculating the mean and variance. According
to the evaluation metrics, the overall trend is that the mean within the bounding box
increases, and the standard deviation decreases as the learning progresses. The features
with positive FA are concentrated inside the bounding box; the same is observed in the
saliency maps. This indicates that the features’ FA increases as learning progresses and that
the learning is progressing correctly. As a result, the effectiveness of the learning evaluation
method was confirmed, and it was confirmed that it is possible to evaluate whether or not
the correct features are being focused on, which was not possible in the previous metrics.

4.5. Regularization

Next, we describe the validation of our method that uses FA to regularize the models.
In this section, we compare the generalization performance of YOLOv3 and Mask R-CNN
concerning Precision, Recall, F1-score, and AP when the regularization term is added to
the training set. Moreover, we also compare if the correct features are focused on using the
learning evaluation metrics. The results for generalization performance are listed in Table 3.
In this case, the data from a different city rather than the training data were used as the test
data. The number of data in each dataset for the index calculation was set to 50 to match
the lowest number in the Potsdam dataset. In addition, Table 3 also lists the evaluation
metrics of learning calculated using the same data.
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Table 3. µinbbox, σinbbox, Precision, Recall, F1-score, and AP of the regularized model on each dataset.

YOLOv3

Without Regularization

Data µinbbox σinbbox Precision Recall F1-Score AP

Utah (Vali-
dation) 14.12 11.02 0.9491 0.7357 0.8289 0.7084

Potsdam 8.861 9.013 0.9420 0.4022 0.5637 0.3893
Selwyn 7.424 10.57 0.8732 0.2358 0.3713 0.2155
Toronto 10.32 10.11 0.9645 0.4545 0.6189 0.4399

With Regularization

Utah (Vali-
dation) 14.87 11.93 0.9587 0.7609 0.8485 0.7380

Potsdam 8.199 10.10 0.9557 0.4270 0.5902 0.4153
Selwyn 8.833 9.923 0.8997 0.2720 0.4177 0.2505
Toronto 11.12 10.42 0.9648 0.4680 0.6303 0.4521

Mask R-CNN

Without Regularization

Utah (Vali-
dation) 15.57 10.96 0.9559 0.7801 0.8591 0.7567

Potsdam 9.329 8.333 0.9512 0.4450 0.6063 0.4258
Selwyn 7.011 9.521 0.8821 0.2600 0.4016 0.2502
Toronto 9.989 10.37 0.9714 0.4929 0.6540 0.4858

With Regularization

Utah (Vali-
dation) 16.66 12.24 0.9667 0.8059 0.8790 0.7878

Potsdam 9.465 10.54 0.9501 0.4897 0.6463 0.4667
Selwyn 7.232 9.873 0.8994 0.2928 0.4418 0.2708
Toronto 8.954 9.889 0.9659 0.5493 0.7003 0.5248

According to Precision, Recall, F1-score, and AP, the values increase for all cities and
all metrics, indicating that the regularization term improves the generalization perfor-
mance for the validation data and the test data. As for the learning metrics, the value
of µinbbox increases for all the metrics except Potsdam of YOLOv3 and Toronto of Mask
R-CNN, indicating that the regularization term has helped the model focus on more correct
features. From these experimental results, it can be inferred that the model learned to
correctly recognize the features of the object itself that need to be focused on by the model
regularization method, which reduced the focus on the background and improved the
generalization performance of the model. This result confirms the effectiveness of the
regularization method using FA. Additionally, the experimental results demonstrate that
the regularization method is effective for both regression-based and region proposal-based
object detection models. It suggests that this method improves any type of object detection
model. We also validated the effectiveness of the proposed method by comparing it to
existing regularization methods (Weight Decay and Dropout). Table 4 shows the results.
This experiment is conducted on the Utah (Validation) dataset. Experimental results show
that the proposed method has a greater regularization effect than Dropout and comparable
to that of Weight Decay, confirming its effectiveness.
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Table 4. Precision, Recall, F1-score, and AP of YOLOv3 with each regularization method. This
experiment is conducted on the Utah (Validation) dataset.

Precision Recall F1-Score AP

No
Regularization 0.9491 0.7357 0.8289 0.7084

Weight Decay 0.9576 0.769 0.8530 0.7397
Dropout 0.9502 0.7333 0.8278 0.7095

Ours 0.9587 0.7609 0.8485 0.7380

On the other hand, the proposed method requires multiple backpropagation calcula-
tions to calculate the regularization term; therefore, the drawback of this method is that the
computational cost is relatively high. The average training speed without and with regular-
ization in the YOLOv3 experiment was 12.1 epoch/min and 5.56 epoch/min, respectively.
The Gradient SHAP calculation requires another backpropagation calculation. Thus, the
training time with regularization is about twice as long as that without regularization. Since
the increase in training time with regularization depends on the time of backpropagation
computation, the increase can be reduced by using a lightweight model, for example, [38].
Note that changing the running time was only related to training time, so the training time
increases, but the inference time does not.

4.6. Data Selection

Finally, we describe the validation of our method for selecting the data to be annotated
using FA. In our experiments, we used the dataset that had already been annotated with
GTs; however, the GT information was not used in the data selection. First, we prepared
the baseline model trained on the Utah dataset, described in Section 4.2. Subsequently,
we calculated the value of µinbbox and σinbbox for ten randomly sampled images from each
unknown city dataset (Potsdam, Toronto, Selwyn), using the outputs of the baseline model
with the highest objectness score as pseudolabels. The dataset with the most petite µinbbox
or the most significant σinbbox in Equation (6) should be considered to have the highest
uncertainty. Subsequently, we retrained the model on each city dataset and compared the
generalization performances of these models. For the test dataset, we generated a dataset
of the four cities. Each was sampled equally from images not used for training from each
city. For comparison, we also applied the Least-Confidence method (LC) of Uncertainty
Sampling to our experimental data. Here, as in the experiments with the proposed method,
we calculated the class scores for each of the ten randomly sampled images and summed
them over the ten images. Based on the LC concept, the sample set with the smallest value
of this sum can be considered to improve performance the most. Table 5 demonstrates the
performance of each retrained model on the four-city dataset.

From Table 5, in the order of Toronto, Potsdam, and Selwyn, µinbbox decreased, and in
the same order, the AP increased after retraining. This suggests that it is possible to improve
the generalization performance by choosing a dataset where the uncertainty is estimated
to be more significant from the pseudolabel and FA. On the other hand, no reasonable
relationship is observed between σinbbox and AP. Therefore, it can be inferred that µinbbox
is suitable as an indicator for the uncertainty sampling based on FA. The LC values also
decrease in the same order as µinbbox, but the difference in LC values is small because
the difference in inferred class probabilities is small. It is suggested that the proposed
method, i.e., µinbbox, is clearer and more effective as a data selection criterion. As with the
regularization method, it is suggested that this data selection method improves any type of
object detection model. Thus, the method’s effectiveness for selecting data for annotation
using FA was confirmed.
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Table 5. µinbbox, σinbbox, Least-confidence score, Precision, Recall, F1-score, and AP of each model on
the four-city dataset. µinbbox, σinbbox, and Least-confidence score were calculated on each unknown
city dataset BEFORE retraining.

YOLOv3

Data µinbbox σinbbox LC Precision Recall F1-Score AP

Baseline
(Utah) - - - 0.9422 0.4901 0.6448 0.4823

Potsdam 7.911 11.08 8.111 0.9586 0.5238 0.6774 0.5125
Selwyn 5.111 8.033 7.525 0.9392 0.5444 0.6893 0.5298
Toronto 9.667 11.01 8.333 0.9410 0.5143 0.6651 0.4995

Mask R-CNN

Baseline
(Utah) - - - 0.9512 0.5234 0.6752 0.5150

Potsdam 6.855 8.987 8.556 0.9603 0.5488 0.6984 0.5322
Selwyn 5.333 9.467 7.896 0.9495 0.5521 0.6982 0.5467
Toronto 8.024 5.355 8.736 0.9482 0.5393 0.6875 0.5222

4.7. Future Extension

These experimental results verify the validity of the proposed methods for basis
visualization, model evaluation, regularization, and data selection. Although we conducted
our experiments on YOLOv3 and Mask R-CNN, the experimental results suggest that the
proposed method is helpful for various object detection models, including state-of-arts
models, due to the model-agnostic property of our approach. One of the future tasks is
to develop a method that can be applied to higher-dimensional input data than that of
this study. For example, the higher the input-data dimensionality, such as hyperspectral
data or point clouds, the more serious the problem of interpretability and overfitting.
Therefore, the impact of the proposed methods will be significant during such problems.
In addition, although the proposed method was designed for vehicle detection models
with one class of output and an approximately constant scale, the methods can be extended
to multi-class and multi-scale object detection models. The Gradient SHAP used in this
study requires multiple backpropagation calculations. It makes the computational cost
relatively high, which is a problem, especially for the regularization method. The problem
becomes serious when the input is high-dimensional, or the output is multi-class or multi-
scale. This problem can be mitigated by using a model with a simple architecture or by
using an FA calculation method that is computationally less expensive. By extending the
methods to these problems, we expect to develop more generic and interpretable object
detection methods.

5. Conclusions

In this paper, we proposed a novel approach using pixel-wise FA for basis visual-
ization of DL-based object detection models of satellite images, in which texture is often
complicated, and the target objects may be small. We also proposed new methods for model
evaluation, regularization, and data selection, based on FA. A new metric for quantitatively
evaluating models was developed using FA and the information on object regions of GT.
Furthermore, we formulated a regularization term that reduces the FA of features that
should not contribute to inference. We formulated a novel data selection approach based on
FA to quantify how model inference is based on valuable features of unknown training data.
The experimental results verify the validity of the proposed methods for basis visualization
and model evaluation, regularization, and data selection.
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