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Abstract: An approach to developing a blended satellite-rainfall dataset over Australia that could
be suitable for operational use is presented. In this study, Global Satellite Mapping of Precipitation
(GSMaP) satellite precipitation estimates were blended with station-based rain gauge data over
Australia, using operational station data that has not been harnessed by other blended products. A
two-step method was utilized. First, GSMaP satellite precipitation estimates were adjusted using rain
gauge data through multiplicative ratios that were gridded using ordinary kriging. This step resulted
in reducing dry biases, especially over topography. The adjusted GSMaP data was then blended
with the Australian Gridded Climate Dataset (AGCD) rainfall analysis, an operational station-based
gridded rain gauge dataset, using an inverse error variance weighting method to further remove
biases. A validation that was performed using a 20-year range (2001 to 2020) showed the proposed
approach was successful; the resulting blended dataset displayed superior performance compared to
other non-gauge-based datasets with respect to stations as well as displaying more realistic patterns
of rainfall than the AGCD in areas with no rain gauges. The average mean absolute error (MAE)
against station data was reduced from 0.89 to 0.31. The greatest bias reductions were obtained for
extreme precipitation totals and over mountainous regions, provided sufficient rain gauge availability.
The newly produced dataset supported the identification of a general positive bias in the AGCD over
the north-west interior of Australia.

Keywords: Australian rainfall; satellite rainfall; satellite rainfall blending; rainfall estimation

1. Introduction

Precipitation is vital for life on earth and is a fundamental part of Earth’s water cycle
and climate system [1]. Measuring variations in its intensity, duration and frequency are
vital to enabling efficient water management and water-related disaster responses.

The traditional method of measuring rainfall involves in-situ rain gauges. These
provide a direct measurement of surface rainfall but also possess certain limitations. Being
point-based measurements, rain gauges may not be able to provide an accurate spatial
representation of rainfall over an area. Gridded rainfall analyses can be generated from
point-based station data by applying objective analysis methods, but their accuracy is
hindered in poorly observed areas [2,3]. This is a concern, as rain gauge installation can
be economically or physically unfeasible over large parts of the world, including over
oceans [4].

In areas where rain gauge density is low, the ability to accurately assess rainfall
is impacted, especially as rainfall is a variable that can exhibit a high degree of spatial
variation [3]. Furthermore, rain gauge estimates are also subject to instrumental errors [5]
as well as sampling biases [6–8].

Satellites provide an efficient method for uniformly assessing rainfall over a quasi-
global domain [9]. Modern methods use microwave sensors to detect the emission and
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scattering of radiation from hydrometeors and link these to rain rates through forward
model calculations [10]. Contemporary satellite products have exhibited good performance,
rivalling or outperforming climate reanalyses under certain conditions [11]. However,
significant biases still exist due to the nature of the sampling process and the algorithms
used [12].

By blending in station rain gauge data, these biases can be reduced, especially where
station density is high. The blending of station data with satellite precipitation estimates has
been attempted previously using a variety of techniques. These include the use of ordinary
kriging [13], Bayesian kriging [14], co-kriging [15] and conditional merging by kriging [16],
and in most cases such techniques has been effective in improving accuracy [14–17]. How-
ever, the majority of these studies have been completed for other regions, with few being
specific to Australia.

Focusing specifically on Australia, [18] attempted to blend TRMM-3B42RT satellite
and rain gauge data using a variety of kriging methods and found the value of blending
was generally difficult to discern. However, there was improvement where the gauge
density was approximately less than 4 gauges per 10,000 km2, and the uncertainty of
the analysis decreased with the inclusion of satellite data. On a much smaller scale, [17]
evaluated blending techniques based on kriging, inverse-distance weighting and a radial
basis function over two Australian river catchments. The kriging-based methods performed
the best, and the use of elevation as an additional variable through co-kriging was valuable.

Currently, the only blended satellite rainfall dataset provided by the World Meteo-
rological Organization’s (WMO) Space-based Weather and Climate Extremes Monitoring
(SWCEM) is the blended version of Climate Prediction Center Morphing technique dataset
(CMORPH-BLD), which uses the CMORPH satellite dataset as a first guess and then blends
in observations from the CPC Unified Gauge-Based Analysis of Global Daily Precipita-
tion (CPC Unified) dataset through optimal interpolation [19]. An improvement from
this technique was identified for Australia but not for Papua New Guinea (PNG), where
CMORPH-BLD was actually slightly inferior to GSMaP, an unblended dataset [20]. A
likely reason for this disparity is the lack of stations over PNG in the CPC Unified dataset,
especially compared to over Australia, a difference likely in the order of two magnitudes or
more [19].

This motivated us to undertake a study to investigate if the SWCEM datasets can be
improved if a denser rain gauge network is used for blending. The Bureau of Meteorology
(BOM) Australian Data Archive for Meteorology (ADAM) contains over 6700 Bureau-
maintained stations that meet the International Civil Aviation Organization (ICAO) stan-
dards, with the CPC Unified dataset only including a subset of these stations. The main
objective of this study was to explore the blending of SWCEM datasets using a fuller set of
station data over Australia, with a focus on operational usage. An important aspect of the
technique in this study is that it will be developed to be modular and open-source, meaning
it can be used with any set of satellite and station data, and thereby by users globally.
The blended product, along with validation will be conducted on a monthly timescale,
reflecting its intended use for climatological applications such as drought monitoring. An
in-depth validation on the newly produced dataset is needed to determine whether the
procedure has value.

Although the blending method developed draws from existing techniques, the novelty
of this study lies in its focus over Australia, along with its use of operational station data
that has not been harnessed by other blended products. The significance of these points is
described below:

1. The utilization of operational station data, along with the use of the Australian Grid-
ded Climate Data (AGCD) rainfall analysis, has great potential to create improved
satellite-based rainfall datasets for operational use in Australia. This would be par-
ticularly useful for poorly observed areas such as over the interior of the nation,
where further improvements in accuracy would require uneconomical investments in
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expanding the rain gauge network [3]. Existing blended datasets have not made full
use of this operational data.

2. As the first blended dataset to take advantage of the full set of operational station
data available in Australia, its increased accuracy over stations will allow AGCD to
be better validated, providing original insights into its weaknesses over gauge-sparse
regions. This knowledge is important for future advancements in AGCD.

3. A focus on the Australian domain allows for a more complete and thorough anal-
ysis of the blending technique, including the identification of spatial performance
patterns specific to the region. Few studies have focused on Australia, and those
which have did not use the full operational set of data or were not completed on a
nation-wide basis.

The paper is organized as follows. Section 2 outlines the materials and methods em-
ployed in the study. Validation results are presented in Section 3, with Section 4 discussing
the benefits and deficiencies of the method in addition to future research directions.

2. Materials and Methods
2.1. Study Area

Figure 1 shows a map of the domain used in this research along with a depiction of its
topography and coverage by BOM rain gauges. The continental landmass is relatively flat
with the main orographic feature being the Great Dividing Range (GDR), a mountain range
that runs from the north-eastern tip of Queensland, along the east coast of Australia and
into central Victoria.
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Figure 1. Map of study area showing ETOPO1 elevation as well as typical rain gauge coverage.
Location of the rain gauge stations are depicted as blue dots. Note the significant topography along
the east coast of Australia; this is the GDR with the light gray outline depicting its approximate extent.

The number of rain gauges available for reporting varies from month to month due
to factors such as changes in historical availability (e.g., from installation and decommis-
sioning) and data quality control. The stations from December 2020 were depicted as this
month contained the fewest number of reporting stations (4346) across the study period.

Of particular significance are the very low rain gauge densities over central parts
of the country. The topography is derived from NOAA’s ETOPO1 bedrock dataset, a
1-arc minute global relief model that provides information on land topography and ocean
bathymetry [21].

Australia possesses a range of climate zones [22]. Northern parts of the country
experience a tropical climate where most of the rainfall is driven by the monsoon during
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the wet season (October to April), with little rainfall occurring during the other months
of the year [23]. Large parts of the interior are considered arid, generally observing very
little rainfall. Proximity to moisture sources is low, with the main source of rainfall being
north-west cloud bands, which leads to rainfall being highly variable and temporally
concentrated [23]. Temperate regions exist to the south-east and south-west, where the
majority of the rainfall occurs during the southern wet season (April to November) and
is associated with frontal systems [23]. Increased proximity to the coast and elevation
tend to be positively correlated to rainfall. The greatest rainfall amounts are usually
observed over western Tasmania (largely produced by frontal systems and enhanced by
orography) and the northern tropical coasts (associated with tropical convective modes
over the wet season).

2.2. Datasets

The satellite dataset used for developing the adjusted and blended products in this
study is GSMaP Gauge-Adjusted Near Real Time, hereafter referred to as GSMaP, which is
produced by the Japan Aerospace Exploration Agency (JAXA) [24]. The version used is
Version 6, as this is the version available to the SWCEM program. In our earlier studies,
we demonstrated the better performance of GSMaP compared to CMORPH-CRT in both
Australia and PNG [20,25]. AGCD and MSWEP are used in the correction and blending
techniques. Additionally, two other satellite-based datasets (GSMaP-gauge and CMORPH-
BLD) and a non-satellite-based dataset (ERA5) are included for validation. Details on the
datasets used in this study are presented in Table 1.

Table 1. Details on datasets used in this study. The datasets used as inputs for the final blended
product are shaded.

Dataset Organization Details Resolution

GSMaP Gauge-adjusted
near-real-time product
(GSMaP-Gauge-NRT),
Version 6 (version 1.2)

JAXA [24,26]

Cloud-motion advection of rain rates,
gauge-calibrated through matching daily values to

CPC Unified Analysis over the last 30 days.
Simplified algorithm compared to standard GSMaP

to increase latency.

0.1◦ × 0.1◦, 1 h

AGCD, Version 2 BOM [27]

Optimal interpolation—station climatology is used
as a background field onto which a weighted sum of
station observations are incremented, with weights

defined through minimising error variance.

0.01◦ × 0.01◦, 1 month

MSWEP—Version 2.8 GloH2O [28]
Weighted average of a selection of gauge, reanalysis

and satellite datasets. Weights are based on the
correlations of each gridded dataset to rain gauges.

0.1◦ × 0.1◦, 3 h

GSMaP-gauge, Version 6
(version 6.4133)

JAXA
[26]

Standard GSMaP blended with CPC Unified
Analysis data using optimal interpolation. 0.1◦ × 0.1◦, 1 h

CMORPH-BLD, SWCEM
version NOAA [19] Gauge-corrected CMORPH blended with CPC

Unified Analysis data using optimal interpolation. 0.25◦ × 0.25◦, 1 h

ERA5, Main version,
single level (surface) ECMWF [29]

Assimilation of observations into Integrated Forecast
System (IFS), rainfall, uses rainfall data from

satellites and radars and thus it is largely
independent of rain gauge data, though there is a
second-order inclusion from how rain gauges are

used for calibrating satellite and Stage-IV radar data.

31 km × 31 km, 1 h

Rain gauge data from
ADAM BOM [30]

Record of rainfall data from over 16,000 locations in
Australia since the mid-1800s. Quality flag of -6 used
for this study meaning ‘not suspect’. Suspicious data

is checked statistically and physically.

Number of stations varied
from 4346 to 6664 for this

study period, daily

An understanding of the biases of these datasets is pertinent for understanding the
results generated in this study. Previous studies have identified systematic biases that exist
in satellite estimates [31,32]. Their performance can be severely reduced over orography,
with the underestimation of rainfall occurring at higher elevations [33,34]. This underes-
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timation is compounded by the poor detection of snowfall and contamination from cold
surfaces, particularly during winter [35]. Underestimation is also common for very low
and very high rainfall rates [36,37]. The former is due to the signal from these rates being
weak as well as a prevalent mode for these rainfall rates being from warm low clouds
which are more difficult for satellites to detect [9]. The latter can be related to how the
development of convective rainfall may not be well-captured between satellite passes [9].
Satellite retrieval algorithms can also encounter difficulties around large waterbodies due
to confusion about the surface types, leading to overestimation in terms of the precipitation
amount and frequency [38–40].

Additionally, gridded datasets smooth the data, resulting in the overestimation (un-
derestimation) of very low (high) totals when compared to point-based totals [41]. This
point is also relevant to the non-satellite-based datasets.

Reanalysis data has been documented to underestimate high totals and overestimate
the frequency and volume of low totals [42,43]. Over complex terrain in Turkey, [44] found
contemporary satellite products had an overall wet bias but for wet regions, a dry bias was
observed. ERA5 displayed a consistent wet bias, and all products reduced in performance
as the slope of the region increased [44].

The greatest control on accuracy for gauge-based datasets such as AGCD is the density
of the underlying rain gauge network [45]. AGCD can be expected to have its greatest
biases over the gauge sparse parts of Australia’s interior. MSWEP is another dataset used
in this study. Since it is formed from satellite, gauge and reanalysis data, it will inherit
the biases from its input data as well as possess an additional uncertainty imposed by the
blending process. In a global comparison to a variety of contemporary rainfall datasets,
MSWEP V2 was found to demonstrate the highest skill, being able to take advantage of the
respective strengths of each data source [43].

2.3. Adjusted and Blended GSMaP Development Methods

The method used to develop a monthly GSMaP-AGCD blended product was in-
spired by earlier studies that employed a two-step process [16,19,46]. The steps involved
are outlined:

1. Reducing systematic bias and random errors in the satellite dataset through an ad-
justment based on ADAM gauge data. For this product, this bias correction was
performed by attempting to match the GSMaP dataset more closely to the rain gauge
data using corrective multiplicative ratios. A similar method of bias correction was
performed by [16,46–48], with [48] finding it to be the most performant scheme,
outperforming elevation zone correction, a power transform based correction, distri-
bution transformation and empirical quantile mapping. Linear correction via kriging
was also used by [13] over Pakistan, outperforming other schemes based on inverse-
distance weighting, polynomial interpolations and radial basis functions. Over a river
catchment in Australia, [49] compared linear correction using ordinary kriging against
inverse-distance weighting and kriging with genetic programming, and found that
ordinary kriging performed the best.

a. The value of the satellite dataset at the location of each rain gauge was obtained
by bilinearly interpolating the gridded values to the coordinates of the station.
Note that the interpolation of a gridded value to a point still refers to an areal
average, just centered upon that point.

b. A set of multiplicative ratios was then calculated by dividing the station values
by the interpolated satellite values. The set of ratios was then clipped to be
between 0.1 and 10, limiting the adjustment to an order of magnitude. A total
of 74,711 out of 1,400,754 values were clipped, or around 5.3%.

c. This set was then converted into a grid using ordinary kriging. Kriging is an
interpolation method that estimates an unknown value based on the statistical
relationship of known points in a local neighborhood [50]. Ordinary kriging is
the most widely used form and assumes a constant mean and variogram across
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the whole domain [50]. The unknown value is a weighted average of known
values, with the weights being determined from a set of equations constrained
by minimizing the estimation variance, in conjunction with the condition that
the weights must sum to one [50]. The Python module PyKrige was used,
with multiple variogram models tested—linear, power, Gaussian, spherical and
exponential—with the exponential model being chosen as it demonstrated the
best performance (see Appendix A). A resolution of 0.25◦ was used instead of
the native 0.1◦ of GSMaP due to computing memory restrictions on our research
environment. A higher resolution variant could be produced for operational
usage though preliminary validation did not show much improvement when
testing the finer resolution (the metrics scores improved by less than 2%). The
pseudo-inverse matrix was solved to improve stability. It was computed using
the singular value decomposition method, which was faster than via the least-
squares solution. The result of kriging was a grid of multiplicative ratios to
apply to the GSMaP dataset to form the adjusted GSMaP dataset, hereafter
known as GSMaP-adj.

2. Blending GSMaP-adj with AGCD, with the intention of more heavily utilizing GSMaP-
adj when and where it was superior to the gauge-based analysis. To achieve this,
inverse-variance weighting was employed.

a. GSMaP-adj was bilinearly interpolated to 0.1◦ to match AGCD. The error vari-
ances from both GSMaP-adj and AGCD (using MSWEP as truth) were calculated
across the entire domain for each month. This allowed both spatial and seasonal
variations to be accounted for. The difference between the variances of the two
datasets is shown in Appendix B. Even though MSWEP has its own biases, its
inclusion of gauge, satellite and reanalysis data, along with its homogeneity
over space, is valuable as a reference dataset for inverse-variance weighting,
with the process combining the accuracies of GSMaP-adj and AGCD with the
spatial pattern of MSWEP.

b. The merged product, hereafter known as GSMaP-bld, is then a weighted aver-
age of GSMaP-adj and AGCD, with the weights being determined by the size
of the error variances with respect to each other. The larger the error variance,
the lesser the weight that dataset has on the weighted average. It is represented
in Equation (1):

xGB =

xGA

σ2
GA

+ xA
σ2

A

1
σ2

GA
+ 1

σ2
GA

(1)

where σ2 is the error variance, x is the value at a grid cell and the subscripts GB,
GA and A refer to the datasets GSMaP-bld, GSMaP-adj and AGCD, respectively.

A visualization of the entire process is shown in Figure 2.

2.4. Validation Method

Both point-based and gridded validation were performed on a monthly basis from
2001 to 2020 across the Australian domain. For the point-based validation, all the datasets
were compared to rain gauge values from the ADAM database. To obtain a value from
a gridded dataset that corresponded to a point, the data from the gridded dataset were
bilinearly interpolated to a point that corresponded to the location of a rain gauge. All
the datasets introduced in Section 2.2 (GSMaP, GSMaP-adj, GSMaP-bld, AGCD, ERA5,
MSWEP and CMORPH-BLD) were validated. Additionally, a blended GSMaP that used
the raw GSMaP rather than the adjusted GSMaP (hereafter termed GSMaP-raw-bld) was
also evaluated to determine if the adjustment process was a valuable step.
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Following the results of the point validation, GSMaP, GSMaP-adj, GSMaP-bld, ERA5
and MSWEP were compared to AGCD for the gridded validation. The gridded validation
was performed over the Australian domain, specifically over the longitudes of 108◦E to
156◦E and the latitudes of 45◦S to 9◦S, with a land-only mask applied. These datasets were
bilinearly interpolated to a resolution of 0.1◦. This was the most common native resolution
across the datasets. Only land values across the domain were compared with the Python
module Basemap used to mask the data over the ocean.

The validation metrics used to assess bias were the mean bias (MB), mean absolute
error (MAE) and the root-mean-squared-error (RMSE). The MAE is less sensitive than the
RMSE to outliers. The MAE was also divided by the mean rainfall to obtain the normalized
mean absolute error (Norm. MAE), which removed the effect of larger rainfall values
leading to larger errors. To assess correlation, the Pearson correlation coefficient (R) was
used. To assess the similarity in spread across the datasets, the differences in the standard
deviation, the mean and the coefficient of variation (CV), which is the ratio of the standard
deviation to the mean of the dataset, were analyzed. The equations for the metrics are
summarized in Table 2, with Ei representing the estimated value at a point or grid box i, Oi
being the value taken as truth and N being the number of samples (the number of stations
or grid cells).

Table 2. Summary of equations for the metrics used.

Metric Equation Range Perfect Value

Mean bias (MB) 1
N

N
∑

i=1
(Ei − Oi)

[0, ∞) 0

Mean absolute error (MAE) 1
N

N
∑

i=1

∣∣∣∣Ei − Oi

∣∣∣∣ [0, ∞) 0

Normalized mean absolute
error

1
N

∑N
i=1

∣∣∣∣∣Ei−Oi

∣∣∣∣∣
1
N ∑N

i=1 Ei

[0, ∞) 0

Root-mean-square error
(RMSE)

√
1
N

N
∑

i=1
(Ei − Oi)

2 [0, ∞) 0

Pearson’s correlation
coefficient (R)

∑N
i=1
[(

Ei − E
)(

Oi − O
)]√

∑N
i=1
(
Ei − E

)2
√

∑N
i=1
(
Oi − O

)2
[0, 1] 1

Additionally, hit rates on the success of the datasets reproducing the top and bottom
quintiles of the truth dataset were also calculated to assess their performance in capturing
extremes. The percentile rank of each grid point in AGCD was computed for all the
months. If that data point was within the top (bottom) quintile, the percentile rank of the
corresponding point in the other datasets was compared with a hit being registered if its
percentile rank was also in the top (bottom) quintile.

All the datasets used in this study contain a degree of station influence (apart from
ERA5). Ideally, a form of split-sample validation should have been performed to remove



Remote Sens. 2022, 14, 1903 8 of 24

the inflation of skill due to the repeat of stations in both the datasets being validated and
the validation set itself. This would have resulted in an inflated representation of out-of-
sample accuracy. However, as some of the comparison datasets were generated by different
organizations, there was no way to regenerate these datasets using just a subset of the
stations, and split-sample validation could not be performed. Finding a reference dataset
which has a reasonable level of accuracy but which also does not contain station influence
is difficult and will be addressed in a future study.

These metrics were calculated monthly for all land grid cells or station points in the
domain. A bulk average for these metrics was then calculated by averaging over the
validation period. When the results were categorized by seasons, the austral seasons
of summer (December, January and February, or DJF), autumn (March, April and May,
or MAM), winter (June, July and August, or JJA) and spring (September, October and
November, or SON) were used.

3. Results
3.1. Point Validation

The results of the general comparison of satellite precipitation estimates to station rain
gauge data are shown in Figure 3.
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Figure 3. Validation metrics using gauge data at point locations as truth. Mean bias (MB), root-mean-
squared-error (RMSE), mean absolute error (MAE), normalized mean absolute error (Norm. MAE)
and Pearson’s correlation coefficient (R) are shown. The units of MB, RMSE and MAE are in mm/day,
while Norm. MAE and R are unitless. A perfect score for each metric would be 0, except for R where
1 is perfect.

The adjustment and blending process appears to have improved the accuracy of
GSMaP. For example, the normalized MAE of GSMaP-adj (0.22) was less than half of the
raw version (0.56), with GSMaP-bld exhibiting an even further reduction (0.17). Both the ad-
justed and blended versions were better than ERA5 (0.41). Such substantial improvements
can be expected, as the stations used for adjustment were also those used in the validation.

Using unadjusted GSMaP in the blending process (GSMaP-raw-bld) yielded a sig-
nificantly worse performance across all the bias metrics than when adjusted GSMaP was
used. For example, the RMSE increased by around 33% when unadjusted GSMaP was used
instead of GSMaP-adj. This indicates that the adjustment process step had merit and was
a critical part of the process. GSMaP-raw-bld had the greatest MB among all the datasets
evaluated, with a tendency to underestimate totals. Linear correlation was the only metric
where performance was similar. This is logical, as although the blending process is able to
improve spatial correlation through the correct depiction of a greater amount of rainfall
area, a negative bias present in GSMaP was not corrected for and thus transferred to the
blended product as well. Additionally, mismatches in the positions of small, localized
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elevated totals (hereafter referred to as ‘bullseyes’) between GSMaP and AGCD meant that
using unadjusted GSMaP in the blending process resulted in a tendency for these elevated
totals to be reduced in magnitude. In some cases, the reduction was severe enough that
the ‘bullseyes’ no longer represented an obvious departure from their surrounding values.
Adjusted GSMaP was spatially more aligned with AGCD making this issue much less
likely to occur when it was used in blending.

GSMaP gauge also demonstrated subpar performance. Inspection of the data reveals
that it lacked the ability to represent fine-scale features, an effect that may be due to the
incorporation of the CPC Unified Analysis, which is a coarser dataset with a resolution of 0.5◦.
The blending process employed by JAXA to create this product also resulted in a negative
bias that was a consequence of both an increase in the number of no-rainfall grid cells as well
as a general decrease in the magnitude of rainfall for cells where rainfall was present.

CMORPH-BLD performed better than GSMaP and ERA5, indicating its blending tech-
nique had merit in matching gauge totals. However, its performance was still worse than
GSMaP-bld, most likely in part due to GSMaP-bld incorporating a greater number of stations.

MSWEP demonstrated a similar performance to GSMaP-bld, having only marginally
worse metrics. This should be considered a very good result, as the number of stations
used to create MSWEP, and which are subsequently reused in this validation, was likely to
be smaller than the number used in GSMaP-bld and AGCD.

Both GSMaP-raw-bld and GSMaP gauge only demonstrated a slightly better, if not a
similar, performance compared to GSMaP. As their purpose was to act as a reference for the
adjustment and blending process, they were excluded from further analysis. Given MSWEP
outperformed CMORPH-BLD, it was selected as the satellite-based reference dataset for
the subsequent analysis.

3.2. Gridded Validation
3.2.1. General Analysis

The results of the general validation of GSMaP, GSMaP-adj, GSMaP-bld, ERA5 and
MSWEP against AGCD are shown in Figure 4.
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Figure 4. Gridded comparison metrics. Mean bias (MB), root-mean-squared-error (RMSE), mean
absolute error (MAE), normalized mean absolute error (Norm. MAE) and Pearson Correlation
coefficient are shown. The units of MB, RMSE and MAE are in mm/day, while Norm. MAE and R
are unitless.

AGCD was chosen as truth as it is the operational dataset being used by the BOM
in addition to it having performed the best in the point validation. It should be noted
that AGCD has its own biases, especially in gauge-sparse regions. Additionally, the use of
AGCD both as truth as well as a component in GSMaP-bld means that GSMaP-bld could
benefit from in-sample skill inflation. These two factors were addressed in Section 2.4.
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GSMaP-adj showed an inferior MB and RMSE compared to GSMaP, with the MB
indicating a larger overall positive bias. However, the MAE, normalized MAE and R
were superior. The discrepancy stems from how the adjustment process over-adjusted a
relatively small number of totals, especially over western Tasmania. These errors in the
large totals result in the RMSE showing a different trend to the MAE and the normalized
MAE, as the RMSE is more sensitive to large errors. The adjustment process also involved
a greater degree of upwards adjustment than downwards adjustment. GSMaP-adj showed
comparable performance to ERA5, while GSMaP-bld clearly showed superior performance.
MSWEP performed well relatively again.

Compared to when the station gauges were used as truth, all the metrics indicated an
improvement in performance for the blending process, with the magnitude of improvement
being more significant than in the point validation. For example, the MAE and normalized
MAE of GSMaP-bld decreased from 0.3 mm/day and 0.17 to 0.10 mm/day and 0.09,
respectively. This was expected, as comparing the satellite datasets which are gridded to
another gridded dataset greatly reduces the effect of spatial representation errors.

3.2.2. Intensity Analysis

The residuals of the datasets against AGCD were plotted with respect to the gauge
totals and shown in Figure 5.
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Figure 5. Residuals of the gridded comparison datasets using AGCD as truth against gauge totals.
The shading indicates the number of points in a pixel, allowing the density of the scatterplot to be
appreciated. The cube root scale is used.

In line with the general validation, the size of the residuals was smaller when AGCD
was used as the truth compared to station data (residuals against station data not shown
for brevity). The negative (positive) bias for low (high) totals was much less, though it still
existed. This bias was the most noticeable in GSMaP and ERA5, where the underestimation
of high-end totals was particularly significant. The over-adjustment in GSMaP-adj was
also clearly displayed. GSMaP-bld was the most consistent across the intensities, followed
by MSWEP, though both still underestimated high-end totals. The adjustment process



Remote Sens. 2022, 14, 1903 11 of 24

was most effective in reducing high-end bias, while the blending process was effective in
reducing bias across all intensities.

3.2.3. Spatial and Seasonal Analysis

The mean bias against AGCD for the datasets across the seasons is spatially depicted
in Figure 6.

Remote Sens. 2022, 14 12 of 25 
 

 

 

Figure 6. Mean bias of datasets categorized by seasons using AGCD as truth. 

GSMaP had a wet bias along the far northern tropical coastline of Australia but 

generally a dry bias elsewhere, especially over inland northern Australia, along the GDR 

and western Tasmania. ERA5 had a dry bias over inland northern Australia and western 

Tasmania, but a wet bias along the GDR. The bias over western Tasmania was likely a 

result of lower rain gauge density combined with the high heterogeneity of rainfall due 

to orography over this region. MSWEP had reduced biases over Tasmania but retained a 

wet bias over the GDR and a dry bias over the tropical north-west of Australia. Spring 

showed the greatest difference in bias to the other seasons, a result of rainfall being sea-

sonally lower. 

The adjustment process was effective in reducing the dry bias in GSMaP, but 

over-adjustment resulted in the area and magnitude of the wet bias increasing, particu-

larly during the wet season in northern Australia, where rainfall totals are naturally 

substantial. The greatest improvement was over Western Tasmania, where the bias was 

reduced across all seasons. The improvement was also significant over the south-east and 

east coast. The adjustment process appears to be more useful where stations exist. This 

Figure 6. Mean bias of datasets categorized by seasons using AGCD as truth.

GSMaP had a wet bias along the far northern tropical coastline of Australia but
generally a dry bias elsewhere, especially over inland northern Australia, along the GDR
and western Tasmania. ERA5 had a dry bias over inland northern Australia and western
Tasmania, but a wet bias along the GDR. The bias over western Tasmania was likely a
result of lower rain gauge density combined with the high heterogeneity of rainfall due to
orography over this region. MSWEP had reduced biases over Tasmania but retained a wet
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bias over the GDR and a dry bias over the tropical north-west of Australia. Spring showed
the greatest difference in bias to the other seasons, a result of rainfall being seasonally lower.

The adjustment process was effective in reducing the dry bias in GSMaP, but over-
adjustment resulted in the area and magnitude of the wet bias increasing, particularly
during the wet season in northern Australia, where rainfall totals are naturally substantial.
The greatest improvement was over Western Tasmania, where the bias was reduced across
all seasons. The improvement was also significant over the south-east and east coast. The
adjustment process appears to be more useful where stations exist. This can explain the
more notable reduction in errors along the densely populated eastern coastlines.

The blending process improved upon GSMaP-adj by reducing much of both the
induced and existing wet biases, especially over the northern coastline. The dry bias over
Western Tasmania was also improved. It should be noted that because AGCD was used to
create GSMaP-bld, a lower bias compared to the other datasets would be expected, given
its shared use as truth. However, there are differences over inland northern Australia and
particularly a wet bias patch in winter over the inland north-east of Western Australia. This
wet bias patch is notable as it is likely related to GSMaP-bld representing missed rainfall
over this region during winter.

Figure 7 shows the MB, MAE and R over the individual months of the verification period.
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GSMaP-bld was again consistently the best performing dataset. ERA5 and GSMaP
showed a more pronounced negative bias during the wet season. A 12-month rolling
average is also depicted, showing that the performance of the datasets does not demonstrate
a noticeable trend over the validation period.

In general, GSMaP-bld performed the best, followed by MSWEP, then by either GSMaP-
adj or ERA5, with GSMaP performing the worse. There were exceptions to this, such as in
January 2003, when an over-adjustment of rainfall over northern Australia led to GSMaP-adj
being the worst dataset by far for that month.

The variance in R for GSMaP and GSMaP-adj was due to the degree of disagreement
in rainfall areas with AGCD. This occurred when GSMaP contains areas of low rainfall
where the AGCD dataset had none. The adjustment process cannot void these rainfall
areas, as it only adjusts the magnitude and, in some cases, even upwards. As a result,
the correlation statistic of GSMaP and GSMaP-adj was low in these months, but since the
rainfall totals in these areas were small, the error was not substantial and the bias statistics
were more acceptable.

3.2.4. Spread and Extremes Analysis

The CV of all the datasets along with the bottom and top quintile hit rates of the
datasets are shown in Figure 8.
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Figure 8. Spread metrics for the datasets used in the gridded comparison.

The adjustment and blending process were effective in increasing the similarity of
the bottom and top quintiles to AGCD. ERA5 has a lower quintile 1 hit rate than GSMaP,
suggesting it did not capture the occurrence of low-end totals as well as GSMaP. This could
be from spurious precipitation. All the datasets had higher CVs than AGCD, though the
difference in the case of GSMaP-bld was only slight.

ERA5 had the largest CV, which is related to it having the lowest mean across the
datasets along with a low standard deviation. MSWEP had relatively good quintile hit
rates but a relatively high difference in the CV due to a low mean and standard deviation.
Consideration of these findings suggests both MSWEP and ERA5 have distributions that are
too tight. GSMaP-adj had a greater difference in the CV than GSMaP-bld as well, stemming
from high-end totals being exaggerated in comparison to the rest of the population. GSMaP-
bld appeared to have the closest statistics to AGCD in terms of quintile matching and spread,
as indicated by the CV.

3.3. Visual Inspection Comparison

The data for all the months were plotted and inspected visually to identify patterns of
interest. This section presents the driest and wettest months from the validation period as
well as the selection of a month that illustrates a recurring pattern evident across the period.
The two extreme months were chosen to illustrate two very different rainfall scenarios. The
data visualized is GSMaP, GSMaP-bld, MSWEP and AGCD to demonstrate how the full
process improved the original data as well as how the final blended product compares to
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two other established datasets. Differences against AGCD are presented in Appendix C,
while a comparison of annual averages during the study period is included in Appendix D.
Figure 9 illustrates the totals for September 2018, the driest month in this study period
and the second driest month (and the driest September) since records began in 1900 [51].
Dry conditions for this month were associated with cool sea surface temperatures in the
eastern Indian Ocean, leading to a reduction in available moisture for precipitation over
Australia [51].
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Figure 9. Rainfall totals for GSMaP, GSMaP-bld, MSWEP and AGCD for September 2018.

The datasets had similar patterns of rainfall, with large parts of the country being
dry. The similarity was greater for GSMaP-bld, AGCD and MSWEP. There were also slight
discrepancies with rainfall over central Australia, though these totals were small. MSWEP
possessed some additional rainfall in southern Western Australia, which could be legitimate
given the low rain gauge density over this area. Figure 10 illustrates the totals for March
2011, the wettest month in this study period and the fourth wettest month (and the wettest
March) on record [52]. Increased moisture over Australia was associated with a decaying
La Niña event, with the country being impacted by a very active monsoon trough over
northern Australia and a series of low-pressure troughs over eastern Australia [52].
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Figure 10. Rainfall totals for GSMaP, GSMaP-bld, MSWEP and AGCD during March 2011.

The pattern was again consistent for most parts of the country though there were a few
key differences. The first was over north-eastern Western Australia where GSMaP-bld had
a small strip of rainfall greater than MSWEP or AGCD. It is likely the rainfall in this region
is legitimate but was missed in AGCD as it corresponds to a region that has no nearby rain
gauges. In MSWEP and GSMaP-bld, there was also a notable rainfall ‘bullseye’ around the
junction of Northern Territory, Queensland and South Australia which was not present in
AGCD. This is another region that does not possess rain gauges.

Inspection of all the months strongly reinforces the observation that the greatest value
of GSMaP-bld is obtained when there is significant rainfall over areas where there are no
rain gauges. These scenarios were most common over the interior of Western Australia
and western South Australia, where the rain gauge density is the lowest. The blending
technique was able to capture what appears to be missed rainfall in these areas but was
more effective over the northern interior of Western Australia than the southern interior. As
an example, Figure 11 illustrates this wherein July 2001 a band of increased rainfall over the
northern interior of WA was represented in both GSMaP-bld and MSWEP but not AGCD.
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4. Discussion

The results demonstrated that there are regions where corrected satellite data could
improve a pure station-based analysis and that a product that blended satellites and rain
gauge data could exhibit superior performance to the individual datasets themselves.

The blending process appears to be most beneficial between late austral autumn and
early spring. This is likely in part due to the correction of known deficiencies of satellites
over the austral winter period, including the capturing of rainfall from frontal systems and
low clouds [9], as well as rectifying snow contamination [35]. The fact that the errors in
the blended dataset do not have a distinct seasonality indicates that the blending process
was valuable in eliminating this form of bias which otherwise would have manifested as a
distinct seasonal trend. The residual bias was more likely to be from differences away from
gauges that were not necessarily linked to the seasons.

From a cursory glance, the results of the gridded validation suggested the adjustment
process may not have been effective, as although the MAE decreased and the R increased,
there were also increases in the RMSE and MB. This was due to the over-adjustment
of a relatively small number of high rainfall totals, especially over western Tasmania,
that skewed these bias statistics, even though the overall effect was valuable. The over-
adjustment can be attributed to multiple reasons. The first was that areal averages were
adjusted to point totals. Point totals will generally be greater than their areal averages and
so this adjustment would lead to a positive bias, especially if there are only a few stations
in a grid point. Secondly, the number of stations over which GSMaP had a negative bias
could span a substantial area. This resulted in an indiscriminately widespread upwards
adjustment to totals around these stations, resulting in broad over-adjustment. An example
of this occurred in January 2003 over the northern tropics of Australia.
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Another factor was the appearance of erroneous ‘bullseyes’ artefacts. This occurred
when GSMaP already possessed localized higher areas of rainfall and these ‘bullseyes’ were
surrounded by regions where less rainfall had been detected by the rain gauges relative to
GSMaP. The result of the adjustment process was to increase rainfall over these regions,
leading to the ‘bullseyes’ becoming much larger than the gauge-based datasets as well as
ERA5 and MSWEP. An example of this occurred during March 2009 in Western Australia.

The combination of both of these factors can explain the systematic over-adjustment
of rainfall (both in magnitude and extent) over Western Tasmania, where gauge rainfall is
consistently and significantly greater than GSMaP. Clipping the adjustment ratio to a lower
number should generally improve the adjustment process, though care has to be taken to
ensure appropriate high-end adjustments are still possible.

Even though there are problems with the adjustment process, especially for high-end
totals, the step is still important, as seen by the marked drop in performance of the blended
dataset if the adjustment was not performed as an intermediary step. Nonetheless, the
blending process is critical in further reducing the biases in GSMaP-adj, as well as correcting
any induced artefacts. Ultimately this highlights that the adjustment and raw blending
processes are limited in performance when implemented in isolation but markedly more
robust when they are combined.

Inspection of the rainfall patterns in Section 3.3 revealed the blended dataset has great
value in poorly observed areas where the gauge analysis can commonly miss significant
rainfall due to a complete absence of rain gauges. Northern Western Australia in particular
benefitted from the more realistic pattern depicted in GSMaP-bld. In addition to poorly
observed areas, areas where rainfall has high spatiotemporal variation such over topog-
raphy also greatly improved because of the blending and adjustment processes. GSMaP
severely underestimated rainfall over topography. This is a systematic bias in satellite
rainfall estimates due to the difficulty they have with the detection of the relatively warm
clouds associated with orographic rainfall [34]. The blending process was very valuable in
correcting this effect where there was sufficient rain gauge density, as shown over western
Tasmania. The adjustment process over-adjusted the values, but the blending process
corrected this, as well as existing wet biases over northern Australia, to consistently result
in much more accurate totals.

There were cases where realistic patterns of rainfall in GSMaP were lost due to the
blending process, with the final result looking more akin to AGCD. In some cases, this was
because the rainfall was not replicated in MSWEP (used as the reference in the blending
process) and, consequently, GSMaP-adj was not given a proper weighting. On other
occasions, GSMaP was over-adjusted, and so, when it was compared to MSWEP, its error
variance was high and, accordingly, its weight was low. In terms of poorly observed
areas, this seemed to occur less over northern Western Australia than in other parts of
central Australia.

The north-western part of Western Australia is an area where AGCD is likely to
possess greater error given the reduced rain gauge density, especially inland of the coast.
Compared to the non-gauge-based datasets, AGCD is wetter, which could be a result of
isolated totals over rain gauges being incorrectly interpolated over a broader area. The use
of a climatological floor in AGCD (the background field is floored at 2 mm) [27] could be
another reason why a positive bias is present, especially over areas with climatologically-
low rainfall totals. It is likely to be appropriate if GSMaP-bld could retain lower totals over
this region too, but the blending process removed much of this effect, with only a weak dry
bias remaining.

Alternative adjustment methods can be explored. Quintile-to-quintile matching is em-
ployed in GSMaP and CMORPH to correct biases and would help to remove the incongruity
from the direct matching of areal averages to point totals in the current process [19,26]. If
a more accurate GSMaP-adj can be made, this will yield better weights for it during the
blending process, allowing its advantage over gauge observations to be better exhibited in
poorly observed areas. Another way to provide greater weighting to the satellite datasets in
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poorly observed areas is to directly include gauge density in the weights, such as through
the use of empirical relationships.

Methods of interpolating the point values other than ordinary kriging should also be
investigated. Ordinary kriging assumes a constant mean and variogram across the entire
domain. In reality, these assumptions will not hold in many areas such as where the error
in rainfall is impacted by other spatial influences such as topography.

Future research will investigate other adjustment methods, in addition to alternative
interpolation methods such as other variants of kriging, or optimal interpolation using the
satellite rainfall as a first guess field.

5. Conclusions

Gridded rainfall data provides a spatially consistent representation of rainfall over an
area, but the accuracy of analyses based on rain gauges is reduced over areas with no rain
gauges. In the case of Australia, there are large gaps in the station network over central
Australia, which the operational rainfall analysis AGCD can fail to represent accurately.
In this study, a technique for blending AGCD with GSMaP satellite data using a two-
step approach was developed. The first step corrected GSMaP to rain gauge data using
multiplicative ratios that were converted to a grid using ordinary kriging. The second step
blended the adjusted GSMaP data with AGCD using an inverse error variance weighting
method, with MSWEP used as a reference.

Data validation was performed over 20 years from 2001 to 2020 and the results showed
that the method was successful, creating a dataset that had better accuracy over stations
than other non-gauge-based analyses. The greatest reduction in biases was obtained from
extreme totals and over regions with topography, provided the rain gauge density was
sufficient. Importantly, the blended dataset also had a more realistic representation of
rainfall over data-sparse areas than AGCD. Further research will be valuable in refining
this method with a more effective adjustment scheme being an important objective. One
of the advantages of this method is its transferability to other regions, but its regional
effectiveness cannot be generalized and so its performance in other regions, especially
where the rain gauge density is lower, is also another important future consideration.
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Figure A1. Gridded comparison of different variogram models using AGCD as truth. Mean bias
(MB), root-mean-squared-error (RMSE), mean absolute error (MAE), normalized mean absolute error
(Norm. MAE) and Pearson correlation coefficient (R) are shown. The units of MB, RMSE and MAE
are in mm/day, while Norm. MAE and R are unitless.

The Gaussian model was the worst, followed by the linear and power models. Under
a Gaussian model, the slope of the variogram is less steep near the origin (i.e., the variance
increases slower) than the other models, suggesting a greater degree of continuity and local
correlation which did not seem to be as appropriate for modelling the satellite error as the
other models. Using the spherical and exponential models resulted in the best performance,
with the exponential model displaying the best metrics.

Compared to the spherical model, the exponential model has a steeper slope near the
origin. The spherical model also reaches the sill after a finite range, indicating there is a
distance where the sampled points cease to have an influence while the exponential model
is asymptotic towards the sill. Given the results of the comparison, the exponential model
was chosen for the adjustment process.

Appendix B

Comparison of the error variances for GSMaP-adj and AGCD against MSWEP facil-
itates an analysis of where GSMaP-adj is able to outperform AGCD and to what degree.
Figure A2 shows the difference between the error variance of GSMaP-adj and AGCD
categorized by the months of the year.

It shows that although AGCD was superior to GSMaP-adj in the majority of areas
and times of the year, there were cases where GSMaP-adj exhibited a comparable or even
smaller error variance than AGCD. Many of these patches are over central Australia where
there is low rain gauge density and satellite data is expected to have an advantage over
interpolated gauge data. For example, swathes in eastern Western Australia, northern South
Australia and southern Northern Territory exhibit a lower error variance for GSMaP-adj
compared to AGCD for many months of the year.

During the austral winter months from June to August, GSMaP-adj also had a com-
parable performance to AGCD across large parts of northern Australia. This is likely in
part due to the low rainfall totals experienced in these regions over this period. AGCD
consistently outperformed GSMaP-adj over western Tasmania and there was a large error
in GSMaP-adj over northern Australia during the summer.
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Appendix C

The differences in the monthly totals for September 2018, March 2011 and July 2001
are shown in Figure A3.
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Appendix D

The average annual rainfall over the study period of 2000 to 2001 for GSMaP, GSMaP-
bld, AGCD and MSWEP are visualized for comparison purposes in Figure A4.

Representations of the average annual totals are similar on a large-scale between the
datasets. Key improvements visible in GSMaP-bld over GSMaP are increased rainfall
along the Queensland coast, over the Great Dividing Range and over Western Tasmania, in
addition to a reduction in rainfall over the southeast interior of Western Australia. AGCD
depicts less rainfall than GSMaP-bld over a region in north-west South Australia; this
region has low gauge density, and so it is reasonable to infer that AGCD may be incorrectly
underestimating rainfall over this area.
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