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Abstract: Worldwide, forest fires exert effects on natural ecosystems, contributing to economic/human
losses, health effects, and climate change. Spectral indices are an essential tool for monitoring and
analyzing forest fires. These indices make it possible to evaluate the affected areas and help mitigate
possible future events and reduce damage. The case study addressed in this work corresponds to
the Cerro of the Guadual community of La Carolina parish (Ibarra, Ecuador). This work aims to
evaluate the degree of severity and the recovery of post-fire vegetation, employing the multitemporal
analysis of spectral indices and correlating these with the climatological aspects of the region. The
methodological process was based on (i) background information collection, (ii) remote sensing
data, (iii) spectral index analysis, (iv) multivariate analysis, and (v) a forest fire action plan proposal.
Landsat-8 OLI satellite images were used for multitemporal analysis (2014–2020). Using the dNDVI
index, the fire’s severity was classified as unburned and very low severity in regard to the areas
that did not regenerate post-fire, which represented 10,484.64 ha. In contrast, the areas classified as
high and very high severity represented 5859.06 ha and 2966.98 ha, respectively. In addition, the
dNBR was used to map the burned areas. The high enhanced regrowth zones represented an area of
8017.67 ha, whereas the moderate/high-severity to high-severity zones represented 3083.72 ha and
1233.49 ha, respectively. The areas with a high severity level corresponded to native forests, which are
challenging to recover after fires. These fire severity models were validated with 31 in situ data from
fire-starting points and they presented an accuracy of 99.1% in the high severity category. In addition,
through the application of principal component analysis (PCA) with data from four meteorological
stations in the region, a bimodal behavior was identified corresponding to the climatology of the
area (dry season and rainy season), which is related to the presence of fires (in the dry season). It is
essential to note that after the 2014 fire, locally, rainfall decreased and temperatures increased. Finally,
the proposed action plan for forest fires made it possible to define a safe and effective evacuation
route to reduce the number of victims during future events.

Keywords: normalized difference vegetation index; normalized burn ratio; remote sensing; forest
fire; severity; PCA
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1. Introduction

The human influence on climate change is increasingly well-recognized and one of
its manifestations is the increase in the global average temperature by 0.8 ◦C between
1900 and 2005 [1,2]. The analysis of various climate change indices with precipitation
and temperature data indicates significant warming in the 20th century [3–5]. Modelling
strategies allow the prediction of the possible impacts of climate change on biodiversity [6,7].
General circulation models (GCM) evaluate climate change through the representation of
various terrestrial systems, studying climate change and variability [8–11].

Forest fires contribute to climate change by emitting large amounts of gases and
particles into the atmosphere. In addition, these emissions cause a decrease in air qual-
ity and, consequently, health problems for people [12,13]. Forest fires or vegetation fires
are unique disturbances of the earth system that affect the biosphere, hydrosphere, geo-
sphere, cryosphere and atmosphere [14–16]. Fire contributes between 25% and 35% of
the emissions of carbon dioxide (CO2), carbon monoxide (CO) and methane (CO4) [17,18].
Therefore, fire has become one of the essential climate variables (ECVs) in the study of
climate change [19,20].

Forest fires occur mainly in forests, disturbing biodiversity and species richness [21,22].
Thereby, estimating forest fires’ impacts and their recovery using remote sensing is complex
as the history of fires—in terms of frequency, severity and time since the last fire—is hetero-
geneous [23]. Burned forest areas have patterns of different severity due to topographic,
vegetation and meteorological factors, which can be detected and mapped with satellite
data [24]. For forest fire studies, remote sensing allows the determination of their sever-
ity [25], the plant cover loss [26] and plant communities’ recovery rate [27]. The application
of spectral indices obtained from the different bands of the multispectral image allows the
estimation of the severity of fires [28–30].

Forest fires worldwide are closely monitored and studied. In the United States, warm-
ing trends are related to the increase in the size, frequency and severity of fires [31,32]. In
South Korea, more fires occur during the dry season and are caused mainly by humans [21].
California is one of the leading zones in terms of catastrophic wildfires, with the fires of
recent years representing a burned area of 8.13 × 106 ha [33,34]. In Australia’s 2019–2020
mega-fires, 5.8 × 106 ha of broadleaf forests were burned [35]. In California and western
Nevada, 120 × 106 ha were burned between 1984 and 2006 [36]. The May 2000 fire in Los
Alamos, New Mexico, burned 17,500 ha and 235 structures [37]. In Tasmania, Australia,
the severity and intensity of the 2013 fire lasted 16 days and burned 25,950 ha [38]. In
Argentina, from December 2016 to January 2017, more than 3 × 106 ha of shrubs and
grasslands were burned [39].

In Ecuador, Quito city usually registers forest fires every year, leading the local author-
ities design a prototype wireless sensor network (WSN) [40]. This prototype allows the
detection and monitoring of fires in the Guanguiltagua Park located in the Metropolitan
District of Quito [41,42]. In the Amazon basin, south of Ecuador, anthropogenic forest fires
are the primary source of sulfur and nitrogen compounds, fertilizing the mountainous for-
est [43]. Therefore, this suggests that fire is a disturbance that contributes to the functioning
and biodiversity of this ecosystem [44].

Due to human-induced fires and deforestation, with the downhill displacement of the
upper forest line (UFL) with the subsequent expansion of the Central Valley of Ecuador,
the development of moorland vegetation occurred as a result [45,46]. The limit of the
UFL altitude position between the montane forest and the moor has ecological and social
importance in the region [47]. In Ecuador, from 2016 to 2018, 2684 forest fires affected
48,714.18 ha [48,49]. Among the provinces that have registered the most significant damage
is Imbabura with 1294.04 ha [48], where La Carolina parish is located.

The area of study in this work includes the La Carolina parish, Ibarra canton, where
most of the forest fires occur in indigenous communities, associated with anthropogenic
activities. The inhabitants of the region depend mainly on agriculture, and when they
prepare the land for sowing, they burn the residues that remain from the harvest on the
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land, causing fires [50]. Therefore, it is essential to understand the severity of rural fires to
assess the damage and analyze recovery processes economically and effectively [51,52].

In recent years, the application of satellite images and, specifically, spectral signatures
of the terrain (e.g., vegetation) allows researchers to obtain information on the severity
of fires. According to Veraverbeke and Tran [53,54], the application of spectral indices
allows one to evaluate the severity of fires. Spectral indices are calculated based on spectral
bands from satellite images [28,55]. In addition, these indices have correlation levels
with vegetation biophysical parameters, such as biomass amount, photosynthetic activity,
productivity and water content [56,57].

The correlations between the multitemporal spectral indices allow researchers to es-
timate the fire’s burn severity and the recovery of vegetation [58,59]. There are various
spectral indices, but the most frequently used in fire assessment are the normalized dif-
ference vegetation index (NDVI) and the delta-normalized difference vegetation index
(dNDVI), which are transformations involving a mathematical combination of the digital
levels stored in two or more spectral bands of the same image [60,61]. These indices are
conditioned by changes in the physiological state of plant covers, and their variations are
used in spatio-temporal studies of vegetation behavior [62,63]. Additionally, the normal-
ized burn ratio (NBR) is used to discriminate between burned and unburned areas [64], and
the delta-normalized burnt ratio (dNBR) for mapping fire severity in wooded forests [53].

In this work, we aimed to evaluate the degree of severity and the recovery of post-
fire vegetation in La Carolina parish, through the multitemporal analysis of the spectral
indices NDVI, NBR, dNDVI and dNBR, analyzing the correlation between the severity and
vegetation recovery with the climatological aspects (i.e., rain) of the study area. This work
will analyze the fire of 2 September 2014, which occurred in the dry season and burned
700 ha [65]. Several spectral indices were used to determine the degree of vegetation
damage and its regeneration from the fire event and to provide information on the fire
severity [53,54]. This study was complemented with the application of principal component
analysis (PCA) to understand the rainfall regime behavior based on historical monthly
rainfall data (2000–2016).

2. Geographical Setting

The Guadual community is located in La Carolina rural parish, with a population
of 2739 inhabitants [66], and belongs to the Ibarra canton, Imbabura province (Figure 1).
The natural vegetation cover is threatened by the extraction of wood and the expansion of
agriculture and livestock, and contains several deforested areas [67]. In addition, within the
La Carolina parish is the Carbonería forest, which represents the last remnants of the upper
montane evergreen forest in the northeastern Andes Mountains [68,69]. This ecosystem
constitutes a refuge for various species of flora and fauna. It is also a water source for the
local inhabitants and the people who live in the lowlands. However, the Carbonería is
threatened by agricultural expansion and productive activities [70].

Ibarra canton has an area of 242 km2 and 181,175 inhabitants [71]. According to the
Köppen climate classification, the region has a warm-summer Mediterranean climate [72],
with an elevation of 2225 m.a.s.l. in the Ecuadorian Andes, which provide cooler tempera-
tures and seasonal rain shadow features [73]. During the summer months (June–September),
the precipitation does not exceed 500 mm/month.
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Figure 1. Study area location: (a) La Carolina parish, (b) Ibarra canton and (c) macro-location
in Ecuador.

3. Materials and Methods

The methodology of this work includes four investigation phases (see Figure 2):
(i) background information collection; (ii) remote sensing data; (iii) spectral index analysis,
(iv) multivariate analysis, and (v) forest fire action plan proposal.

Figure 2. Methodological scheme.
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3.1. Background Information Collection

In this phase, study area information was collected, including vegetation cover (in
pre-fire and post-fire scenarios), climate types, isotherms, isohyets and aspects or sun
orientation. This information was taken from the national geoportals of Ecuador, such as
the National Land Information System (SIGTIERRAS); the Military Geographical Institute
(IGM); the National Information System (SNI); and the Ministry of the Environment,
Water and Ecological Transition [74–77]. These data were represented using Geographic
Information Systems (GIS).

3.2. Remote Sensing Data

The satellite images used were obtained from the Landsat-8 Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS), as shown in Table 1. There are frequent clouds in
the region; for that reason, the image search used a percentage cloud cover <25%, from June
to September during the dry season. The images were acquired from the image collection
of the United States Geological Survey (USGS) [78].

Table 1. Remote sensing data.

N◦ Scenario Acquisition Date Remote Sensing Type Sensor

1 Pre-fire 26 June 2014 Landsat 8 OLI-TIRS
2 Post-fire 11 June 2015 Landsat 8 OLI-TIRS
3 Post-fire 25 June 2020 Landsat 8 OLI-TIRS

Note: Operational Land Imager (OLI), Thermal Infrared Sensor (TIRS).

Free-access images from the Landsat were used in this study. Landsat 8 images are
L1TP level (level 1 terrain precision correction), atmospherically corrected, orthorectified
with Universal Transversal Mercator (UTM) projection, a WGS1984 datum/spheroid and
precision greater than 0.8 pixels [79,80]. For the fire severity analysis, the spectral bands
of near-infrared (NIR), shortwave infrared (SWIR-1), and red (R) were used. Additionally,
Landsat 8 includes two Thermal Infrared (TIR) thermal bands that determine the Earth’s
surface temperature [81,82]. The satellite images were processed using the following soft-
ware: ArcGIS Pro for Landsat 8 images [83]. The pre-fire and post-fire images underwent a
resampling process in ArcGIS with the panchromatic spectral band 8 to achieve a spatial
resolution of 15 m.

3.3. Spectral Indexes Analysis

In our study of forest fires, the spectral indices NDVI, NBR, dNBR and dNDVI were
used to measure the vegetation state in the pre-fire scenario and the degree of severity in the
post-fire scenarios. The NDVI allowed us to measure the degree of recovery of vegetation
before and after fire [84,85]. The NDVI is used for the relationship between the area burned
and the decrease in vegetation cover [86]. In addition, good relationships are obtained with
this index between the severity of the fire and the amount of vegetation consumed [27].
NDVI quantifies vegetation by measuring the difference between NIR (a wavelength which
vegetation strongly reflects) and red light (a wavelength which vegetation absorbs) [87], as
shown in equation 1.

NDVI =
(NIR − Red)
(NIR + Red)

(1)

The NBR was used to analyze the fire’s degree of severity since this index classifies
satellite images based on living vegetation [88,89]. This index combines two spectral bands
(NIR and SWIR) that respond better to the effects of fire [90], as shown in Equation (2). The
NIR reflectivity decreases due to the disappearance of the active vegetation. The SWIR
reflectivity increases due to the humidity loss, greater soil exposure, and fewer shadows
cast by the vegetation [91,92]. The calculation of NBR from remote sensing optical platforms
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such as Landsat-8 is useful as a proxy indicator of burn severity when compared to in situ
field measurements [93,94].

NBR =
(NIR − SWIR)
(NIR + SWIR)

(2)

The fire’s severity corresponds to a fire impact measure, operationally defined by the
organic matter loss above and below the ground [91]. For this reason, spectral indices of
normalized difference were also applied, which analyzed the difference between pre- and
post-fire satellite images, the dNDVI [85] and dNBR [95–97], as observed in equations 3
and 4, respectively.

dNDVI = pre-fire NDVI − post-fire NDVI (3)

dNBR = NBRpre − NBRpost (4)

Once the severity maps (dNDVI and dNBR) were generated, a general verification of
these was approached from their comparison with 31 fire points described in the literature,
specifically, the degree of occurrence of these fires according to the assigned categorization.
After that, the percentage of points that were in each fire severity category according to the
two proposed models (dNDVI and dNBR) was analyzed and their accuracy was verified
by comparing their results with each other.

3.4. Multivariate Analysis

Precipitation plays an essential role in the characterization of forest fires [98]. There-
fore, we proposed to identify the region’s seasons with the highest and lowest precipitation
and their influence on the post-fire scenario, applying the multivariate technique, principal
component analysis (PCA). This technique is widely used for data analysis and process-
ing [99]. PCA transforms several correlated variables into linearly uncorrelated variables
named principal components [100,101].

Previously, we applied a correlation matrix to data from four meteorological stations
located in the surroundings of the La Carolina parish: (i) Carchi (M0301), (ii) Pablo Arenas
(M0312), (iii) Pimampiro (M0315) and (iv) Mariano Acosta (M310), as is shown in Figure 3.
This matrix allowed us to analyze the level of correlation between these three meteorological
stations and, in this way, to work with data that were close to the climatic reality of the
region. The data from these stations came from the National Institute of Meteorology and
Hydrology (INAHMI, acronym in Spanish) [102].

In this study, the PCA application worked with two variables: monthly precipitation
and months. These variables were represented in a 14 × 69 matrix (14 columns by 69 rows).
The columns include the 12 months of the year, the meteorological stations’ names and
the year of analysis. The rows include monthly precipitation data in the 2000–2016 pe-
riod, representing 17 rows by each meteorological station analyzed. In this analysis, R
software (version 4.1.0) was used for the statistical processing and visualization of in-
formation. R is a free statistical software package and has an integrated development
environment called RStudio, which provides comprehensive tools to visualize and analyze
quantitative data [103,104].

3.5. Forest Fire Action Plan Proposal

In this phase, developing a general management plan for the territory against fires
was addressed based on the existing information obtained in this work. It also included the
identification of impacts, of which the environmental effects associated with the natural
environment are a consequence of human activity.

The importance of developing an action plan in La Carolina parish lies in the fact that
the main socio-economic activity in the region is livestock farming (95%), which leads to
changes in land use. Therefore, the owners’ traditional practice is to burn the scrub and
bushes to produce grass for cattle. In some cases, they burn the same grass to generate
better grass, sometimes causing forest fires [105].
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Figure 3. Meteorological stations location in the surroundings of the Ibarra canton.

Nine parameters were considered for the establishment of the fire action plan: (i) min-
ing activity, (ii) drainage, (iii) accessibility, (iv) geological formations, (v) geomorphology,
(vi) fire susceptibility, (vii) contours, (viii) slopes and (ix) altitude. As a result of the in-
terpretation of these nine parameters, we generated evacuation routes for forest fires and
proposals for the prevention of these events.

4. Results
4.1. Collection and Presentation of Base Cartographies

In Carolina parish, there is an equatorial mesothermal climate ranging from dry
to semi-humid [105]. The land use categories that stand out in the region are native
forest, moors, shrub and herbaceous vegetation and agricultural land [77]. These kinds of
vegetation could be considered combustible material in forest fire scenarios [71]. Table 2
shows the change in land use in the pre-fire (2014) and post-fire (2016) scenarios. The main
effects are observed in the increase from 42.54% (2014) to 45.82% (2016) in the shrub and
herbaceous vegetation and the expansion in the urban area from 0.03% (2014) to 0.24%
(2016). Furthermore, there is a temperature range between 10 ◦C and 22 ◦C (isotherms),
which are considerably high and could be another factor favoring the rapid spread of fire.
Finally, precipitation varies between 500 and 1250 mm/year (isohyets), as shown in Figure 4.
Considering that the fire under study occurred in September (dry season), this is another
factor that affected the spread of the fire because with the lack of rain, the vegetation dries
up, and the fire spreads easily. Finally, the map of aspects or sun orientation indicates
the slope direction as a reference in predicting a fire’s propagation if it starts within the
study area [106].
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Table 2. Pre-fire and post-fire land use areas in La Carolina parish. Source: adapted from [77].

Land Use Area (ha)
2014 (Pre-Fire)

Area (%)
2014 (Pre-Fire)

Area (ha)
2016 (Post-Fire)

Area (%)
2016 (Post-Fire)

Shrub and Herbaceous Vegetation 13,117.70 42.54 14,129.01 45.82
Agricultural Land 12,690.40 41.15 12,110.84 39.27

Native Forest 4395.64 14.25 4353.43 14.12
Moor 447.27 1.45 2.79 0.01

Water Bodies 74.30 0.24 164.60 0.53
Urban Zone 8.11 0.03 74.69 0.24
Other Lands 103.77 0.34 1.82 0.01

La Carolina Parish 30,837.19 100 30,837.19 100

Figure 4. Base information of La Carolina parish. (a) climate type; (b) land use in the pre-fire scenario
(2014); (c) land use in the post-fire scenario (2016), (d) isohyets, (e) isotherms, and (f) aspects or sun
orientation. Source: adapted from [74–77].
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4.2. Spectral Index Calculation

The NDVI was calculated using the NIR and red bands to qualify and quantify the
affected vegetation cover (see Figure 5). This index is classified into seven classes according
to photosynthetic activity, with values range between −1 and 1 [107]. In vegetated areas,
NDVI takes positive values, whereas its negative values correspond to bare soil [108]. In this
specific area, negative and close-to-zero NDVI values (class I and II) represent areas with
cloudiness and material with no photosynthetic activity, and values greater than 0.6 (class
VII) indicate very high photosynthetic activity, which confirms the presence of vigorous
or healthy vegetation. Thirty-one field points from areas where forest fires were recorded
from June to September 2015 (post-fire) were also included [105], as shown in Figure 5.

Figure 5. NDVI results: (a) NDVI pre-fire 2014, (b) NDVI post-fire 2015 and (c) NDVI post-fire 2020,
calculated with Landsat-8.



Remote Sens. 2022, 14, 1783 10 of 26

Table 3 shows each class of the NDVI map with their respective photosynthetic activity.
These ranges were based on a previous study [107].

Table 3. NDVI classification. Source: adapted from [107].

Class NDVI Range Photosynthetic Activity

1 <0.0 Null
2 0.0–0.1 Very low
3 0.1–0.2 Low
4 0.2–0.3 Moderate
5 0.3–0.4 Moderate/High
6 0.4–0.6 High
7 >0.60 Very high

Figure 6 presents the seven NDVI categories according to photosynthetic activity in
the three scenarios: 2014 (pre-fire), 2015 (post-fire) and 2020 (post-fire). It was observed
that in 2014 (pre-fire), 25.06% corresponded to very high photosynthetic activity, 30.22%
between the moderate to moderate/high categories, and there 10.92% was null, in areas
where there was mainly shrubby and herbaceous vegetation. Next, in 2015 (post-fire),
25.04% corresponded to high photosynthetic activity, 30.01% corresponded to the very high
category and 9.89% to null. Finally, in 2020 (post-fire), 23.43% corresponded to very high
photosynthetic activity and 37.60% corresponded to high, indicating the recovery of the
vegetation six years after the fire in the Guadual community.

Figure 6. Photosynthetic activity according to the pre- and post-fire NDVI indices, calculated with
Landsat-8 data.

Figure 7 shows the monthly mean values of NDVI for 22 consecutive years. Since
October 2014 (post-fire), the NDVI values decreased without exceeding the value of 0.25.
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Figure 7. Monthly NDVI in Carolina parish, calculated with Landsat-8 satellite data. Source:
adapted from [109].

Figure 8 shows the NBR for a pre-fire image and three post-fire images from the
Landsat 8 satellite. This index also ranges between −1 and 1, where values less than 0.25
(class I) represent areas of high vegetation repopulation and values between 0.44 and 0.66
(class VI) indicate moderate/high severity [110]. The 31 field points mentioned in the NDVI
section were also included [105].

Table 4 shows each class of the NBR map with their respective fire severity levels. These
ranges were based on previous studies [91,111,112], including a United States Geological
Survey (USGS) classification [111].

Table 4. NBR classification. Source: adapted from [91,110–112].

Class NBR Value Fire Severity Level

1 <−0.25 High vegetation growth after fire
2 −0.25–−0.10 Low growth of post-fire vegetation
3 −0.10–0.10 Unburned
4 0.10–0.27 Burned areas with low severity
5 0.27–0.44 Burned areas with moderate/low severity
6 0.44–0.66 Burned areas with moderate/high severity

Figure 9 presents the six NBR categories according to the fire severity level in the three
scenarios: 2014 (pre-fire), 2015 (post-fire) and 2020 (post-fire). It was observed that in 2014
(pre-fire), 53.59% of the area had a classification of moderate growth of post-fire vegetation,
and 24.96% corresponded to burned areas with moderate-high severity. Subsequently, in
2015 (post-fire), 63.92% corresponded to burned areas with low severity and 30.55% to
burned areas with moderate/low severity. Finally, in 2020 (post-fire), 53.57% of the area
achieved a high vegetation growth after fire, demonstrating the recovery of the vegetation
in the region six years after the fire of September 2014. However, 13.07% was still classified
as burned areas with low severity as a remnant of this event.
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4.3. Fire Severity Grade with dNDVI and dNBR

The dNDVI and dNBR spectral indices were calculated. These indices are based on the
differences between the pre-fire and post-fire scenarios. The dNBR was used to qualify the
severity of the fire analyzed. This exact procedure was performed to calculate the dNDVI.
The dNDVI index is classified into six categories [113], as shown in Figure 10a. In contrast,
the dNBR index is classified into seven categories according to United States Geological
Survey (USGS) classification [91,114], ranging between 0.07 and 1.3, as shown in Figure 10b.

Figure 8. NBR results: (a) NBR pre-fire 2014, (b) NBR post-fire 2015, (c) NBR post-fire 2020, calculated
with Landsat-8.
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Figure 9. Severity levels represented using the NBR index with Landsat-8.

Figure 10. Degree of severity estimated with Landsat-8 images. (a) dNDVI between pre-fire 2014 and
post-fire 2020 images and (b) dNBR between pre-fire 2014 and post-fire 2020 images.
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Fire Severity Model Validation

The results of the fire severity models (dNDVI and dNBR) were verified with 31 fire-
starting points taken in the field from June to September 2015 in a previous study in the
region [105], as shown in Table 5.

Table 5. Fire severity model validation with field data.

Category dNDVI (%) dNBR (%)

1 Unburned 12.9 High enhanced regrowth 16.13
2 Very low severity 12.9 Low enhanced regrowth 12.9
3 Low severity 16.13 Unburned 9.68
4 Moderate severity 12.9 Low severity 12.9
5 High Severity 16.13 Moderate/low severity 9.68
6 Very high severity 26.04 Moderate/high severity 12.9
7 - - High Severity 25.81

The fire severity model’s accuracy was determined by performing calculations accord-
ing to the equivalence of the categories for dNDVI and dNBR, as shown in Table 5, and
according to the percentages of accuracy obtained with the field data concerning the two
models with remote sensing data (dNDVI and dNBR), as shown Table 6.

Table 6. Accuracy between fire severity models.

dNDVI dNBR (%) Accuracy between
Models

Unburned Unburned 75.04
Low severity Low severity 75.02

Moderate severity Moderate/low severity 75.02
High Severity Moderate/high severity 79.88

Very high severity High Severity 99.1

4.4. Multivariate Analysis

The factors that control precipitation’s spatial and temporal structure cannot always be
discerned solely as qualitative data [115]. Therefore, multivariate statistical methods such
as principal component analysis (PCA) are applied to examine each component of variation
within the variance structure. PCA is a reliable method for reducing and examining the
structure of variance in data [116]. Figure S1 (see Supplementary Materials) shows the
correlation matrix between the variables analyzed (months of the year and the monthly
precipitation data). The data did not follow a normal distribution and therefore to there
was no correlation greater than 0.7 between the four meteorological stations’ data, which
can thus be treated independently. Therefore, the precipitation and maximum temperature
were analyzed using data from the meteorological station named Carchi (M0301) because it
was located in La Carolina parish. As a result, precipitation reached 143 mm in the rainy
season (October–April). In the dry season months (June–September), it presented values
close to 0 mm, as observed in Figure 11. Similar behavior in rainfall can be observed with
the satellite data obtained from CHIRPS (see Figure S2). These data are reliable and have
been validated in several previous studies [117–119].

Finally, in Figure 12, the variation in the maximum monthly temperatures in 2000–2016
was analyzed. We observed that up to 2003 the maximum temperature was 22.65 ◦C,
whereas, in 2014, it reached 23.74 ◦C due to the effects of climate change and the forest
fire that occurred that year. Temperature data were obtained from the European Cen-
ter for Medium-Range Weather Forecasts (ECMWF) ERA5 from the Copernicus Climate
Change Service [109,120].
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Figure 11. Hydrograph of the Carchi meteorological station (M0301) in 2000–2016.

Figure 12. Maximum monthly temperature in the period 2000–2016. Source: adapted from [109,120].

The principal component analysis applied in the Carolina Parish included as variables
the precipitations and months. PCA application is fundamental because it describes the
local climatological behavior since the area has different microclimates, which is related
to forest fire incidence. As a result, the diagram of PCA variables showed a bimodal
behavior, which correlated with the region’s two seasonal periods. In other words, the
months with the highest precipitation (first quadrant) represent the rainy season and the
months with low precipitation (fourth quadrant) represent the dry season (see Figure 13a).
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This is demonstrated with the inverse relation between January and November, which
is perpendicular between them, showing that these months belong to two periods with
different meteorological characteristics. This technique involves analyzing a data table in
which several interrelated quantitative dependent variables describe observations [121].
These variables represent principal components, showing the similarities of observations
(monthly precipitation data) and variables as points on maps, as shown in Figure 13b.

4.5. Forest Fire Action Plan Proposal

The Forestry and Conservation of Natural Areas and Wildlife Law, in articles 57 to
60, ensures the prevention and control of forest fires that may affect forests and natural
vegetation and recommends educational campaigns on the subject [122]. According to
data reported by the Secretariat for Risk Management (SGR, acronym in Spanish) during
2014–2015, 41 fires were recorded in the La Carolina parish. In 2014 there were 11 fires,
with the Guadual community exhibiting the highest rate of occurrence, and in 2015, there
were 30 fires [105].

4.5.1. Mining Activity Map

Artisanal and illegal mining activity is recorded in the region. There are 23 mining
concessions in the vicinity of the region, of which nine are located in the La Carolina parish
(see Figure 14a).

4.5.2. Drainage Map

The drainages of the region correspond to currents ranging from the dendritic to the
subdendritic type in high mountain areas, as shown in Figure 14b [76].

Figure 13. PCA results, used to classify precipitation by month. (a) PCA variables and (b) PCA biplot.

4.5.3. Accessibility Map (Health, Educational Establishments and Roads)

There are six health establishments in the region, one in the La Carolina parish and
the rest in its surroundings (~10 km). Furthermore, there are 14 educational establishments.
The main and secondary access roads were also added in order to analyze the possible
evacuation routes in fires events, as shown in Figure 14c.
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4.5.4. Geological Formation Map

The geology of the region mainly comprises volcanic formations, intrusive rocks,
alluvial deposits and colluvial deposits, as shown in Figure 14d [123].

4.5.5. Geomorphological Map

The geomorphology of the region is an important indicator in relation to the occurrence
of fires since it can allow the identification of the areas most likely to spread the fire due
to their morphology. The most representative geoforms are mountainous reliefs (50.87%),
hilly reliefs (21.64%), mountainous volcanic reliefs (8.71%) and terraces (5.58%), as shown
in Figure 14e.

4.5.6. Fire Susceptibility Map

In 2015, the Risk Management Secretariat (SGR, acronym in Spanish) generated a
fire susceptibility map, which included four categories: low (5.17%), medium (13.16%),
moderate (30.01%) and high (51.66%), as shown in Figure 14f.

4.5.7. Contour Map

According to the contour information from the Military Geographic Institute with a
resolution of 100 m, it was observed that the area has elevations in the range between 800
and 3800 m [75], as shown in Figure 14g.

4.5.8. Slope Map

Slopes are directly involved in increasing the speed of the spread of forest fires. There is
an influence of the slope on the vegetation; with steep slopes, there is less water availability
and more risk of runoff and erosion, so the vegetation will tend to be more xerophilous
and frugal (adapted to dry environments) [106]. As a result, 37.53% are moderately steep
slopes and 29.69% steep slopes, as shown in Figure 14h.

4.5.9. Altitude Map

According to the digital elevation model (DEM), the La Carolina parish has an altitude
between 800 m.a.s.l. and 3800 m.a.s.l. This altitude factor reduces the risk of a fire occurring,
since the higher the altitude, the lower the temperature; all this is due to the thermal
gradient that causes the temperature to decrease by 1 ◦C with every 180 m of altitude [124].
Altitude also determines the type of vegetation in the area since the higher the altitude, the
lower the elevation of the vegetation, causing higher levels of humidity to be present in
it [106], as shown in Figure 14i.

As a result of the interpretation of these nine parameters explained above, a map was
generated with three proposed evacuation routes for forest fires in the region, considering
the safe areas and the starting points of the fire. We also determined eight strategic refuge
sites, considering the slopes and their direction (preferably south–southwest), the presence
of mining activity, drainage and altitude (see Figure 15).

Principal Impacts:

• Most of the territory that includes the La Carolina parish has slopes greater than 25◦.
• There is no signage to help prevent fires in the region.
• Cattle ranchers burn brush and bushes to produce grass for cattle, burning the same

grass to make better grass, which leads to forest fires.
• During 2014–2015, 41 fires were recorded in the La Carolina parish.

Suggested Fire Actions:

• Eight strategic safe refuge areas were designated in case of fires that meet the con-
ditions of not having very steep slopes, being safe (no mining activity nearby), and
favored by the direction of the slopes and proximity to water bodies.

• Install signage such as signs with messages related to the prevention of forest fires.
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• Make the surrounding people and the cattle ranchers aware of the damage they cause
by not having a burning plan.

• Three evacuation routes have been proposed in preparation for future fires, along with
safe zones and fire severity models using satellite data (Landsat-8).
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adapted from [74–77,125].



Remote Sens. 2022, 14, 1783 19 of 26

Figure 15. Evacuation route map in response to fires in La Carolina parish.

5. Interpretation of Results and Discussion

In this region, 99% of forest fires are caused by human influence and these fires
cause irreparable damage to nature. Up to 2015, 841 fires were registered in the Imbabura
province, which consumed 3271.38 ha, with the Ibarra canton registering the highest
number of events (58) [126]. Winds and strong temperatures fuel fires. However, many of
these events were caused by agricultural burning [127]. Finally, both artisanal and illegal
mining activity constitute unexplored factors that could also cause forest fires in the region.
Therefore, La Carolina parish is an area that suffers from multiple forest fires, mainly
attributed to the reasons stated above. Additionally, its vegetation cover is mostly made up
of native tropical forests, moors and grasslands. This type of coverage could also facilitate
the spread of fires and could make their recovery difficult, as demonstrated in the NDVI
results, which showed a decrease in this index in recent years (post-fire). Therefore, the
type of analysis of spectral indices carried out in this study is essential for assessments of
forest fire severity, in regard to the fire which occurred in September 2014.

Likewise, the implementation of multivariate techniques allows us to study the rela-
tionship between water availability and its incidence in fires in the region. For example,
in a study in the Qilian Mountains in China, NDVI responses to temperature and precip-
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itation were the strongest over a long time series [128]. Consequently, extreme climatic
and drought events have a more significant effect at the end or beginning of the season,
depending on the vegetation type [129].

The resulting NDVI values show a greater coverage of healthy vegetation or greater
photosynthetic activity in the pre-fire scenario (2014), with 7728.69 ha due to many tropical
forests in the region. However, in the post-fire scenario of 2015, its value was reduced
to 2348.40 ha, and by 2020, it increased to 7206.87 ha. This indicates that the vegetation
recovered 93.24% compared to the pre-fire scenario. In the case study presented, there
was evidence of a decrease in the NDVI values in recent years after the fire, with values
exceeding 0.25, indicating vegetation with little photosynthetic activity. Other factors
influencing the decrease in NDVI in La Carolina parish are artisanal and illegal mining,
contributing to the region’s exploitation and land-use changes.

With the analysis of the degree of severity of fire using multispectral indices, NBR
pre-fire and NBR post-fire values were obtained, ranging from 0.27, related to burned areas
of low severity, and higher than 0.66, indicating areas of high severity. The burned areas
increased for the years 2015 and 2020, in post-fire scenarios. Furthermore, it is essential to
mention that NBR values lower than −0.25 indicate high vegetation growth after a fire. In
this sense, by 2020, 16,520.37 ha of recovered vegetation were obtained.

The dependence between extreme precipitation and temperature allows researchers
to develop an understanding of climatic relationships and to evaluate future changes in
precipitation [130,131]. For this reason, the principal component analysis (PCA) technique
was applied to correlate rainfall data from four meteorological stations in the region. As
a result, a bimodal behavior was observed, corresponding to the climatology of the area
(dry season and rainy season), which is related to the presence of fires (in the dry season).
Monthly rainfall decreased markedly after the September 2014 fire, and temperatures
increased locally.

A proposal for an action plan in response to forest fires in the region was carried out,
making it possible to define a safe evacuation route, minimizing exposure to dangerous fire
effluents, such as toxic smoke, during evacuation [132]. The long-term approach in regard
to this plan would be the responsibility of the emergency management authorities [133].

6. Conclusions

The forest fire on the Guadual community hill caused a significant deterioration in
the vegetation, with considerable losses of flora and fauna, in a large area of territory. To
determine the severity of this event, climatological and remote sensing data were used
to evaluate the severity of the studied fire. Spectral indices (NDVI, NBR, dNDVI and
dNBR) were applied, and precipitation data and maximum temperatures were correlated
to determine areas of high severity of fires. Field mapping is crucial in diagnosing fire
incidents. However, its immediate assessment is limited by its accessibility due to min-
ing activity, mainly when the affected area has a complex topography, steep slopes and
heterogeneous vegetation, usually in high mountain areas. Therefore, the management of
satellite images poses a rapid response to these events. Furthermore, this methodology
provided a decision-making tool for local authorities in forest fire events in high mountain
areas. The NDVI provided information on the density and type of vegetation present. The
NBR, for its part, integrated two spectral bands that contributed to the calculation of the
area burned in the fire. The dNDVI and dNBR indices made it possible to quantify the
degree of fire severity by comparing two pre-and post-fire scenarios. Consequently, the
rainfall importance, temperature, and the fire’s characteristics caused by anthropic action
and bad agricultural practices in the region were verified.

The fire severity analysis, studied through the spectral indices, showed that the
application of remote sensing techniques fulfilled their function. The NDVI allowed for the
evaluation of the level of photosynthetic activity of the vegetation in three scenarios: pre-
fire (2014), post-fire (2015) and post-fire (2020). NDVI values lower than 0.1 corresponded
to areas with cloudiness due to the presence of the moors. In 2014, it was determined
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that 25.1% of the territory of the La Carolina parish presented very high photosynthetic
activity; in 2015, it decreased to 7.6%; and in 2020, it increased to 23.4%, demonstrating
a significant recovery in the shrub vegetation of the area. These results could provide
valuable information to farmers in crop monitoring to show which parts of their fields have
dense, moderate or sparse vegetation at any given time.

The NBR index made it possible to quantify the areas burned in the fire. The areas
burned with moderate/high severity in 2014 (pre-fire) represented 4.2% of the total territory
of the La Carolina parish. For 2015 (post-fire), they reached 5.1%, and for 2020 (post-fire)
they increased to 13.3%, showing that the area is prone to forest fires, and the spread of fire
is also favored by the fact that it is an area of high mountain moorland and the presence of
forests. Likewise, with the dNBR, areas of medium-to-high severity were identified in the
La Carolina parish. A medium severity was observed in its surroundings and the regions
furthest from the fire were designated as not burned. The dNDVI analysis also showed a
moderate-to-high severity in La Carolina parish, which coincided with the dNBR result.
The fire severity models generated using remote sensing data (Landsat-8) showed excellent
accuracy (99.1%) in regard to the in situ data (31 field fire-starting points) vs. the models
generated with the spectral indices in the areas of high severity (dNBR) and very high
severity (dNDVI).

With the application of principal component analysis, bimodal behavior was observed
in the rainfall regime of the region, with zones that coincided with the two environmental
seasons (the rainy season and dry season) of the region. The rainfall regime observed at the
Carchi meteorological station (M0301) allowed the analysis of rainfall values in the months
prior to the fire. From June to September 2014, rainfall did not exceed 30 mm, whereas the
months of October-December showed increased rainfall, as a consequence of the recovery
of vegetation on the ground. The proposed action plan for forest fires in La Carolina parish
made it possible to define a safe and effective evacuation route to reduce the numbers of
victims during future events.

The main limitation of this study was the availability of cloud-free satellite images due
to its location in an Andean páramo area. However, the combination of spectral indices and
the multivariate PCA technique allows this methodology to be replicated in other areas
with similar climatological characteristics, providing fire mitigation strategies and helping
local authorities to make decisions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14081783/s1. Figure S1: Correlation matrix in monthly rainfall data in the study area.
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