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Abstract: Satellite-based models have been widely used to estimate gross primary production
(GPP) of terrestrial ecosystems. Although they have many advantages for mapping spatiotemporal
variations of regional or global GPP, the performance in agroecosystems is relatively poor. In this
study, a light-use-efficiency model for cropland GPP estimation, named EF-LUE, driven by remote
sensing data, was developed by integrating evaporative fraction (EF) as limiting factor accounting
for soil water availability. Model parameters were optimized first using CO2 flux measurements by
eddy covariance system from flux tower sites, and the optimized parameters were further spatially
extrapolated according to climate zones for global cropland GPP estimation in 2001–2019. The major
forcing datasets include the fraction of absorbed photosynthetically active radiation (FAPAR) data
from the Copernicus Global Land Service System (CGLS) GEOV2 dataset, EF from the ETMonitor
model, and meteorological forcing variables from ERA5 data. The EF-LUE model was first evaluated
at flux tower site-level, and the results suggested that the proposed EF-LUE model and the LUE
model without using water availability limiting factor, both driven by flux tower meteorology data,
explained 82% and 74% of the temporal variations of GPP across crop sites, respectively. The overall
KGE increased from 0.73 to 0.83, NSE increased from 0.73 to 0.81, and RMSE decreased from 2.87 to
2.39 g C m−2 d−1 in the estimated GPP after integrating EF in the LUE model. These improvements
may be largely attributed to parameters optimized for different climatic zones and incorporating
water availability limiting factor expressed by EF into the light-use-efficiency model. At global scale,
the verification by GPP measurements from cropland flux tower sites showed that GPP estimated
by the EF-LUE model driven by ERA5 reanalysis meteorological data and EF from ETMonitor had
overall the highest R2, KGE, and NSE and the smallest RMSE over the four existing GPP datasets
(MOD17 GPP, revised EC-LUE GPP, GOSIF GPP and PML-V2 GPP). The global GPP from the EF-LUE
model could capture the significant negative GPP anomalies during drought or heat-wave events,
indicating its ability to express the impacts of the water stress on cropland GPP.

Keywords: gross primary production; light-use-efficiency model; cropland; water availability; evapo-
rative fraction; ETMonitor

1. Introduction

Terrestrial gross primary production (GPP), the amount of carbon assimilation by
plants through photosynthesis, is important for the global carbon budget [1]. Accurately
quantifying terrestrial GPP is of great importance to evaluating ecosystem carbon dynamics
and climate change. Globally, cultivated cropland accounts for about 12% of the land
surface, which supplies approximately 15% of carbon fixed and contributes to the large
portion of human food [2]. Therefore, the assessment and prediction of agroecosystems
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productivity is vital to the agricultural management, crop yield forecast, and global carbon
budget assessment [3].

At present, the relatively matured GPP models based on remote sensing satellite
data at the canopy scale are mainly divided into two major categories: empirical models
and process-based models [4]. The empirical models are relatively simple and easy for
regional and global application but have high uncertainty or low accuracy. Most empirical
modes are based on the statistical relationship between terrestrial productivity and climate
variables or vegetation indexes such as the Normalized Difference Vegetation Index (NDVI),
Leaf Area Index (LAI), near infrared radiation from vegetation (NIRv) [5–8], solar induced
fluorescence (SIF) [9–11], or Vegetation Optical Depth (VOD) [12–16]. The process-based
GPP models are supposed to estimate GPP with higher accuracy because they generally
consider detailed ecological processes, but they are difficult to apply at high resolution on
global scale due to model complexity and many unknown parameters.

The widely used light-use-efficiency based model (LUE model) [17], mainly driven
by remote sensing data, is a semi-empirical model for GPP estimate because it not only
considers the response mechanism of photosynthetic efficiency to environmental conditions,
but also easily operate on large scales. It can effectively quantify spatiotemporal variation
of GPP at regional and global scales if model parameters can be calibrated properly. Many
efforts have been made on the calibration and validation of LUE models in regional scale
applications [18].

In LUE models, GPP is estimated as the production of absorbed photosynthetically
active radiation (APAR) by plant canopy and the efficiency of converting APAR to CO2
fixation through plant photosynthesis [19]. Examples of such models include the Moderate
Resolution Imaging Spectroradiometer (MODIS) GPP algorithm (i.e., MOD17) [20], the
Vegetation Photosynthesis Model (VPM) [21,22], the light use efficiency model using eddy
covariance measurements (EC-LUE) [23], and the Global Production Efficiency Model (GLO-
PEM) [24], among others. The differences among these models are mainly the expression
of different environmental stress factors used to present the reduction of the potential
(or maximal) LUE. The MOD17 algorithm uses the potential LUE (i.e., εmax) of different
vegetation types from the biological look-up table and uses two scalars of temperature and
vapor pressure deficit (VPD) to account for the reduction in εmax when cold temperatures
and high VPD limit plant function. However, evaluation of the MOD17 GPP by the BigFoot
validation approach found that MOD17 GPP seriously underestimated the total GPP in
cropland, which was only two-thirds of the GPP estimated by the BigFoot model [25]. Site-
level verification studies also showed that MOD17 GPP failed to capture the seasonal and
inter-annual changes, with underestimation in peak growing season and overestimation
in the early growth and senescence stages [26]. The deviation of MOD17 GPP seasonal
variation is mainly due to the inadequate parameterization of moisture constraint [26] and
the use of constant value of the potential LUE across crops in different regions.

Soil water availability status is an important factor in GPP modeling. Research reveals
that in arid and semi-arid regions, soil moisture is the main controlling factor of GPP,
and the substantial impact of soil moisture stress may cause the loss of GPP by 40% in
arid/semi-arid and sub-humid regions [27]. In addition, the extent of ecosystems subject to
soil moisture stress will further increase in a warming climate in the future [28,29]. However,
it is challenging to quantity the influence of soil moisture stress on the estimation of crop
LUE over regional or global scales from either modeling or remote sensing observations.
Some studies have proposed alternative approaches. For example, the VPM model uses
the Land Surface Water Index (LSWI) to estimate the water stress in calculation of LUE,
and it performs well in forests [21,22,30]. The Production Efficiency Model Optimized for
Crops (PEMOC) uses relative change of Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR) across the seasons to estimate seasonal moisture stress, which assumes
that the relative change of FAPAR is mainly related to changes in plant water conditions [18].
The EC-LUE model uses evaporative fraction (EF) to calculate moisture stress at the flux
tower site-level, and it was found to be reliable for simulating crop GPP [2,23]. EF can
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represent moisture conditions of ecosystems because the decrease in energy allocated to
the latent heat flux indicates stronger soil water restriction. However, the application
of EF for GPP estimation at large spatial scales with moderate spatial resolution (e.g., at
kilometer resolution) was hindered by the lack of reliable datasets of sensible and latent
heat fluxes at corresponding spatial scales and spatial resolution. Previous studies show
that the evaporative fraction based on microwave vegetation indices can help to indicate
synoptic-scale water stress on LUE, but limited to relatively coarse resolutions [31]. With
the development of global evapotranspiration algorithms and products at higher resolution
and improved accuracy [32,33], it is possible to use EF to better express the water availability
conditions of ecosystems. Therefore, remote sensing ET or EF is expected to be used to
establish the moisture limiting factor in the LUE-based models for global GPP estimation
in mid-to-high resolutions.

In addition, the value of model parameters is one of the main issues affecting the accu-
racy of GPP estimation. Many studies optimize model parameters for specific vegetation
types based on ground observations at flux tower sites [34]. However, studies show that
some vegetation photosynthetic traits, e.g., the maximum carboxylation rate (Vcmax), varies
in different ecosystems and environmental conditions [35,36]. The fixed value of parame-
ters obtained from the look-up-table specified by plant function types (PFT) is regarded as
a major source of uncertainty for GPP estimation because spatial heterogeneity (species
composition and plant functional types) is not considered in the LUE models [37–39]. Plant
functional type is a classification scheme to reduce the diversity of plant types into the
major classes which share similar plant attributes and functions [40]. Some earth system
models, such as the global dynamic vegetation model, applies the concept of vegetation
functional types [41], but GPP models based on remote sensing rarely consider the plant
traits differences across different climate zones. It is important to reduce the uncertainty of
model parameters by using ground observations to optimize model parameters for a given
plant functional type [42,43], as well as consider the climate conditions.

Therefore, the purpose of this research is to (1) assess the performance of LUE-model
for GPP estimation by integrating water availability factor expressed by evaporative fraction
(EF) (referred to as the EF-LUE model hereafter) based on site-level ground measurements;
(2) optimize the parameters of the EF-LUE model using GPP observations from the eddy
covariance flux towers at site-level and extrapolate the optimized parameters spatially
according to climate zones for global scale application; and (3) analyze the temporal and
spatial characteristics of global cropland GPP estimated by the EF-LUE model and the
impact of drought and heat-wave events on cropland GPP.

2. Method
2.1. Model Description

In this study, GPP (g C m−2 per time unit) is calculated as the product of APAR and
actual LUE. The actual LUE is the potential LUE (εmax) constrained by environmental
variables including air temperature, VPD, and water availability in a multiplicative manner.
GPP is then expressed as

GPP = APAR× εmax × FT × FVPD × FW (1)

where APAR is the absorbed photosynthetically active radiation (MJ m−2 per time unit, e.g.,
hourly, daily, monthly, yearly) and can be estimated as the fraction of photosynthetically
active radiation (PAR) (MJ m−2 per time unit, e.g., hourly, daily, monthly, yearly):

APAR = FAPAR× PAR (2)

where PAR is generally considered to account for a fraction (e.g., 0.44−0.5) of total solar
shortwave irradiance [44,45], 0.48 is taken in this study [46]. FAPAR is the fraction of the
absorbed photosynthetically active radiation that can be retrieved from satellite observa-
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tions of multi-spectral reflectance or derived from NDVI or LAI from satellite observations
using empirical relationship.

In Equation (1), εmax (g C MJ−1) is the potential LUE without environmental stresses
(also known as maximum LUE), which defines the canopy photosynthetic capacity and
varies across vegetation types and environment conditions [47,48]. In this paper, the εmax
values are optimized using ground site data and interpolated according to climate zones
for GPP estimate at global scale (see the optimization procedure in Section 2.2).

The environmental constraint factors FT , FVPD and FW in Equation (1) are dimension-
less factors in the range of 0 ≤ Fx ≤ 1 with x denoting for T, VPD, or W (water availability),
characterizing the constraints of ambient temperature, atmospheric water vapor pressure
deficit and soil water availability on the potential LUE. The Fx values closer to “0” indicate
stronger constraint by the environmental factor “x”, resulting in the reduction of potential
LUE and thus lower GPP. On the contrary, Fx values closer to “1” indicate the lower con-
straint by the corresponding environmental factor “x”. Fx = 1 means that the constraint is
not considered.

The air temperature constraint factor (FT) is usually defined as a ramp function or an
asymmetric curve. Using the asymmetric formula, photosynthesis responds more smoothly
to air temperature and reverses after the optimal temperature (Topt),

FT =
(T − Tmin)× (T − Tmax)

(T − Tmin)× (T − Tmax)−
(
T − Topt

)2 (3)

where T is the ambient temperature (◦C); Tmin, Tmax, and Topt are the minimum, maximum,
and optimum air temperatures (◦C) for vegetation photosynthesis, respectively. FT is set to
0 when ambient temperature T is lower than Tmin or higher than Tmax, resulting in “0” LUE.
In this study, Tmin and Tmax are set as 0 ◦C and 40 ◦C, respectively. Topt is optimized using
GPP that is derived from CO2 flux measurements collected at cropland flux tower sites.

The atmospheric water Vapor Pressure Deficit (VPD) is the difference between the
saturated water vapor pressure and the actual water vapor pressure at a certain air tem-
perature, indicating the atmospheric water demand. As VPD increases, crops tend to
close stomata to reduce the water loss thereafter absorb less CO2. The constraint factor in
response to VPD (FVPD) is defined as concave functions by

FVPD =
VPD0

VPD0 + VPD
(4)

where VPD0 is the half-saturation coefficient (kPa) and will be obtained by the optimization
procedure described in Section 2.2.

The water availability constraint factor, FW , can be expressed by the evaporative
fraction that describes the available energy partitioning to evapotranspiration of vegetation
canopy and is controlled by both available energy and availability of water in the soil. The
factor FW is given by

FW = min{1, max(0, EF)} (5)

EF =
LE

LE + H
=

LE
Rn − G

(6)

where LE and H are latent heat flux and sensible heat flux (W m−2), respectively. Rn is the
net radiation flux (W m−2), and G is the soil heat flux (W m−2). As our EF-LUE model is
applied to daily time scale, the LE, H, Rn and G are taken as mean daily values.

2.2. Optimization of Model Parameters

In this study, the model parameters in the constraint factors, i.e., εmax, Topt, and VPD0,
were firstly estimated by an optimization procedure using site-level data. The optimization
was performed for each site in different climate zones using the Trust Reg ion Reflective
algorithm, a non-linear fitting algorithm that is robust to bounded problems, available in
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the Scipy.optimize.least_square package (SciPy v1.8.0) in Python 3.6 [49]. It obtains the
optimized parameter value by minimizing the sum of squared residuals between the model
estimated GPP and the observed GPP. At each site, 2/3 of the available data were used for
calibration, and the remaining 1/3 of the data were used for validation. Seed and boundary
conditions used for the optimization of the three model parameters are shown in Table 1.

In regional GPP calculation, the optimized parameters were interpolated spatially
according to the climate zone classification (see Section 3.1 for data description): for a
climate zone with flux tower measurements, the model parameters were optimized using
ground measurements from all available sites in the corresponding climate zone; for a
climate zone where flux tower measurements are not available, the model parameters were
optimized by using the ground measurements from all available cropland sites worldwide
(called “Default” values of parameters).

Table 1. Seed and boundary conditions of each parameter used for LUE model optimization.

Parameter εmax
(g C MJ−1)

Topt
(◦C)

VPD0
(kPa)

Seed 2.319 28.00 1.02
Range [0, 4] [0, 35] [0, 3]

2.3. Assessment of Optimization and Model Performance

We used five metrics to assess the model performance, including coefficient of determi-
nation (R2), root mean squared errors (RMSE), mean predictive error (BIAS), Kling-Gupta
efficiency (KGE), and Nash-Sutcliffe efficiency coefficient (NSE). The five formulas are
expressed as follows [50,51]:

R2 =
∑N

i=1
(
Oi −O

)(
Pi − P

)√
∑N

i=1
(
Oi −O

)2
∑N

i=1
(

Pi − P
)2

(7)

RMSE =

√
∑N

i=1(Oi − Pi)
2

N
(8)

BIAS =
∑N

i=1(Pi −Oi)

N
(9)

KGE = 1−

√
(CC− 1)2 +

(
Pd
Od
− 1
)2

+

(
P
O
− 1
)2

(10)

NSE = 1− ∑N
i=1(Oi − Pi)

2

∑N
i=1
(
Oi −O

)2 (11)

where Oi is the observed value, and Pi is the predicted value; O and P are the mean
values of observations and predictions, respectively; Od and Pd are standard deviation of
observations and predictions, respectively. N is the number of total samples to be evaluated.
CC is the Pearson coefficient value.

3. Data

In this study, several datasets were used, including ground measurements of CO2 flux
from the eddy covariance system at flux tower sites of cropland for parameters optimization
and validation of the model, satellite data and reanalysis meteorological data as inputs to
run the EF-LUE model at global scale, and satellite observation-based GPP products for
intercomparison with our model results. The details of these datasets are described in the
following sections.
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3.1. Eddy Covariance Flux Data and Climate Zone Classification Data

Eddy covariance flux data from 19 cropland sites worldwide were downloaded from
the FLUXNET [52] (http://www.fluxdata.org, accessed on 25 January 2022), ChinaFlux [53]
(http://www.chinaflux.org/, accessed on 25 January 2022), AsiaFlux [54] (http://db.cger.
nier.go.jp/asiafluxdb/?page_id=16, accessed on 25 January 2022), and AmeriFlux [55]
(https://ameriflux.lbl.gov/, accessed on 25 January 2022). These sites were selected as GPP
measurements were available or could be derived from CO2 flux measured by the eddy
covariance system over a period of at least three years (Table 2). The spatial locations of
these eddy covariance flux tower sites can be seen in Figure 1.

The climate zone classification data used in this study are from the most commonly
used climate classification map of Köppen-Geiger with a spatial resolution of 1 km [56].
The Köppen classification method divides the global land surface into five major climate
zones based on the relationship between climate and vegetation types, i.e., tropical (A),
arid (B), temperate (C), boreal (D), and polar (E). Each one of the five major climate zones
is further subdivided into sub-classes (Figure 1) The detailed list of the sub-climate zones
Köppen climate classification is given in Table A1 of Appendix A.

Table 2. Information of the cropland flux tower sites from which flux measurements by eddy covari-
ance system were collected and used in this study. Climate zone codes were adopted from [56] and
given in Table A1 of Appendix A. MAT: mean annual temperature; MAP: mean annual precipitation.

Site Latitude Longitude MAT
(◦C)

MAP
(mm)

Climate
Zone Period Crops

CH-Oe2 47.2863 7.7343 9.8 1155 Dfb 2004–2014 winter wheat/winter
barley/rape

DaMan 38.86 100.37 7.3 130.4 BWk 2015–2019 maize

DE-Geb 51.1001 10.9143 8.5 470 Dfb 2001–2014
winter wheat/winter

barley/rape/potatoes/summer
maize

DE-Kli 50.8931 13.5224 7.6 842 Dfb 2004–2014 winter wheat/winter
barley/rape

DE-RuS 50.86591 6.44714 10 700 Cfb 2011–2014 winter wheat/potatoes
DE-Seh 50.87 6.45 9.9 693 Cfb 2007–2010 winter wheat
FI-Jok 60.9 23.51 4.6 627 Dfc 2007–2013 barley

FR-Gri 48.8442 1.9519 12 650 Cfb 2004–2014 winter wheat/winter
barley/summer maize

IT-CA2 42.38 12.03 14 766 Csa 2011–2014 winter wheat
MSE 36.05 140.03 13.7 1200 Cfa 2001–2006 rice

US-ARM 36.6058 −97.4888 14.76 846 Cfa 2003–2012 winter
wheat/corn/soybean/alfalfa

US-Bo1 40.01 −88.29 11.02 991.29 Dfa 2004–2006 maize/soybean
US-Br1 41.97 −93.69 8.95 842.33 Dfa 2009–2011 corn/soybean
US-Br3 41.97 −93.69 8.9 846.6 Dfa 2006–2011 corn/soybean
US-IB1 41.86 −88.22 9.18 929.23 Dfa 2009–2011 maize/soybean
US-Ne1 41.1651 −96.4766 10.07 790.37 Dfa 2001–2013 maize
US-Ne2 41.1649 −96.4701 10.08 788.89 Dfa 2001–2013 maize/soybean
US-Ne3 41.1797 −96.4397 10.11 783.68 Dfa 2001–2013 maize/soybean

YC 36.83 116.57 13.1 582 Bsk 2003–2010 winter wheat/summer maize

Eddy covariance systems directly measure CO2 flux (i.e., net ecosystem exchange, NEE)
rather than GPP. For the sites from the FLUXNET database, NEE was separated into the
two components, GPP and ecosystem respiration, using two different algorithms. The first
algorithm was based on the night-time partitioning algorithm [57] where respiration model
was parameterized based on the night-time data and then applied to the extrapolation
from night to daytime. GPP was then estimated as the difference between respiration
and NEE. The second method was the day-time partitioning algorithm [58] where NEE
was modelled using the common rectangular hyperbolic light-response curve which was

http://www.fluxdata.org
http://www.chinaflux.org/
http://db.cger.nier.go.jp/asiafluxdb/?page_id=16
http://db.cger.nier.go.jp/asiafluxdb/?page_id=16
https://ameriflux.lbl.gov/
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a function of both GPP and respiration and parameterized based on day-time data. For
the sites from database other than FLUXNET, the standardized method provided in the
REddyProc online tool [59] was used for processing eddy covariance data. Both night-time
and day-time partitioning algorithms were implemented in the tool (https://www.bgcjena.
mpg.d-e/bgi/index.php/Services/REddyProcWeb, accessed on 25 January 2022), and the
second method was used in this study.
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in this study.

3.2. Meteorological and Remote Sensing Forcing Data

Meteorological and remote sensing input data are showed in Table 3. The meteo-
rological forcing data used in this study, including air temperature, dew point tempera-
ture, and downward short-wave radiation flux, were derived from ERA5 (fifth genera-
tion ECMWF atmospheric reanalysis) dataset [60] (https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5, accessed on 25 January 2022). The ERA5 meteorological
forcing data with temporal/spatial resolution of 1-h/0.25◦ were averaged to daily and
downscaled to 1 km resolution using statistical downscaling approaches [61]. Additionally,
atmospheric vapor pressure deficit (VPD) was calculated from air temperature (Ta, ◦C) and
dew point temperature (Td, ◦C) by:

VPD = SVP× (1− RH) (12)

SVP = 0.6112× e
17.67 Ta
Ta+243.5 (13)

RH = e
17.625 Td
Td+243.04−

17.625 Ta
Ta+243.04 (14)

where SVP represents the saturated vapor pressure (kPa), and RH represents the relative
humidity (%).

The global-scale remote sensing datasets used as inputs in this study included FAPAR,
evapotranspiration (ET) and land cover (LC).

https://www.bgcjena.mpg.d-e/bgi/index.php/Services/REddyProcWeb
https://www.bgcjena.mpg.d-e/bgi/index.php/Services/REddyProcWeb
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Global annual land cover maps at 300 m spatial resolution from the European Space
Agency Climate Change Initiative Land Cover (ESA CCI-LC) project [62] were used and
aggregated to 1 km spatial resolution (http://maps.elie.ucl.ac.be/CCI/viewer/download.
php, accessed on 23 January 2022). A 1 km pixel was classified as cropland if 50% of the
300 m pixels in the 1 km pixel were cropland.

FAPAR quantifies the fraction of the solar radiation absorbed by vegetation canopy
during photosynthesis (Table 3). The 1 km resolution and 10-day global FAPAR product
provided by the Copernicus Global Land Service System (CGLS) [63] was used in this study
(https://land.copernicus.eu/global/products/fapar, accessed on 23 January 2022).

The global ET data with 1 km spatial resolution and 1-day temporal step were pro-
duced (in our parallel study) by the ETMonitor model by using multiple remote sensing
data and validated using ground flux measurements at flux tower sites. The detailed
description of the ETMonitor model and its applications in regional scales can be found
in [32,33,64–67], and a brief introduction to ETMonitor is given in Appendix B. Pixel-
wise net radiation and surface soil heat flux were estimated in the same way as used in
ETMonitor.

Table 3. Input datasets used to drive the EF-LUE model for global GPP estimate in this study.

Variable Dataset Resolution Reference

Air temperature (K) ERA5 0.25◦× 0.25◦

1 h

[60]Dew point temperature
(K) ERA5 0.25◦× 0.25◦

1 h
Surface solar radiation

downwards (Jm−2) ERA5 0.25◦× 0.25◦

1 h

Landcover map ESA CCI 300 m
1 year [62]

FAPAR GGLS-GEOV2 1 km
10 days [63]

ET, Rn, G ETMonitor 1 km
1 day [32,33,64]

Climate classification Köppen-Geiger

1 km
One map based on
data from 1980 to

2016

[56]

3.3. GPP Products by Satellite Remote Sensing Observations

Five global GPP products derived from satellite remote sensing observations, i.e.,
MOD17 GPP [20], revised EC-LUE GPP [68], OCO-2-based SIF product (GOSIF) GPP [10],
GPP based on near-infrared reflectance of vegetation (NIRv GPP) [7], and GPP from
a coupled diagnostic biophysical model − Penman-Monteith-Leuning (PML-v2) model
(called PML-V2 GPP) [69], were used for cross comparison with our model results. All these
five GPP products provided long-term time series of GPP in global scale and were widely
used by researchers. Both the MOD17 GPP and the revised EC-LUE GPP products were
produced using LUE-based models, and it would be very interesting to compare these two
LUE-based GPP datasets with our EF-LUE model result. Recent studies found that SIF and
NIRv performed well in tracking seasonal changes in GPP and were regarded as a proxy
for GPP [5,9]. Additionally, the PML-V2 is a water-carbon coupled canopy conductance
model that is different in model mechanism from either LUE-based or spectral-index-based
methods.

Table 4 gives the summary of the five GPP data products used in this study for cross
comparison, and details of each GPP dataset and website for download can be found in the
corresponding publications. We used the GPP data from the overlapped years of the five
GPP products, i.e., 2002 and 2018, for cross-comparison.

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://maps.elie.ucl.ac.be/CCI/viewer/download.php
https://land.copernicus.eu/global/products/fapar
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Table 4. Satellite observation-based GPP data products used for intercomparison in this study.

Product Name Temporal
Resolution

Spatial
Resolution Algorithm Temporal

Coverage Reference

MOD17 8 days 500 m LUE 2000–present [20]
Revised EC-LUE 8 days 500 m LUE 1982–2018 [68]

GOSIF GPP 8 days 5 km statistical
relationship 2000–2018 [10]

NIRv GPP Monthly 5 km statistical
relationship 1982–2018 [7]

PML-V2 8 days 5 km canopy
conductance 2002–2018 [69]

4. Results
4.1. Performance of the EF-LUE Model Driven by Ground Measurements at Eddy Covariance Flux
Tower Sites

Cropland flux tower sites were grouped according to their locations in the climate
zones in Figure 1. The three model parameters, i.e., εmax, Topt and VPD0, were optimized for
each climate zone using ground measurements of GPP from all sites in the corresponding
climate zone. The parameter optimization procedure was applied to both the EF-LUE model
(denoted as ‘with EF’) and the model without the water availability constraint (denoted as
‘without EF’), resulting in two sets of optimized parameters, respectively (Table 5), which
would be used in the two LUE models to estimate GPP for comparison. The “All” values
(also as ‘default’) in Table 5 were obtained by the optimization using data from all available
cropland flux tower sites listed in Table 2. Obviously, these model parameters varied
with different climate zones. In theory, there should be no significant differences in the
optimized parameters between using the EF-LUE model and using the model ‘without EF’
in each climate zone because these three parameters are inherent properties of the crop
physiology in response to environmental conditions and should not change with model
structures (specifically here for the LUE models ‘with EF’ and ‘without EF’). However, some
differences in the parameter values between the model EF-LUE and the model ‘without
EF’ were observed in Table 5, which might be attributed to the uncertainties in the model
structure as mentioned by Zheng et al. [70]. The averaged values of εmax over all climate
zones were 2.812± 0.887 with the EF-LUE model and higher than that used in other models
(i.e., 1.044 g C MJ−1 in MOD17). The highest εmax (=3.999) appeared in climate zone ‘Bwk’
(Table 5) which came from ‘DaMan’ site with C4 crop (maize) (Table 2). The lowest value
of εmax (=1.506) was in climate zone ‘Csa’ which was contributed by ‘IT-CA2′ site with C3
crop (winter wheat). Our values of εmax parameter are within the range in previous studies
found at site-level with εmax ranging from 2.25 to 4.06 g C MJ−1 for C4 crops and from 1.43
to 1.96 g C MJ−1 for C3 crops [3,71,72].

Table 5. Optimized model parameters (εmax, Topt, and VPD0) of the LUE-based model for crop GPP
estimate in different climate zones (‘with EF’ denotes our new EF-LUE model; ‘without EF’ means
water availability constraint was not considered).

Climate Type
Model without EF Model with EF

εmax
(g C MJ−1) Topt (◦C) VPD0 (kPa) εmax

(g C MJ−1) Topt (◦C) VPD0 (kPa)

CRO/Cfa 2.999 31.037 0.590 2.725 30.655 1.262
CRO/Cfb 2.752 18.983 0.592 2.652 17.573 1.756
CRO/Csa 1.506 13.306 0.478 1.509 19.475 1.651
CRO/Dfa 2.913 35.000 2.998 3.443 34.948 2.992
CRO/Dfb 2.272 18.330 0.745 2.373 13.593 1.765
CRO/Dfc 2.249 34.964 0.759 1.959 26.274 0.646
CRO/BSk 3.494 23.386 1.704 3.850 22.473 1.526
CRO/BWk 3.999 32.615 1.853 3.984 29.279 1.546

Average 2.773 ± 0.777 25.953 ± 8.506 1.215 ± 0.892 2.812 ± 0.887 24.284 ± 7.260 1.643 ± 0.656
All 2.811 34.839 2.905 2.970 29.494 2.865
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The optimized values of the model parameters in each climate zone were applied to
the EF-LUE model (Equations (1)–(6)) to estimate GPP driven by the local meteorological
variables (EF were calculated using flux measurements at each site) and remote sensing
FPAR. For comparison, we also estimated GPP using the model ‘without EF’ by setting
FW = 1 in Equation (1). We compared the model results with the ground measurements at
an 8-day time step to examine the model accuracy and capability in capturing the temporal
variations of GPP (Figures 2–4). In general, the EF-LUE model and the model without
EF driven by tower ground measurements data explained 82 % and 74% of the temporal
variations in GPP across the cropland sites, respectively (Figure 2a, only used the validation
sub-dataset). The overall Kling-Gupta efficiency (KGE) increased from 0.73 to 0.83, NSE
increased from 0.73 to 0.81, and RMSE decreased from 2.87 to 2.39 g C m−2 d−1 after
integrating EF in the LUE model.

Furthermore, the performance of the EF-LUE model and the model without EF for
water availability constraint at an 8-day time step were also verified respectively in the
summer half year (between the day of vernal equinox (21 March) and the day of autumnal
equinox (23 September)) and the winter half year (Figure 2b,c). The accuracy of the EF-LUE
model in the summer half year improved significantly over the model without EF, with
R2 increased from 0.67 to 0.77 and RMSE decreased from 3.86 g C MJ−1 to 3.19 g C MJ−1

(Figure 2b). After incorporating EF in the LUE model, the overestimation of low values
and the underestimation of high values of the GPP estimated by the LUE model without
considering soil water availability were alleviated. In the winter half year, the accuracy of
the model was also greatly improved after integrating EF in the LUE model, and the R2

increased from 0.49 to 0.53 (Figure 2c).
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Figure 2. Comparisons of GPP between estimation by the models and ground measurements by eddy
covariance system at cropland flux tower sites (using validation dataset): (a) whole year; (b) summer
half year (Spring Equinox (21 March) to Autumn Equinox (23 September)); and (c) winter half year.
EF data were from flux tower measurements. The blue and red points represent GPP estimated by
the EF-LUE model and by the model without EF, respectively. The solid lines are the regression lines,
and the gray dashed lines are the 1:1 line.

The performance of the EF-LUE model and the model without EF as water availability
constraint were also evaluated in different climate zones as shown in Figure 3. The accuracy
in the estimated GPP by the EF-LUE model was obviously improved in most climate zones.
The results from the EF-LUE model showed the highest R2 in the climate zones of BSk and
BWk (R2 > 0.9) (Figure 3a,b). In the Cfa, Cfb, and Dfb climate zones, the improvement
of the EF-LUE model was most significant, with an increase of more than 0.1 in R2 over
the results of the model without EF (Figure 3c,d,g). In the Csa and Dfc climate zones,



Remote Sens. 2022, 14, 1722 11 of 27

there were too few data samples to give a credible conclusion though both models showed
favorable results (Figure 3e,h).
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Figure 3. Comparisons between GPP estimated by the model and GPP measured by eddy covariance
at cropland flux tower sites (using validation dataset) in the following climate zones: (a) BSk; (b) BWk;
(c) Cfa; (d) Cfb; (e) Csa; (f) Dfa; (g) Dfb; (h) Dfc.

Figure 4 gave the results at each flux tower site, the GPP estimated by the EF-LUE
model showed higher R2 and lower RMSE in most sites compared with the results by LUE
model without EF, especially at CH-Oe2, DE-Geb, DE-Seh, US-Ne2, and US-Ne3. The
coefficient of determination (R2) increased from 0.53 to 0.78, and the RMSE decreased from
3.12 to 2.17 at CH-Oe2 sites. The KGE increased from 0.62 to 0.81 at the US-Ne3 site. The
NSE increased from 0.73 to 0.88 at the DE-Geb site.

However, although the EF-LUE model generally improved the accuracy in the esti-
mated GPP compared to the method without EF, it performed unsatisfactorily at some
sites such as the FR-Gri, US-ARM, and DE-Seh sites (R2 < 0.7) (Figure 4). The results were
biased by uncertainty in the satellite-based FAPAR data (figures not shown), which could
be improved further by improving the quality of the FAPAR product.
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Figure 4. Comparisons between GPP estimated by the LUE models (with and without EF) and GPP
measured by eddy covariance at flux tower sites (using validation sub-dataset): (a) R2; (b) RMSE;
(c) Bias; (d) KGE; (e) NSE. Solid and open circles represent the results from the EF-LUE model
(i.e., with EF) and the LUE model without EF, respectively, driven by meteorological data from flux
tower sites.

To further explore the model performance in capturing the temporal variation, we
plotted the time series of the estimated GPP together with the ground measurements for the
validation sub-dataset at four sites, i.e., DE-Geb, YC, US-ARM, and US-Ne2 (Figure 5). The
EF-LUE model could effectively reproduce temporal variations in the GPP observations at
these cropland sites. The GPP estimated by the EF-LUE model performed well in tracking
the ground-measured GPP at the beginning and the end of the growing season (Figure 5).
Moreover, the GPP estimated by the EF-LUE model was closer to the GPP measured by
eddy covariance system during the hot summer period at these sites. Soil water availability,
expressed by EF, regulated the changes in GPP in the early growing stage and aging stage,
as well as during hot summer when soil water stress often occurred. On the contrary,
the estimated GPP by the model without EF showed an early start in the beginning of
the growing season and a lag in the end of the growing season, in particularly at the site
US-Ne2.

However, deviation between the estimated GPP by the EF-LUE model and the mea-
sured GPP still existed, which might be attributed to the uncertainties in the forcing data,
in particularly the satellite observation-based FAPAR. Another possible source of errors
could be the different spatial footprints between the ground flux measurements and the
1 km pixel size for GPP estimate.
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Figure 5. Comparisons of 8-day mean GPP between the EF-LUE model and the model without EF
against the ground measurements at four cropland flux tower sites. Black solid dots indicate the GPP
measurements by eddy covariance system. The blue line and red line represent the GPP estimated by
the EF-LUE model and the model without EF, respectively.

4.2. Comparison with Other GPP Products at Eddy Covariance Flux Sites

Furthermore, we estimated global GPP at daily and 1 km resolution using the EF-
LUE model developed in this study by taking the global gridded data listed in Table 3
as forcing, and compared with other four exiting GPP products (listed in Table 4) for the
period of 2002–2018. We first compared the estimated GPP by the EF-LUE model with other
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two LUE-based GPP products, i.e., MOD17 GPP [20] and the revised EC-LUE GPP [68],
the spectral index based GPP (i.e., GOSIF GPP) [10] and the conductance model based
GPP (i.e., the PML-V2 GPP) [69] at an 8-day step for each crop site. Figure 6 showed the
boxplot to compare the performance of different GPP products. Generally, the EF-LUE GPP
showed the highest R2, KGE, and NSE and the lowest RMSE. These improvements may
be attributed to the optimized potential LUE values (i.e., εmax) in different climate zones
and the integration of water availability constraint factor (i.e., EF) in the EF-LUE model.
The MODIS algorithm used the VPD-based slope function as surrogate for soil moisture
status, which partly explained that MOD17 GPP had a higher deviation during severe
summer drought caused by the low soil water content [73]. VPD is an effective indicator
of atmospheric water demand and might not be sufficient to represent the condition of
soil water availability and the effect of soil water stress on the vegetation photosynthetic
efficiency. The revised EC-LUE model took into account the effects of diffuse radiation
and atmospheric carbon dioxide concentration, but the improvement was limited by the
exclusion of EF to reflect the impact of soil water stress on cropland GPP estimation in
global scale application.

The performances of GOSIF GPP and PML-V2 GPP were also showed in Figure 6 for
a broader comparison, and these two GPP products were claimed to have high accuracy.
The EF-LUE GPP showed comparable or better behavior when compared with these two
GPP products, e.g., EF-LUE GPP had the overall highest R2 and KGE and lower RMSE,
indicating the good ability of the EF-LUE model in global GPP estimation. These results
also suggest that the LUE-based model (especially the EF-LUE model in this study) is still
very promising for global cropland GPP estimation with satisfactory accuracy if the model
is properly structured and model parameters are carefully calibrated, and it retains the
advantage of easy application when comparing with the complex process-based models.
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Figure 6. Boxplot for comparisons of 8-d mean GPP between the EF-LUE GPP, MOD17 GPP, revised
EC-LUE (rEC-LUE in the figures) GPP, GOSIF GPP, and PML-V2 GPP with the GPP measurements at
cropland flux tower sites in 2002–2018.

4.3. Spatiotemporal Patterns of Global Cropland GPP

We compared the mean annual GPP estimated by the EF-LUE, MOD17 product, the
revised EC-LUE GPP product, GOSIF GPP product, PML-V2 GPP product, and NIRv
GPP product in the common available years of the six data sets (2002–2018). Spatial
patterns of global cropland GPP estimated by the six data sets were similar (Figure 7). The
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highest cropland GPP (>1500 g C m−2 yr−1) was mainly distributed in tropical regions (e.g.,
Southeast Asia, and Brazil), due to sufficient hydrothermal conditions. The lowest crop
GPP regions occurred in Russia and South of the Sahara Desert (<500 g C m−2 yr−1) where
climate and edaphic conditions were rigid, and the level of agricultural development was
relatively low.

The global mean annual GPP (2002–2018) for cropland simulated by our EF-LUE model
is 1054.8 g C m−2 yr−1, very similar to the values of 1094.6 g C m−2 yr−1 from previous
studies which is the median value of ground measurements and various diagnostic models
(1998–2005) [74]. In general, our result of global mean annual GPP averaged over 2002–2018
was lower than that of the GOSIF and the PML-V2 GPP, and higher than that of the MOD17,
the revised EC-LUE, and the NIRv GPP products.
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Figure 7. Spatial pattern of global mean annual GPP of cropland (average over 2002–2018) estimated
by (a) EF-LUE, (b) MOD17, (c) revised EC-LUE, (d) GOSIF GPP, (e) PML-V2 GPP, and (f) NIRv GPP.

Figure 8 showed the difference in mean annual GPP (2002-2018) between the EF-LUE
model and the five GPP datasets listed in Table 4. The MOD17 GPP showed generally low
values (this was consistent with the site-level assessment where MOD17 gave the largest
negative bias as shown in Figure 6), especially in Western Europe, East Asia, Southeast Asia,
and some high-productivity regions in Africa and South America, whereas it was higher
than the EF-LUE GPP in Central Europe, and Western Russia. This might be attributed
to the constant εmax value for all cropland used in the MOD17 method. Another reason
for the large deviation in arid and semi-arid regions might be the insufficient expression
of soil moisture constraints in the LUE model of the MOD17 GPP method. The EF-LUE
GPP was significantly higher than the other two LUE GPP products and close to GOSIF
GPP, NIRv GPP and PML-V2 GPP in Western Europe. However, in Eastern Europe and
Russia, our model results seemed lower than GOSIF GPP, NIRv GPP, and PML-V2 GPP,
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the PML-V2 GPP showed the highest values in this region. Both the MOD17 GPP and
the revised EC-LUE GPP used the VPD function to constrain actual LUE without explicit
consideration of soil moisture condition. The values from the revised EC-LUE GPP were
generally higher than that of MOD17 GPP in the local high-productivity regions of southern
China, Brazil, and Africa, which may be due to the consideration of diffuse radiation in
estimation of LUE in the revised EC-LUE method. PML-V2 also used VPD to regulate
canopy conductance and GPP. Although SIF is sensitive to drought, uncertainty might be
introduced due to the fact that the long-term GOSIF GPP product was generated based on
coarse-resolution SIF observations and re-produced at high spatial resolution using the
relationship between SIF and other explanatory variables such as EVI, temperature, PAR,
and VPD, rather than directly using SIF observations at higher spatial resolution. The NIRv
GPP, based only on reflectance from red and near-infrared wavelength, might have missed
subtle changes in photosynthetic activity caused by physiological processes associated with
pigmentation [6,9].
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4.4. Comparison of GPP Products in Rainfed and Irrigated Croplands

In order to further evaluate the EF-LUE GPP, we cross-compared our estimated GPP for
rainfed and irrigated croplands with the existing GPP products listed in Table 4 (Figure 9).
As seen in Figure 9, the global average of GPP estimated by different models from 2002
to 2018 in the rainfed crop is generally higher than that in the irrigated crop for all the
models/products. This is consistent with previous study that showed higher rainfed
croplands GPP values than that of irrigated croplands [75]. Our GPP results in rainfed
cropland are very close to the mean values of the six GPP products, while the GPP in
irrigated cropland from our model is slightly higher than the average of the multiple GPP
products of irrigated cropland.
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lines are the average GPP values of all 6 GPP products over rainfed cropland and irrigated croplands,
respectively.

We compared the average values of GPP estimated by different models for rainfed
cropland and irrigated cropland in 5 climate zones (Figure 10). In tropical climate zone
(A in Figure 10), the EF-LUE GPP (both rainfed and irrigated cropland) was closer to the
GPP values from the GOSIF and the PML-V2 GPPs. Except MOD17, rainfed cropland GPP
values by the other five GPP products were higher than the irrigated cropland GPP and
significantly higher than the MOD17 rainfed cropland GPP in tropical climate zone. In
arid climate zone (B in Figure 10), the EF-LUE GPP of rainfed cropland was closer to the
rainfed cropland GPP by GOSIF, MOD17, and PLM-V2. In temperate climate zone (C in
Figure 10), the EF-LUE GPP of rainfed cropland was close to that by MOD17, GOSIF, NIRv,
and PML-V2, while the irrigated cropland GPP by the EF-LUE model was close to that by
GOSIF and PLM-V2. In boreal climate zone (D in Figure 10), the irrigated cropland GPP by
the EF-LUE model was close to that by GOSIF, NIRv, and PLM-V2, but the EF-LUE model
showed lower GPP in rainfed cropland than MOD17, GOSIF, NIRv, and PLM-V2. In the
polar climate zone (E in Figure 10), the GPP values from our EF-LUE model and from the
other two LUE-based models were significantly lower than the values from GOSIF and
PLM-V2, particularly for irrigated cropland.

In summary, in most climate zones (except the polar zone), our GPP estimation for
both rainfed and irrigated croplands were close to that of GOSIF. The previous study
found strong positive correlations between SIF and root-zone soil moisture [76]. Proper
consideration of the restriction of soil moisture availability as done in our method might
help improve the estimation accuracy in cropland GPP. The PML-V2 GPP value in irrigated
cropland in dry climate areas was lower than our results and GOSIF GPP, which might be
partially due to that the PML-V2 model did not explicitly consider soil moisture constraint
in GPP calculation. The PML-V2 GPP was generally higher, but the PML-V2 GPP value
in irrigated cropland in dry climate areas was lower. In the arid and boreal climate zones,
the revised EC-LUE was significantly lower than other GPP products. A previous study of
product comparison also found that VPM and GOSIF showed similar results in cropland
GPP estimations whereas MOD17 and the revised EC-LUE GPP had relatively lower
values [77].
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polar (E) climate zones.

4.5. Assessment of GPP in Response to Extreme Events

To further evaluate the ability of the EF-LUE GPP to capture the impact of drought and
heat-wave events, we analyzed the response of the estimated GPP by the EF-LUE model
during different drought/heat-wave events. Four severe heat-wave and drought events
that occurred in recent years, including the 2010 Russian heat-wave, 2009 India heat-wave,
2013 China drought, and 2012 US Corn Belt drought, were selected for analysis. Figure 11
showed the percentage of mean GPP anomalies in the period during the heat-wave and
drought events with respect to multi-year monthly mean GPP over the same months of
extreme events in the past two decades. The heat-wave that occurred in western Russia in
the summer of 2010 resulted in the warmest July since 1880 in many regions of Russia [78],
which increased sensible heat flux by about 10–15% and reduced latent heat flux by about
15–20% reported in the literature [79]. The impact of heat-wave on the GPP estimated
by the EF-LUE model was pronounced with more than 30% reduction in GPP in most
croplands as seen in Figure 11a. In 2009, a heat-wave occurred in Orissa, West Bengal, Bihar,
Uttar Pradesh, Jharkhand, and Andhra Pradesh provinces in India. Our results showed a
significant reduction in GPP during the Indian 2009 heat-wave period (Figure 11b). In 2013,
different severe level of droughts occurred in Southwest China, the North China Plain,
and south of the Yangtze River, resulting in crop yields reduction to the largest negative
anomaly level since 1960 in these regions [80]. GPP estimated by the EF-LUE showed a
significant decrease (10~20%) in part of the North China Plain (Figure 11c). In 2012, a severe
drought occurred and spread over almost two thirds of the continental US, particularly in
the Corn Belt [81], which resulted in 25% reduction in maize yields [82]. Our result showed
a significant reduction in GPP (~30%) (Figure 11d).
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5. Discussion

The LUE-based models are widely used in remote sensing-based methods for GPP
estimation. Actual LUE highly varies and is determined by complex processes of crop
physiology and environmental conditions, thus leading to difficulty in GPP estimation with
high accuracy at the global scale [83]. Actual LUE is determined by potential LUE (εmax) and
environmental conditions. Previous studies suggest that the potential LUE (εmax) is related
to different vegetation types and is relatively more stable than actual LUE. However, a
study based on flux tower measurements showed the large spatial variability in εmax within
individual biome types [38]. Unlike the MOD17 GPP method which assumed a constant
εmax for all crops, in the EF-LUE model proposed in this paper, the model parameters were
optimized using available cropland flux tower data and took into account the parameter
differences in different climate zones when applied at global scale. This overcomes the
serious underestimation in MOD17 GPP. Based on a literature survey, the range of εmax
was between 0–4 g C MJ−1 [83,84]. Our optimized value clearly showed the large range
of εmax values for different crops in different climate zones, with the largest εmax value
(3.9 g C MJ−1) found at maize (C4 crop) site. Maize is a C4 crop with a greater LUE than
C3 crops, while the value of εmax for maize derived from ground observations in previous
studies was 3.84 ± 0.08 g C MJ−1 [85], close to our estimation.

The great variation of cropland LUE is associated with crop types and environmental
and water supply conditions, and therefore is dependent on the actual crop cultivation.
Compared with natural ecosystems, crop types may change rapidly due to management
practices by farmers (such as crop rotation plans), which means the values of εmax will
change with the different crop rotation cycles. There are some regions adopting rotation
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or intercropping system, e.g., planting maize and soybeans in different years or in the
same year by intercropping. Due to different photosynthesis pathways, the εmax of maize
is much higher than that of soybean. Optimizing the model parameters using the flux
tower data without distinguishing the two crops may lead to underestimation of maize
GPP and overestimation of soybean GPP. For the cropland GPP estimation based on the
LUE type models using remote sensing data at regional and global scales, further attention
should be paid to the impact of different crop types (at least distinguishing C3 and C4
crops) and crops phenological periods on the optimization of model parameters. The model
parameters can be estimated more precisely if detailed crop types are known.

In the EF-LUE model, the water availability constraint factor, represented by EF, mod-
ulates the influence of soil water supply on crop productivity and can avoid overestimation
of GPP when crop experiencing water stress. As in previous studies carried out at site-level,
EF can be used to quantify soil water availability in LUE models and can improve the
accuracy of GPP estimation [23,86,87], and many studies have tried to revise the GPP model
based on remote sensing EF as an indicator of water stress at regional scales [88,89]. Soil
heat flux was neglected in the calculation of available energy in the study by [88], instead
Rn was used in the denominator of the equation for EF calculation in their LUE model
for GPP estimation in regional scale application. However, neglecting soil heat flux (G)
in the EF calculation may bring large errors in particular over regions where daily soil
heat flux is large. For global application in our study, daily EF was calculated by daily ET
and daily values of Rn−G from the ETMonitor model, in which daily G was estimated
by a machine learning algorithm established based on measurements of G and several
explanatory variables, and the results of G showed good agreement with the ground
measurements at flux tower sites. In addition, ETMonitor could consider the impact of
soil water content on ET, which made it able to capture the spatiotemporal variation of
EF well [64,90]. The ETMonitor model was applied to regional scales successfully and
proven to have high accuracy as shown in several studies [65–67]. For example, a study on
evaluating satellite-based ET products showed that ETMonitor had the highest R value of
0.83 and the lowest RMSD of 0.92 mm/d, while the other 6 ET products had correlation
coefficients of 0.58 to 0.78 and RMSD of 1.13 to 1.41 mm/d [91]. Although the accurate ET
from ETMonitor partly ensured the overall good performance of the EF-LUE model for
cropland GPP estimation in this study, future work is still needed on systematic analysis of
the remaining uncertainties brought by the EF.

Carbon and water fluxes are inherently tightly coupled through plant stomatal ac-
tivity. Carbon gain through photosynthesis and water loss through transpiration are the
two dominant processes in the global water and carbon cycles and are simultaneously
controlled by plant stomatal behavior in response to environmental conditions [92]. The
two processes have similar characteristics to respond to changes in many environmental
conditions, such as radiation, temperature, and VPD [93]. Soil moisture affects evapotran-
spiration and photosynthesis by regulating leave water potential and thereby affecting
stomatal conductance that determines carbon and water exchanges between plants and
the surrounding atmosphere. Some studies based on the conductance method have used
some form of carbon–water coupling to estimate GPP and evapotranspiration [69]. As
demonstrated by our study, integrating EF in the LUE type of model for GPP estimation is
an effective method to provide satisfactory results in most cases. In future studies, more
attentions should be paid to exploring methodologies that tightly couple the carbon and
water processes.

Moreover, some studies have shown that GPP and LUE increase with increasing diffuse
radiation [94]. The diffuse radiation may reach shadowed leaves where the photosynthesis
rate is usually limited [95]. A previous study found that the enhancement in LUE by diffuse
radiation is significantly different in different ecosystems. However, crops showed less
sensitivity to diffuse radiation than natural vegetation, which may be due to cultivation
management by farmers [96].
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We used GPP derived from flux tower sites to calibrate model parameters and ver-
ify the model results. GPP is not directly observed by the eddy covariance system. The
partitioning algorithm for calculating GPP from CO2 flux measurements introduces uncer-
tainty. There are too few cropland flux tower sites globally, and these sites are not evenly
distributed in space. Most of the sites are located in temperate and boreal regions (such as
Europe and North America), and the semi-arid and tropical regions are underrepresented
in the calibration dataset. These also bring large uncertainty to large scale applications.
Furthermore, the pixel size (1 km in this study) of remote sensing data is inconsistent with
the footprint of ground GPP observations (generally several hundred meters depending
on the winds and atmospheric stability), which will inevitably lead to uncertainties in the
verification of results. Further research needs to consider the impact of scale mismatch
between ground measurements and the pixel size of satellite observations, and combine
different spatial resolutions data for verifying model performance.

It should be noted that the satellite remote sensing-based FAPAR was used in our
parameter optimization procedure, and uncertainty in the remote sensing FAPAR may
be attributed to the uncertainty of the optimized parameters in some sites, which in turn
generates uncertainty in the estimated GPP. Improvement on remote sensing FAPAR is
necessary for increasing the accuracy in global cropland GPP estimation using LUE type
models.

6. Conclusions

In this study, a light-use-efficiency-based model (EF-LUE) was developed and applied
to estimate global cropland GPP from 2001 to 2019. The water availability variable (i.e.,
indicating moisture stress), expressed by evaporative fraction (EF), was integrated in the
EF-LUE model to consider the impact of water availability on GPP. Three key model
parameters (εmax, Topt, and VPD0) in the developed EF-LUE model were optimized based
on ground flux observations, and the optimized parameters were further extrapolated
spatially according to climate zone classifications for global GPP estimation. The proposed
EF-LUE model performed well in simulating spatial and temporal variations of global
cropland GPP. It showed overall the highest R2, KGE, and NSE and the lowest RMSE over
the four existing GPP datasets (i.e., MOD17 GPP, revised EC-LUE GPP, GOSIF GPP, and
PML-V2 GPP), when compared with the ground measurements of GPP from flux towers
across crop sites globally. The accuracy of the EF-LUE GPP was also close to or even better
than that of the PML-V2 GPP and GOSIF GPP, which highlighted the ability and potential
of the LUE-based model for global GPP estimation, provided that the LUE model is well
structured and calibrated, as with the EF-LUE model developed in this study. This study
demonstrated the reliability of the EF-LUE model for estimating global cropland GPP by
integrating EF as the indicator of soil water availability. It revealed that the EF-LUE GPP
could track the impact of drought and heat-wave events on cropland productivity. This
study provided a valuable dataset of cropland GPP at the global scale for the past two
decades and could be further used for crop yield estimation.
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Appendix A

Table A1. The description of the Köppen-Geiger classes [56].

Climate Type Description

Af Tropical, rainforest
Am Tropical, monsoon
Aw Tropical, savannah

BWh Arid, desert, hot
BWk Arid, desert, cold
BSh Arid, steppe, hot
BSk Arid, steppe, cold
Csa Temperate, dry summer, hot summer
Csb Temperate, dry summer, warm summer
Csc Temperate, dry summer, cold summer
Cwa Temperate, dry winter, hot summer
Cwb Temperate, dry winter, warm summer
Cwc Temperate, dry winter, cold summer
Cfa Temperate, no dry season, hot summer
Cfb Temperate, no dry season, warm summer
Cfc Temperate, no dry season, cold summer
Dsa Cold, dry summer, hot summer
Dsb Cold, dry summer, warm summer
Dsc Cold, dry summer, cold summer
Dsd Cold, dry summer, very cold winter
Dwa Cold, dry winter, hot summer
Dwb Cold, dry winter, warm summer
Dwc Cold, dry winter, cold summer
Dwd Cold, dry winter, very cold winter
Dfa Cold, no dry season, hot summer
Dfb Cold, no dry season, warm summer
Dfc Cold, no dry season, cold summer
Dfd Cold, no dry season, very cold winter
ET Polar, tundra
EF Polar, frost

Appendix B

ETMonitor contains different modules to parameterize water flux components from
soil-vegetation canopy, bare soil, open water, and ice and snow surfaces [32,33,64,65], and
total ET (in a broader definition) is the sum of the components. The applications of ET-
Monitor can also be found in [65–67,91]. For this study, the results of ET in agroecosystems
(soil-vegetation canopy) by ETMonitor were used. ETMonitor used the Shuttleworth-
Wallace dual-source model [97], combined with parameterizations of a series of resistances,
to estimate soil evaporation and vegetation transpiration for soil-vegetation canopy, and
the total ET was calculated as the sum of soil evaporation and transpiration of crop plants.
The soil evaporation (Es) and plants transpiration (Tv) were estimated as

Es =
∆(Rns − G) + ρcpD0/rs

a

λ∆ + λγ(1 + rs
s/rs

a)
(A1)

Tv =
∆Rnc + ρcpD0/rc

a

λ∆ + λγ(1 + rc
s/rc

a)
(A2)

where Rnc (W·m−2) is net radiation flux absorbed by the vegetation canopy; Rns (W·m−2)
is net radiation flux arrives at the soil surface; G is the soil heat flux (W m−2); rc

a is the bulk
boundary layer resistance of the vegetation (s m−1), estimated according to the canopy
height; rc

s is the bulk stomatal resistance of the canopy (s m−1), estimated by Jarvis-type
model [92,98]; rs

a is the aerodynamic resistance between the soil surface and the canopy
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source height (s m−1); rs
s is the surface resistance of the soil (s m−1); ∆ is the slope of

the saturation vapor pressure curve of the air temperature (kPa K−1); ρ is the air density
(kg m−3); cp is the specific heat of air (J kg−1 K−1); D0 is the water vapor pressure deficit
at the canopy source height (kPa); λ is the latent heat of evaporation (J kg−1); γ is the
psychrometric constant (kPa K−1). Details on ETMonitor and its regional applications can
be found in our previous studies [32,33,64,65].

The net radiation (Rn) is estimated from the incoming and outgoing radiation fluxes
in shortwave and longwave, and total Rn was partitioned to Rnc and Rns following:

Rn = (1− α)RS↓ + RL↓ − RL↑ − (1− εs)RL↓ (A3)

where α is surface albedo; RS↓ is incoming shortwave radiation (W m−2); RL↓ is incoming
longwave radiation (W m−2); RL↑ is outgoing longwave radiation (W m−2); εs is broadband
surface emissivity. In addition, the interception loss amount was estimated by a revised
Gash analytical model, and the details can be found in our previous study [99].

The daily G in ETMonitor was estimated by a machine learning algorithm established
based on in situ measurements of G and several explanatory variables, and the results of G
showed good agreement with the ground measurements at flux tower sites.

The ETMonitor was applied in combination with multi-source remote sensing data
and re-analysis data from ERA5 to obtain global ET product at daily temporal and 1 km
spatial resolutions in the last two decades. Applications of ETMonitor ET products can be
found in [65–67].
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