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Abstract: Microwave remote sensing instruments such as synthetic aperture radar (SAR) play an im-
portant role in scientific research applications, while they suffer great measurement distortion with the
presence of radio frequency interference (RFI). Existing methods either adopt model−based optimiza-
tion or follow a data−driven black−box learning scheme, and both have specific limitations in terms
of efficiency, accuracy, and interpretability. In this paper, we propose a hybrid model−constrained
deep learning approach for RFI extraction and mitigation by fusing the classical model-based and
advanced data-driven method. Considering the temporal-spatial correlation of target response,
as well as the random sparsity property for time−varying interference, a joint low−rank and sparse
optimization framework is established. Instead of applying the iterative optimization process with
uncertain convergency, the proposed scheme approximates the iterative process with a stacked recur-
rent neural network. By adopting this hybrid model−constrained deep learning strategy, the original
unsupervised decomposition problem is converted to a supervised learning problem. Experimental
results show the validity of the proposed method under diverse RFI scenarios, which could avoid the
manual tuning of model hyperparameters as well as speed up the efficiency.

Keywords: synthetic aperture radar; radio frequency interference; interference mitigation; model−
constrained deep learning; hybrid framework

1. Introduction
1.1. Background and Motivation

Microwave remote sensing instruments like synthetic aperture radar (SAR) could
operate day and night and serve as a versatile tool for a range of scientific applications
in Earth observation. The spectrum use of earth exploration−satellite service (EESS) is
strictly regulated by International Telecommunication Union (ITU) in certain frequency
bands and inevitably shared with many other radio services, including radiolocation, space
research, weather forecast [1], etc. The congested and contested spectrum usage makes the
SAR system vulnerable to spurious radio signals, causing measure distortion, and these
corrupting signals are referred to as radio frequency interference (RFI) [2].

1.2. Related Works

The RFI issues have drawn great attention in recent years due to adverse impact on
accurate remote sensing, ranging from image formation process, image interpretation,
as well as the accuracy of post−processing interferometric or polarimetric products [3,4].
Figure 1 compares particular examples acquired by the European Sentinel−1 system to
illustrate the degradation to the imaging quality.

In recent years, a lot of effort has been devoted to alleviating the influence of residual
RFI artifacts. A thorough review of existing mitigation techniques can be found in [5].
Generally, they can be categorized into model−based methods and data−driven methods
based on their distinctive inference mechanism.
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Figure 1. Comparison of SAR images with and without RFI artifacts acquired by the European
Sentinel−1 system. The obvious artifacts in (a,b) are terrestrial interference, while in (c,d) they
represent inter−satellite mutual interference.

The model−based approaches utilize mathematical expressions to represent the un-
derlying physics and prior knowledge. One kind of advanced model−based mitigation
technique utilizes the idea of signal decomposition, which manages to extract the latent com-
ponents or subspaces corresponding to RFI according to property difference between RFI
and target echoes, including the power, statistical difference, etc. Among them, the sparse
and low−rank properties are well studied and demonstrated in [6–10] by employing the
robust principal component analysis (RPCA) for a single scene in the raw data domain or
image domain. Further, the idea is also extended to deal with time−series images in [11].
The RPCA approach can decompose the data matrix into a low−rank component and
a sparse component via unsupervised iterative optimization. However, its efficiency is
limited because of the relatively high dimension of the data matrix and uncertain conver-
gence rate. Meanwhile, the model hyperparameters should be pre−defined empirically
for the data according to prior knowledge. It is not a simple task in practical applica-
tions with diverse RFI scenarios and is also not suitable for mass processing in remote
sensing applications [12].

On the other hand, with the advancement of deep learning approaches, data−driven
intelligent learning methods have become an emerging trend for signal processing in recent
years [13]. Thanks to the accumulation of big data in the remote sensing community, several
neural network−based learning methods have shown superior performance and promising
potential for efficient RFI detection and mitigation [14–18]. However, these methods are
black−box in nature and lack certain interpretability. Their performance lies in the access
of abundant data and immense computational resources, which limits the applicability for
some practical scenarios with limited paired training samples.
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1.3. Contributions

Figure 2 compares the pros and cons of these two types of approaches. Historically, the
model−based method and the data−driven method have often been treated as two different
fields with very different scientific paradigms [19]. However, these two schemes are
complementary, with model−based approaches in principle being directly interpretable,
whereas data−driven approaches are highly flexible in adapting to data and are amenable
to discovering implicit features. To make full use of their respective merits and eliminate
the deficiencies, we are investigating a hybrid fusing technique to explore the synergy
between these two approaches, i.e., with the incorporation of principled domain knowledge
and physical modelling into the design of data−driven network architecture [20,21].

Figure 2. Hybrid fusion of model−based method and data−driven method.

In this paper, a model−constrained deep learning approach for RFI extraction and
mitigation in SAR data is proposed. The main contributions are summarized as follows:

(1) This paper established a joint low−rank and sparse optimization framework by con-
sidering the temporalspatial correlation of target response, as well as the random
sparsity property for time−varying interference. The model−based iterative optimiza-
tion procedures are derived and propose an alternative recurrent neural networks
(RNN) structure to imitate the iterative process, which improves the efficiency and
provides an innovative insight into the traditional iterative optimization problems.

(2) In the proposed hybrid fusing scheme, the original unsupervised decomposition
problem is equivalently converted to a supervised neural network−based learning
problem. Unlike the generic off−the−shelf network structure, such a strategy incor-
porates partial domain knowledge via the underlying physical modeling into the
network architecture. The model constrained network architecture is more inter-
pretable, and the hyperparameters could be learned from reasonably sized training
sets, rather than predefined through empirically manual tuning.

(3) The performance of the proposed method is verified on simulated and real measured
experimental results under complicated heterogeneous scenarios with typical RFI
types. It could achieve a better balance between efficiency and accuracy, which
is beneficial for incorporation into the general automated processing flow of SAR
data processing.

2. Problem Formulation

Figure 3 illustrates the interfering mechanism and the resulting received radar echoes.
Under the stop−and−go model, for each azimuth time ta, the discretized radar echoes
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x(n) could be modeled as a mixture of target echoes s(n), interferences i(n), and thermal
noise e(n) [22] without loss of generality, i.e.,

x(n) = s(n) + i(n) + e(n), n = 1 · · ·Nr (1)

where Nr denotes the samples along fast-time.

Figure 3. Illustration of the interfering mechanism and the resulting received radar echoes.

Generally, the goal of the RFI mitigation problem is to separate the interference and
recover the echoes as much as possible. The solution to (1) is a single−channel signal
source separation problem and is generally difficult to solve. Since RFI and target response
are originated from different sources, the signal modulation characteristics are different.
It is straightforward to characterize the RFI signatures in the time−frequency plane to
maximize the non−overlapping portion of signals. The short time−frequency transform
(STFT) is an efficient yet effective method, which can be represented as,

Y =
M−1

∑
m=0

h(m)x(n + m)e−j2πmk/M (2)

where Y ∈ CP×Q is the resulting STFT complex spectrogram for the received echoes of
a single pulse, and h(m) is a sliding window with a length of M.

After performing the STFT transform on the adjacent Na pulses’ echoes, the complex
spectrogram matrix of RFI-contaminated echoes D ∈ CPQ×Na is formed, as depicted in
the left part of Figure 4. The rationale behind this consideration is the assumption that
the adjacent echoes are highly correlated and possess low−rank properties. Moreover,
the RFI is originated from uncorrelated sources and its pulse timing is not synchronous
with the radar pules, which would present time−varying and sparse properties among
different azimuth pulses, as shown in Figure 2. These assumptions are well demonstrated
in previous studies [6–8].

Therefore, the RFI mitigation problem can be expressed as a general decomposition
framework, i.e.,

D = H1L + H2S + E (3)

where L ∈ CPQ×Na is assumed as a low-rank matrix corresponding to the target echoes
attributes to its high temporal-spatial correlation. S ∈ CPQ×Na is assumed as a sparse
matrix corresponding to the interference, since it appears randomly and sparsely on the
2-D data plane [7]. H1 and H2 are the measurement matrices of appropriate dimensions.
E denotes the noise matrix. Figure 4 illustrates the physical model establishment process
which incorporates the prior domain knowledge.
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Figure 4. Representation of joint low−rank and sparse model for SAR data.

For RFI characterization and removal, the goal is managed to extract the latent com-
ponents under the joint low−rank and sparse property assumption, which can be cast as
a minimization problem,

min
L, S

1
2
‖D− (H1L + H2S)‖2

F + λ1‖L‖∗ + λ2‖S‖1,2 (4)

where ‖·‖F, ‖·‖∗ and ‖·‖1,2 denotes the Frobenius norm, nuclear norm and the mixed l1,2
norm, respectively. λ1 and λ2 are the regularized parameters that constrain the low-rank
and sparsity property of the decomposition components.

Further, Equation (4) can be rewritten as

min
L, S

1
2
‖D−AX‖2

F + h(X) (5)

where X = [L; S], P1 = [I; 0], P2 = [0; I], and h(X) = ∑2
i=1 λiρi(PiX), ρ1 = ‖·‖∗, ρ2 = ‖·‖1,2.

The minimization problem is a regularized least−squares problem, which can be
solved using the fast iterative shrinkage/thresholding algorithm (FISTA) [23], i.e.,

Lk+1 = SVTλ1/L f

{(
I− 1

L f
HH

1 H1

)
Lk −HH

1 H2Sk + HH
1 D

}
(6)

Sk+1 = Tλ2/L f

{(
I− 1

L f
HH

2 H2

)
Sk −HH

2 H1Lk + HH
2 D

}
(7)

where Tλ2/L f
(·) is the soft-thresholding operation, and SVTλ1/L f

(·) denotes the singular
value thresholding operation. L f is the Lipschitz constant of the quadratic term of (5).

By employing the iterative process shown in (6) and (7), the interference could be
extracted out and eliminated. In this case, the measurement matrices H1 and H2 are identity
matrices. Thus, the performance relies on the careful choice of hyperparameters λ1 and λ2,
which is usually empirically set according to the specific dataset.
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3. Theory and Methodology

In recent years, the proliferation of machine learning technologies has emerged in
widespread disciplines to help generate new approaches derived from data. The universal
approximation theorem states that any continuous function could be well approximated
by a neural network with a single hidden layer containing a finite number of neurons [24].
Gregor et al. [25] prove the dramatic improvement in convergence by fusing the neural
network into traditional model−based methods. Therefore, in this part, we will introduce
a novel method to reformulate the iterative problem in (6) and (7).

The recurrent neural network is one of the state−of−the−art algorithms suited for
problems involving sequential data. In an RNN unit, the information cycles through a loop
to form an internal memory. That is, it considers the current input and the knowledge
learned from previous inputs to make a decision. Figure 5 illustrates the structure of the
recurrent neural network and its unrolled counterpart. The output and input relation
between the RNN unit could be expressed as,

St = f (UXt + WSt−1) (8)

Yt = g(VSt + b) (9)

where St represent a hidden state at time instant t, and acts as the network memory. U,
V, W and b are network hyperparameters that characterize the connection between input,
hidden and output layers, and all these weights (U, V, W, b) are shared as fixed across time.
f (·) and g(·) are nonlinear activation functions.

Figure 5. Notation of recurrent neural network and its unrolled counterpart.

As shown in Figure 5, the unrolling part is the equivalent expansion with the evolution
of time. It is shown that the structure of RNN is very similar to the iterative process, in which
the current output is related to the previous output in a recursive manner. Therefore, the al-
gorithm unrolling provides a bridging connection between the iterative algorithms and the
neural network [26]. Specifically, each iteration of the algorithm step could be represented
as one layer of the network, and a deep neural network is formed by sequentially stacking
these layers. In equivalence, when the information passes through the network it means
that the iterative algorithm is executed a finite number of times.

Therefore, the problem becomes how to design appropriate architecture and deter-
mine parameterized matrices. By replacing the matrix multiplications in (6) and (7) with
convolutional layers, the original iterative problem can be represented as [23],

Lk+1 = SVTλk
1

{
Pk

5 ∗ Lk + Pk
3 ∗ Sk + Pk

1 ∗D
}

(10)

Sk+1 = Tλk
2

{
Pk

6 ∗ Lk + Pk
4 ∗ Sk + Pk

2 ∗D
}

(11)

where ∗ denotes the convolution operation. Pk
1, · · · , Pk

6 denote the convolutional kernels of
the k−th layer, in which the parameters are learned from the real−word training sets and
may vary in each layer. Figure 6 illustrates the process of an equivalent replacement.
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Figure 6. The architecture of the proposed model−constrained deep learning approach. (a) Orig-
inal iterative optimization problem. (b) Proposed equivalent replacement of stacked multi−layer
RNN units.

The network is subsequently trained by the back−propagation method using paired
inputs and outputs, and the loss function is chosen as the sum of the mean squared errors
between the predicted values,

Loss(ϑ) =
1

2N

(
N

∑
i=1

∥∥ fS(Di, ϑ)− Ŝi
∥∥2

F +
N

∑
i=1

∥∥ fL(Di, ϑ)− L̂i
∥∥2

F

)
(12)

where Di, Ŝi, L̂i are the training samples. N is the number of samples. fS(Di, ϑ) and
fL(Di, ϑ) is the estimated sparse, low-rank components, respectively, which are determined
by the parameter set ϑ =

{
Pk

1, · · · , Pk
6, λk

1, λk
2

}
.

By employing the transformation, the original unsupervised data−oriented iterative
optimization problem is converted into a supervised learning problem. Compared with
the original problem, it requires additional labeled ground−truth data for training. The
unfixed iterative process is imitated by using the fixed multi−layer RNN units, which can
speed up the iteration convergence. The regularization parameters are incorporated into
the network and can be tuned automatically during the training process without manual
determination. Compared with the generic data−driven methods, the proposed hybrid
scheme inherits prior physical modelling knowledge to design the network architecture,
which greatly improves the interpretability of the data−driven learning mechanism. More-
over, it entails fewer parameters and requires fewer training data. Therefore, the proposed
hybrid fusion method adopts the merits of both kinds of approaches and tends to have
better generalization performance.

4. Experimental Results and Discussions
4.1. Experimental Results of Synthetic Data
4.1.1. Experimental Setting

In this part, an airborne SAR dataset operates at X−band is used for the performance
validation. Figure 7 summarizes the overall flowchart of the proposed processing scheme.
Firstly, several representative RFI signals that are easily encountered in real scenarios,
i.e., narrow−band interference, pulsed interference, wide−band interference, are simulated
and randomly injected on the raw data echoes [27]. The number of echo samples for a single
pulse is 4096, and it is transformed into spectrograms to form a stacked 3D data tensor
of size 256× 4096× 20. Considering the relatively large dimension and to alleviate the
computation burden of the training process, the entire 3−D tensor is divided into small
sub−blocks of size 64× 64, as shown in the left part of Figure 7. After forming the data
tube and sub−blocks partition, the stacked RNN network undergoes the training process.
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In this example, the number of RNN units are designed as 10 layers, in which the first
three convolutional layers have a kernel size of 5 × 5 × 1, and the latter seven layers have
a size of 3 × 3 × 1. In total, 2000 matrix samples were used for training, and 560 samples
were used for testing. The Adam optimizer was employed to realize the learning process
with a learning rate of 0.002. The initial value of the model hyperparameters λ1, λ2 are set
arbitrarily as 0.4 and 1.8, respectively.

Figure 7. Overall workflow of the proposed scheme for RFI extraction and mitigation.

Figure 8 shows how the loss function changes with the iteration steps during the
training phase. It shows that the training loss decreases gradually and fluctuates slightly
after 50 epochs. After the training process, the well−trained network and its optimized
hyperparameters are saved for further inference task. In the test phase, the data is also
divided into small sub−blocks and undergoes a concatenation step after applying the
proposed scheme.

Figure 8. Variation of loss function value with iteration steps in the training phase.

4.1.2. Performance Discussion

For performance verification, two advanced decomposition methods including perfor-
mance by PCA [22], RPCA [7], and BSF [28] were selected for comparison. The hyperpa-
rameters of both methods are optimally chosen after extensive comparison. Figures 9–11
show the interference estimation and mitigation results of two particular pulse echoes
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under four typical interference scenarios: narrowband interference, pulse interference,
chirp modulated wideband interference, and sinusoidal modulated wideband interfer-
ence. The essence of the proposed method is the time−frequency processing, and it has
better performance when the interference is nonoverlapping and sparse compared with the
target echo.

Figure 9. Comparison results of two particular sub−blocks for the narrowband RFI. (a) Original
RFI−free spectrogram, (b) Simulated RFI, (c) RFI−contaminated spectrogram. (d) Estimated target
response. (e) Extracted interference patterns. Each row corresponds to a particular pulse.

Figure 10. Comparison results of two particular sub−blocks for the pulsed RFI. (a) Original RFI−free
spectrogram, (b) Simulated RFI, (c) RFI−contaminated spectrogram. (d) Estimated target response.
(e) Extracted interference patterns. Each row corresponds to a particular pulse.

The previous part illustrates the results under different interference types. In the
following, the robustness of the proposed method with strong and weak RFI energy is
demonstrated. Figures 12 and 13 compare the interference extraction and mitigation per-
formance of various methods under strong RFI and weak RFI, respectively. For the strong
interference scenario, the targets echoes are covered up by the interference signatures and
introduce large distortions, as shown in Figure 12a or Figure 13a. For the narrow−band
interference case shown in Figure 12b–d, it is shown that the PCA and RPCA can recover
the underlying spectrogram of the target echoes. As shown in the third column, the inter-
ference patterns estimated by the RPCA method are not continuous, indicating inaccurate
characterization of the RFI artifacts. The proposed method shows superior performance
for RFI elimination since the background residual is less and more approximate to the
simulated RFI signatures.
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Figure 11. Comparison results of two particular sub−blocks for the chirp modulated RFI. (a) Original
RFI−free spectrogram, (b) Simulated RFI, (c) RFI−contaminated spectrogram. (d) Estimated target
response. (e) Extracted interference patterns. Each row corresponds to a particular pulse.

Figure 12. Comparison results for narrowband RFI with strong energy. (a) depicts the echoes for
processing. (b–d) are the results of PCA, RPCA, and the proposed approach, respectively.
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Figure 13. Comparison results for pulsed RFI with strong energy. (a) depicts the echoes for processing.
(b–d) are the results of PCA, RPCA, and the proposed approach, respectively.

For the second case with pulsed interference, the PCA and RPCA present great perfor-
mance degradation, in which the estimated target response and extracted RFI artifacts are
still mixed, as shown in Figure 13b–d. In contrast, the proposed method can clearly estimate
and extract RFI features from the data, effectively suppress the interference, and retain the
effective information of the original data as much as possible.

Figures 14 and 15 compare the performance under weak RFI scenarios. As shown in
Figure 14a or Figure 15a, the interference energy is much weaker than the original echo
matrix. Compared with the original RFI−free spectrogram, the outline of the original
information is still well captured even with RFI contamination. In this case, it increases the
difficulty of RFI estimation and extraction.

As shown in Figure 14b–d or Figure 15b–d, the result of low−rank information
recovery by RPCA is slightly better than that of PCA, whereas it is inferior to the proposed
method. Moreover, in terms of the extracted RFI signatures, the PCA is better than the
RPCA. For the RPCA, a single soft threshold would bias the result to one of the objectives
of sparsity and low rank, resulting in more information loss of the RFI signatures. Since
the interference energy is weak and the correlation between adjacent pulses is larger,
the threshold in PCA is more biased towards the reconstruction of target echo. The
proposed method is more accurate and robust, thanks to its hybrid fusion framework
that both incorporates the domain knowledge, as well as learns the hyperparameters from
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the data. The proposed method has an adaptive soft threshold for each layer and enables
better generalization capability for various RFI scenarios with diverse modulation types
and energy.

Figure 16 shows the simulated echo data for performance comparison. Figure 17
compares the overall results after the concatenation of all the sub−blocks. It is shown
that the RFI signatures are very complex, with raindrop−like artifacts overlapped with
the target echoes in the whole time−frequency plane. The PCA and RPCA realize RFI
extraction and mitigation with larger distortions to the target echoes. The proposed method
extracts the RFI artifacts more clearly and the target echoes are preserved in good quality.

For quantitative comparison, the mean squared error (MSE) metric is used for perfor-
mance evaluation, which is defined as

MSE =
1
K

K

∑
k=1

(ŷk − yk)
2 (13)

where ŷk denotes the predicted values, and yk denotes the original RFI-free samples, k is
the number of samples.

Figure 14. Comparison results for chirp modulated RFI with weak energy. (a) depicts the echoes for
processing. (b–d) are the results of PCA, RPCA, and the proposed approach, respectively.
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Figure 15. Comparison results for sinusoidal modulated RFI with weak energy. (a) depicts the echoes
for processing. (b–d) are the results of PCA, RPCA, and the proposed approach, respectively.

Figure 16. Simulated echoes for performance verification. (a) Original RFI−free spectrogram, (b) Sim-
ulated RFI, (c) RFI−contaminated spectrograms.

To verify the robustness of the proposed method, the performance under different
signal to interference power ratio (SIR) is compared, as shown in Figure 18. From the curve,
it indicates that the proposed method could achieve rather minimum reconstruction errors
compared with other techniques, indicating a better characterization of the raw echo and
less signal distortion.
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Figure 17. Comparison results after applying (a) PCA, (b) BSF, (c) RPCA, and (d) the proposed approach.

Figure 18. Variation of MSE with various signal to interference power ratios.

4.2. Experimental Results of Real−Measured Data

In this section, real−measured data is used for further demonstration. This data was
acquired in the urban area of a city in western China. This dataset consists of various land
covers, including the airport, civil buildings, and farm. The bandwidth of the transmitted
signal is 180 MHz, and it is contaminated by spurious signals from the terrestrial radio
services. Figure 19a shows the imaging results using the RFI-contaminated results. It is
shown that the image is significantly distorted, due to the resulting strong RFI artifacts
overlapping almost the whole scene. The overlapping artifacts cover up the target of
interest such as the airport, making it rather difficult for the subsequent image interpretation
applications. Figure 19b–d compare the RFI mitigation performance by PCA [22], RPCA [7],
BSF [28], and proposed method, respectively. The hyperparameters of the baseline methods
are well-tuned to achieve a best performance. Figure 20 shows the locally zoomed up
results of the airport region. It is shown that after processing by PCA, the power of RFI
artifacts tends to be alleviated, but still has significant residual foggy patterns spanning
along the whole image plane. The BSF outperforms the PCA, in which the majority of the
RFI artifacts are successfully mitigated. However, some residual bright lines still existed in
the azimuth. The RPCA and the proposed method have a better performance from visual
inspection, in which the airplanes on the airport and the land covers are clearly recovered.
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Figure 19. Comparison of imaging results. (a) RFI-contaminated image. (b) PCA, (c) BSF, (d) RPCA,
and (e) proposed method.
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and (d) proposed method.

To quantitatively evaluate the performance, we have selected two standard metrics
to evaluate the image quality [29], i.e., the peak-signal-to-noise ratio (PSNR) and the
structural similarity index measure (SSIM). The PSNR is an expression for the ratio between
the maximum possible value (power) of a signal and the power of distorting noise that
affects the quality. It represents a measure of the peak error and a higher PSNR indicates
a better image quality. The SSIM is a perceptual metric that quantifies image quality
degradation caused by processing and it is based on visible structures in the image. A larger
value of SSIM represents a better mitigation performance. Table 1 lists the values of
different methods, and it is shown that the proposed method could achieve a superior
performance in terms of both metrics. These results are also consistent with previous
qualitative evaluations.

Table 1. Imaging Evaluation Metrics for RFI Mitigation Performance.

Metrics PCA [22] BSF [28] RPCA [7] Proposed

PSNR 13.2132 18.7638 20.9084 22.2038
SSIM 0.1471 0.4734 0.5748 0.6780

5. Conclusions

RFI is a pervasive issue for the scientific applications of microwave remote sensing.
Existing model-based or data-driven methods for RFI mitigation have made significant
progress over the past few years, whereas it is difficult to achieve a balance between domain
prior knowledge and data adaption. To alleviate this problem, this paper proposed a novel
model-constrained deep learning scheme for RFI extraction and mitigation. The merits of
the proposed method could be summarized as:

(1) From the data modeling perspective, the problem is formulated by principled physical
modeling. Considering the spatial-temporal correlation between adjacent pulses,
as well as the time-varying property of RFI, the problem is modelled as a joint low-rank
and sparse decomposition issue. The original solution is achieved via unsupervised
iterative optimization, in which the regularization parameters should be set as a priori
and the convergence rate is not explicitly guaranteed.
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(2) From the data characterization perspective, the proposed hybrid framework incorpo-
rates the recurrent neural network units to imitate the iterative process. By employing
this replacement, the proposed hybrid framework can perform automatic tuning
of hyperparameters, speed up the efficiency, and increase the interpretability of
the network.

The proposed scheme provides new insight into the traditional iterative optimization
problems and shows promising potential for solving complex problems. Besides the
benefits, the proposed hybrid scheme has certain limitations in practical applications. Since
the neural network techniques are data-dependent, the proposed method requires extra
labeled data pairs for training compared with the original unsupervised decomposition
problem. The conventional model-based method could be applied on a single data to
realize RFI mitigation, while the proposed method should be well-trained beforehand with
a cost of time for training. Moreover, the generalizability of the proposed method remains
a common critical issue when performance on datasets are significantly different from those
used during training. In the future, we would investigate a more refined fusing method for
model-constrained deep learning and seek its application in radar signal processing.
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