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Abstract: Satellite-derived solar-induced chlorophyll fluorescence (SIF) has been proven to be a
valuable tool for monitoring vegetation’s photosynthetic activity at regional or global scales. However,
the coarse spatiotemporal resolution or discrete space coverage of most satellite SIF datasets hinders
their full potential for studying carbon cycle and ecological processes at finer scales. Although the
recent TROPOspheric Monitoring Instrument (TROPOMI) partially addresses this issue, the SIF still
has drawbacks in spatial insufficiency and spatiotemporal discontinuities when gridded at high
spatiotemporal resolutions (e.g., 0.05◦, 1-day or 2-day) due to its nonuniform sampling sizes, swath
gaps, and clouds contaminations. Here, we generated a new global SIF product with Seamless
spatiotemporal coverage at Daily and 0.05◦ resolutions (SDSIF) during 2018–2020, using the random
forest (RF) approach together with TROPOMI SIF, MODIS reflectance and meteorological datasets.
We investigated how the model accuracy was affected by selection of explanatory variables and
model constraints. Eventually, models were trained and applied for specific continents and months
given the similar response of SIF to environmental variables within closer space and time. This
strategy achieved better accuracy (R2 = 0.928, RMSE = 0.0597 mW/m2/nm/sr) than one universal
model (R2 = 0.913, RMSE = 0.0653 mW/m2/nm/sr) for testing samples. The SDSIF product can
well preserve the temporal and spatial characteristics in original TROPOMI SIF with high temporal
correlations (mean R2 around 0.750) and low spatial residuals (less than ±0.081 mW/m2/nm/sr)
between them two at most regions (80% of global pixels). Compared with the original SIF at five
flux sites, SDSIF filled the temporal gaps and was better consistent with tower-based SIF at the daily
scale (the mean R2 increased from 0.467 to 0.744. Consequently, it provided more reliable 4-day SIF
averages than the original ones from sparse daily observations (e.g., the R2 at Daman site was raised
from 0.614 to 0.837), which resulted in a better correlation with 4-day tower-based GPP. Additionally,
the global coverage ratio and local spatial details had also been improved by the reconstructed
seamless SIF. Our product has advantages in spatiotemporal continuities and details over the original
TROPOMI SIF, which will benefit the application of satellite SIF for understanding carbon cycle and
ecological processes at finer spatial and temporal scales.

Keywords: solar-induced chlorophyll fluorescence; TROPOMI; global daily seamless; MODIS;
flux-towers; spatiotemporal resolution enhancement

1. Introduction

Solar-induced chlorophyll fluorescence (SIF) is an emitted optical signal by plant
chlorophyll during the photosynthesis process under natural sunlight, which is the main
process governing the global carbon cycle [1]. As a byproduct of photosynthesis, SIF can
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serve as a probe into a plant’s physiological state and photosynthetic capacity, unlike
the vegetation indices (VIs) that just reflect the plant’s apparent ‘greenness’ [2,3]. With
successful SIF retrieval from satellite sensors, SIF opens up an innovative insight in mon-
itoring the spatial and temporal patterns of the terrestrial carbon fixation by plants (i.e.,
the Gross Primary Productivity (GPP)) based on remote sensing data. Numerous studies
have verified the strong relationship between SIF and GPP and thus adopt SIF in the GPP
estimation at regional or global scales [4–9]. Moreover, satellite SIF is widely used in other
ecological, agricultural, and forestry fields, such as crop yield estimation [10,11], drought or
water stress detecting [12,13], or phenology monitoring [14,15]. These applications promote
SIF to being a research hotspot and put forward a strong demand for more refined SIF
global products in space and time.

Over the past several decades, numerous satellite SIF datasets have been success-
fully retrieved from different spaceborne instruments, including: GOSAT [16], SCIA-
MACHY [17], GOME-2 [18], OCO-2 [19], and TanSat [20]. However, these sensors are
either spatially sparse sampling (e.g., GOSAT, OCO-2, and Tansat) or have coarse spatial
resolutions (e.g., SCIAMACHY: 30 × 240 km2, GOME-2: 40 × 40 km2), and always with
low revisit frequencies (e.g., GOME-2: 1.5 days, and OCO-2/Tansat: 16 days). In addition,
the effects of cloud contamination on retrieved SIF signal further reduce the number of
valid observations. Moreover, in order to reduce the large noises inherent in individual SIF
retrievals, raw SIF soundings need to be aggregated to gridded products with spatial and
temporal averaging for further applications. This results in coarser spatiotemporal resolu-
tions for SIF datasets, such as the GOME-2 SIF products at 0.5◦ grids and monthly/biweekly
scales, and the global contiguous OCO-2 products at 1◦ grids and monthly scales [21]. The
arrival of TROPOspheric Monitoring Instrument (TROPOMI) on board Sentinel-5P in Octo-
ber 2017 substantially improves the ability in spatiotemporal sampling of earlier sensors.
It can provide SIF retrievals at a spatial continuous sampling of around 3.5–14 km across
track and 7 km along track (5 km since August 2019) with a revisit frequency of nearly one
day. Several TROPOMI SIF datasets are successively retrieved and published by [22–24].

However, the TROPOMI SIF still has spatiotemporal limitations when generated at
high resolutions (e.g., 0.05◦, 1-day or 2-day interval). First, the size of TROPOMI sampling
footprint is varied across track. It approaches to 0.05◦ (denoting the size in both latitude
and longitude in this study) when at nadir, and frequently is larger than 0.05◦ when away
from the nadir. Figure 1a displays an enlarged image of one region far away from the nadir
for example. Referring to [22], each grid cell is the average of those footprints covering
the center of this grid. The size of TROPOMI footprints (black solid frames) are 2–3 times
larger than the 0.05◦ grids (gray dotted frames). In this case, the composite 0.05◦ SIF cannot
achieve the real expected resolution, which contains large uncertainties in heterogeneous
area. Second, the TROPOMI SIF has remarkable discontinuities at 1-day or 2-day scales.
Lots of blank terrestrial areas exist within one day due to the swath gaps and thick clouds
(Figure 1b), which results in a global coverage of less than 75% and 88%, respectively,
within one day and two days during 2019 (Figure 1c). Meanwhile, the resulting temporal
gaps are also noteworthy. Taking the Aurora site in north America (42.7228◦N, 76.6628◦W)
for an example, almost a half and a quarter of the one-day and two-day periods during
2019 have none valid observations (see the upper subgraph of Figure 1d). Even at 4-day
scales, the gaps are still present and more than half of the 4-day periods have less than
two observations. Note that, cloudy-sky SIF retrievals are retained (cloudy fraction less
than 0.8) and no screening of observation numbers for data averaging is conducted in this
original SIF (called TROSIF005 in this study). With more strict screening of cloudy fraction
and observation numbers to reduce the noises, the valid cells will have a huge decrease.
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Figure 1. Visualizations of the spatiotemporal limitations in original TROPOMI SIF including spatial
resolution insufficiency (a), spatial gaps (b), and temporal discontinuities (c,d) at 0.05◦ resolution.

The above two drawbacks in spatial insufficiency and spatiotemporal discontinuities
will hinder the potential of TROPOMI SIF for finer-scale applications, especially for the
resulting spatiotemporal inconsistency with tower-based GPP or other continuous datasets.
First of all, the insufficiency with 0.05◦ will cause uncertainties in heterogeneous regions,
e.g., the spatial inconsistent with tower flux measurements will introduce errors in SIF-
GPP relationships and SIF-based GPP estimations. On the other hand, since SIF is a
highly changing signal with time, the multi-day SIF averages from sparse days (like
4-day SIF in Figure 1d) cannot represent the real SIF signal at this time scale. It will
cause a temporal mismatch with continuous carbon flux measurements and introduce
uncertainties in relationships between SIF and GPP, particularly for the cases in many
studies [22,25] that only instantaneous clear-sky SIF values or their n-day averages were
used for GPP estimations [26]. Therefore, developing a spatiotemporal enhancement
method for TROPOMI SIF to generate a 0.05◦ global daily seamless SIF dataset is quite
valuable.

To enhance spatial details of SIF datasets, a few studies have developed spatial down-
scaling or gap-filling approaches for coarse GOME-2 [27–30] or sparse OCO-2/Tansat SIF
datasets [31–34], respectively. The first of such models depends on the semi-empirical
function from the GPP light-used efficiency (LUE) concept [27]. More recently, machine-
learning (ML) algorithms such as Neural Networks (NN), regression tree, or Random Forest
(RF) are adopted due to its more flexible fitting, which have been proven to be effective in
SIF reconstruction [28,30–34]. Previous reconstructed SIF products are adequate in spatial
resolutions (mostly 0.05◦) but not meticulous in temporal resolutions (mostly monthly or
8-day intervals), which cannot provide continuous daily SIF to track the temporal dynamics.
They are insufficient with the ideal temporal resolution proposed by [29] for a SIF product
truly applied in the Earth system science community as a proxy for GPP. In addition, in
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those studies for GOME-2, OCO-2, or Tansat SIF reconstruction, different strategies in
selection of explanatory variables and model constraints are employed. However, for the
reconstruction of TROPOMI SIF, the strategies need to be specifically designed and further
verified with this new dataset.

The objective of this work is to reconstruct a new global Seamless SIF product at Daily
and 0.05◦ resolutions (SDSIF) for tackling the spatiotemporal limitations of TROPOMI SIF
for application. We first used the RF approach to train and test models between TROPOMI
SIF retrievals and explanatory variables from Moderate Resolution Imaging Spectrora-
diometer (MODIS) and ERA5. In the process of model development, we investigated if the
accuracy was affected by the selection of explanatory variables and the model constraints.
Then, the specified models were applied to reconstruct the SDSIF product during 2018–2020
using the explanatory variables at fine scale. Validation of this product was conducted by
comparisons with (i) original TROPOMI SIF retrievals at both 0.2◦, daily scales and 0.1◦,
16-day scales to respectively verify the preservation of temporal and spatial characteristics
in original SIF, and (ii) continuous tower-based SIF retrievals from five tower sites to verify
its capability of tracking SIF variations and advantages over TROSIF005 in temporal con-
tinuity and consistency at daily and 4-day scales. The spatiotemporal patterns of SDSIF
were also analyzed at global and regional scales, which emphasized its advantages in data
coverage and spatial details over TROSIF005 and its included physiological information
compared with VIs data.

2. Materials and Methods
2.1. Datasets from Space and Ground
2.1.1. Satellite SIF Data from TROPOMI

The global original TROPOMI SIF used in this study was derived from the datasets
published by [24], in which a data-driven approach [35] was applied to retrieve SIF and
the reliability of this dataset has been verified. We acquired the ungridded L2B SIF dataset
at daily scale covering the period from May 2018 to December 2020, which has passed
routine data screening, i.e., removing the data over water bodies, with a cloud fraction
(hereafter named CF) larger than 0.8, and a quality assurance (QA) value larger than 0.5
(referring to [24] for details). This dataset included SIF retrievals from two fitting windows
(743–758 nm and 735–758 nm). According to [24], the 735–758 nm SIF retrievals still have
difficulties in dealing with spectrally-steep radiance spectra, and the 743–758 nm window
has the best compromise between effects of clouds and retrieval precision errors. Thus, the
743–758 nm SIF was selected in this work. Further, we adopted the day-length corrected
SIF file based on cosine of the solar zenith angle (cos(SZA)) [4], which was also provided in
the L2B datasets.

The raw L2B SIF dataset was aggregated to gridded maps with data screening at dif-
ferent spatiotemporal scales in this work. First, for model development, we conducted data
screening to reduce the uncertainties in SIF retrievals due to clouds and noises in individual
SIF soundings. The screening strategies included: (i) only SIF soundings acquired under a
CF less than 0.2 were remained for the averaging of SIF grids (named 0.2-CF screening in
this study); and (ii) only SIF grids that averaged from more than 5 SIF soundings (named
5-N screening in this study) were involved in the model development, given that the
uncertainty in SIF retrievals can be reduced by a factor

√
n, in which n is the number of

observations in each aggregated grid [19]. On this basis, we aggregated the SIF soundings
to 0.1◦ and 8-day scales with 0.2-CF and 5-N screening (named 8-day TROSIF01

s ) for model
development (Section 2.2.2). The 0.1◦ resolution was selected since it was comparable to
the size of TROPOMI footprint that was often larger than 0.05◦ when away from the nadir
(see Figure 1). In this case, the 8-day interval was a compromise between temporal details
and number of SIF samples. Second, as reference products for SDSIF validation, a 16-day
TROSIF01

s was used to provide spatial details, and a daily 0.2◦ SIF with 0.2-CF and 5-N
screening (named daily TROSIF02

s ) was used to provide temporal details. Third, the 0.05◦
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gridded SIF with none 0.2-CF and 5-N screening (TROSIF005) was generated as a contrast
to verify the advantages of SDSIF in correlations with tower-based SIF and spatial details.

2.1.2. MODIS and ERA5 Datasets

Part of the potential explanatory variables (e.g., reflectance and VIs) involved in
the SIF reconstructed models were obtained from the MODIS product. Thereinto, the
reflectance datasets were derived from the MCD43C4 v006 product, which provided the
BRDF-corrected seven-band reflectance at 0.05◦, daily resolution from 2000 to present [36].
In order to ensure the quality of the training and testing samples, the reflectance with the
QA flag less than 3 was discarded. The VIs maps, including the Normalized Difference
Water Index (NDWI), Near-Infrared Radiance of vegetation (NIRv), Normalized Difference
Vegetation Index (NDVI), and the Enhanced Vegetation Index (EVI), were also calculated.
The 0.05◦, daily reflectance and VIs datasets were used for the global SIF prediction, and
were resampled to 0.1◦, 8-day resolution for the model development.

The meteorological variables possibly involved in SIF reconstruction, including air
temperature (Ta), vapor pressure deficit (VPD), photosynthetically active radiation (PAR),
and PAR under clear-sky conditions, were derived or calculated from the fifth ECMWF
Reanalysis (ERA5) dataset. This dataset provides related variables at 0.1◦, hourly resolu-
tions from 1950 to present. Thereinto, the VPD was calculated using Ta and the dewpoint
temperature (DTa) based on the formula proposed by [37]. The provided variables were
aggregated to 8-day scale at 0.1◦ resolution for model development, and then resampled to
0.05◦ at daily scale for global SIF prediction.

In addition, the land cover products at 0.05◦ from MCD12C1 were used to evaluate
the performance of our model at each biome. This dataset was based on the International
Geosphere Biosphere Programme (IGBP) classification scheme [38] with 17 land cover
types. We merged the 17 types into smaller classes based on the strategy in [4]. According
to our testing results, the performance of models had differences between Closed Shrub-
lands (CS) and Open Shrublands (OS), as well as between Evergreen Needleleaf Forest
(ENF) and Deciduous Needleleaf Forests (DNF). Eventually, nine land cover types were
divided across the globe, including ENF, DNF, CS, OS, Evergreen Broadleaf Forest (EBF),
Deciduous Broadleaf Forests and Mixed Forests (DBF), Woody Savannas and Savannas
(SAV), Grasslands (GRA) and Croplands and Cropland/Natural Vegetation Mosaic (CRO).
Figure 2 displays the land cover map in 2019. The unvegetated types such as “Water”,
“Permanent Wetland”, “Urban and Built-up”, “Snow and ice”, and “Barren or sparsely
vegetated” were excluded in this study.
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2.1.3. Tower-Based Datasets

Long-term and continuous flux tower experiments can provide ideal references for
the satellite SIF validation. In this study, we used tower-based datasets at five flux sites
to validate the reliability of our reconstructed SDSIF. The details of five sites were shown
in Table 1. Thereinto, four sites were components of the ChinaSpec (i.e., a network for
long-term measurements of SIF and reflectance in China) [39], including the HL and GC
sites in Hebei province at North China plain, the DM site in Daman, Gansu province at
northwest China, and the AR site in Qinghai province at northwest China. In addition, we
used the SIF retrievals at Aurora site in New York, northeast United State to supplement
the validation datasets, which were obtained from the California Institute of Technology
(https://ecommons.cornell.edu/handle/1813/69711, accessed on 21 January 2022) [40].
The five sites were predominated by different vegetation types, i.e., single-cropping maize
at HL, DM, and Aurora sites, rotation cultivation of winter wheat and maize at GC site,
and the Alpine meadow at AR site. All sites were located with homogeneous underlying
surface, so that they were representative to compare with the 0.05◦ satellite cells. Periods
for data collection cover most of the vegetation growing season at five sites. In spite of
power outage conditions, we collected a total of 95, 213, 234, 74, and 78 days of valid
datasets for the five sites in Table 1, respectively. More detailed information about the
site conditions, measurement system, and data process can be found in [39,40] and our
previous studies [26,41,42].

Table 1. Details of the flux tower sites.

Land Cover
Type Site Name ID Latitude Longitude Period Height

CRO

HuaiLai HL 40.3489◦N 115.7882◦E May to October in 2018 4 m
DaMan DM 38.8555◦N 100.3722◦E June to October in 2018 & 2019 25 m

GuCheng GC 39.1487◦N 115.7350◦E May to December in 2020 25 m
Aurora - 42.7228◦N 76.6628◦W July to October in 2018 7 m

GRA Arou AR 38.0473◦N 100.4643◦E June to September in 2019 25 m

The SIF values were retrieved using the hyperspectral down-welling and up-welling
radiances from automatically observation system [43,44]. Before the process of retrieving
SIF, an atmospheric correction method proposed in [45] was conducted for the HL, DM,
GC, and AR sites with relatively large tower height. The SIF retrievals at 760 nm were
based on three-band Fraunhofer Line Depth (3FLD) [46] and Singular Value Decomposition
(SVD) Method [47]. In order to compare with the TROPOMI satellite SIF at around 740 nm,
we converted the 760 nm tower-based SIF into 740 nm by multiplying a wavelength
scaling coefficient of 1.5 based on the literatures [48,49]. The SIF retrievals at several-
minute intervals were first averaged into half-hourly values and then to daily values for
comparison with the daily SDSIF. Furthermore, we also averaged the daily SIF values into
4-day values if there were four daily values in a 4-day period. At the 4-day scale, due to the
limited number of valid days at HL, AR, and Aurora, we only showed the results at GC
and DM sites. In addition, we calculated the half-hourly GPP data at DM site using the
meteorological data from an automatic weather station (AWS) [50] and the flux data from
an eddy covariance (EC) system. The process included the gap filling [51] and day-time
partitioning method [52], which was integrated on the online tool available on the Max
Planck Institute for Biogeochemistry (MPI-BGC) website. Similar to the SIF calculation, we
averaged the half-hourly GPP into daily scales, and also calculated the 4-day GPP averages
if there were four daily values in a 4-day period.

https://ecommons.cornell.edu/handle/1813/69711
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2.2. Data-Driven Method for SIF Reconstruction
2.2.1. Explanatory Variable Selection

Similar to the LUE concept for estimating GPP, SIF can be expressed as follows [2,10,53]:

SIF = PAR × fPAR × ε × ΦSIF (1)

where fPAR is the fraction of PAR absorbed by vegetation canopies, ε represents the
fraction of SIF photons escaping from the photosystem level to the canopy level, and ΦSIF
is fluorescence quantum yield.

The four terms on the right-hand side of this equation can be further interpreted to
available factors as follows. First, since PAR is linearly correlated with cos(SZA) under
clear-sky conditions [4,54], we used cos(SZA) as the proxy for clear-sky incoming PAR
in the process of model development. Second, fPAR is mainly related to the leaf optics
and canopy structure, of which variations can be mostly denoted by the remote-sensed
reflectance. Many previous studies have demonstrated that fPAR can be quantified by the
vegetation indices such as NDVI and EVI [42,55–57]. Third, recent studies have provided
the mechanistic equation for ε based on the spectral invariant theory [58–61], in which the
ε at the NIR band can be expressed as a function of several variables including the NIR
reflectance, the canopy structures (leaf area index and the leaf inclination distribution),
and the cos(SZA). Liu et al., (2020) [42] provided a simplification of this expression in
which the ε at the NIR band can be approximately calculated by NDVI multiplied with the
NIR band reflectance (i.e., the NIRv) and divided by fPAR. In many previous studies of
satellite SIF downscaling or gap-filling, the seven or first four MODIS reflectance bands
were used to express the optical and structural information in ε and fPAR [28–34]. Further,
ΦSIF was mostly affected by the plant’s physiology that governed by the plant species and
the environmental factors such as sunlight, temperature, and water [62].

Based on above evidences, several variables were selected as the potential explanatory
variables for SIF reconstructed models in this work, including cos(SZA), Ta, VPD, NDWI,
seven bands of MODIS reflectance, and NIRv. The first four variables were used to denote
the environmental effects on ΦSIF in SIF variations. Seven-band reflectance and NIRv were
used to express the leaf optical and canopy structure information involved in ε and fPAR
for SIF variations. Other vegetation indices were also tested in the model but no improved
effects for SIF predictions had been observed.

According to the accuracies for SIF reconstruction models, we explored how the poten-
tial variables affected the model results and thus determined the final explanatory variables.
Apart from the necessary variable cos(SZA), we investigated two issues in the selection
of variables: (i) whether and how the environmental factors Ta, VPD, and NDWI affected
the performance of models; (ii) what was the difference in results between using different
variable combinations to denote the vegetation optical and structural information (i.e., the
single NIRv, 4-band reflectance, 7-band reflectance, or the first two of seven bands substi-
tuted with NIRv). Eventually, the model accuracies for eight combinations of explanatory
variables (as listed in Figure 3) were evaluated by three statistical measurements (i.e., the
coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute
Error (MAE)) based on the testing samples in 2019. According to the statistical metrics of
model accuracy, we determined the final 8 explanatory variables (i.e., cos(SZA), the first
four reflectance bands, Ta, VPD, and NDWI) for further model development.
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Figure 3. The statistical metrics for the accuracy of SIF reconstruction models using different com-
binations of explanatory variables based on the testing samples at 0.1◦, 8-day resolutions in 2019.
(a) coefficient of determination (R2); (b) Root Mean Square Error (RMSE, mW/m2/nm/sr); (c) Mean
Absolute Error (MAE, mW/m2/nm/sr). Ref1–4 and Ref1–7 refer to MODIS bands 1–4 and MODIS
bands 1–7, respectively.

2.2.2. Model Development

The key process of SIF reconstruction was to establish the relationship between clear-
sky satellite SIF and the selected explanatory variables as follows:

SIF = F (cos(SZA), Ref1–4, Ta, VPD, NDWI) (2)

where F is the model representing the relationship between clear-sky SIF and explanatory
variables. Ref1–4 denote the first four bands of MODIS reflectance.

In this study, we used a random forest (RF) approach to establish the model F using
the samples derived from the aggregated 8-day TROSIF01

s and explanatory variables. RF
is a tree-based model first proposed by [63] and has been widely used in remote sensing
application. It has been demonstrated that RF has outstanding performance in regression
tasks for large and multi-dimensional datasets [64,65]. For generating spatially contiguous
high-resolution SIF product, RF has also been tested and found to be efficient in previous
studies [30,33]. Since RF contains many decision trees, and for each tree the samples and
features are completely random, RF is less sensitive to overfitting [66] than several other
machine learning methods and relatively robust to the noises in input datasets. Moreover,
an RF model has better physical interpretability than several other ML algorithms such as
neural networks, which can better resolve the explicit physical relationship between the
predictor (SIF) and the explanatory variables used in this study.

The whole samples for model development were divided into the training and testing
samples based on the strategy similar to a three-fold cross validation. Specifically, each of
the three experiments individually selected 30% of the whole samples for testing and the
remaining 70% for training. The testing samples of each experiment did not overlap with
each other. Both the training and testing samples were normalized by the averages and
standardized deviation of the training data. For each experiment, the RF built multiple
decision trees, each of which is a tree-like model with multiple nodes. Then, the training
samples were divided into different subsets using a bootstrapping method [67] (i.e., se-
lecting random samples from the whole datasets repeatedly). Each training subset was
segmented at each node using a random subset of features (i.e., cos(SZA), the first four
MODIS reflectance bands, Ta, VPD, and NDWI) through Gini index, information gain or
other methods to construct the splitting rules. Each decision tree grew up based on random
subsets of both training samples and features. The final SIF results were obtained from
all trees by averaging. In this study, we set 100 trees and five minimum leaf size (i.e., the
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minimum number of samples in each training subsets used to split the decision tree at each
node) as the RF parameters, which was determined by comparison experiments about the
prediction accuracy and computing time.

Three statistical metrics (i.e., R2, RMSE, and MAE) were used to evaluate the perfor-
mance of the model for testing samples. We compared the statistical metrics both at each
biome and all biomes. Moreover, we compared the performances of model testing with
different strategies of model constraints. Compared with the one single “universal” model
across the globe for one year that was used in [31,33], we first added the spatial constraints
for specific continents (i.e., continent-specific model), in view of the similar response of SIF
to variables within closer space. Five continents were divided across the globe, including
North America, South America, Africa, Oceania, and the combination of Asia and Europe.
In this case, five models were obtained in one year. Then, we further added the temporal
constraints for specific months (i.e., continent- and monthly-specific model), considering
the similar response of SIF to variables within closer time. As a result, 60 models for all
of five continents and 12 months were constructed in one year. Additionally, we also
compared the performance between the continent-specific and the biome-specific models.
The two models had almost equal performance with testing samples, but the biome-specific
one produced unnatural boundaries at the junction of different biomes in reconstructed SIF
products. Thus, the biome-specific model was not employed in this work.

2.2.3. Global-Scale SIF Reconstruction

Based on the established models with spatial and temporal constraints, we first pre-
dicted the 0.05◦, daily seamless global SIF at clear-sky conditions (i.e., SDSIFclear−daily) using
eight explanatory variables at 0.05◦, with daily resolution. The explanatory variables were
normalized by the averages and standardized deviation of the training data. In order to
tackle the temporal mismatch between the clear-sky SIF and the all-sky GPP, similar to
the previous studies [26,31,68], we used a temporal upscaling factor (i.e., PAR) to convert
the SDSIF from the clear-sky daily scale to all-sky daily scale (SDSIFall−daily). Specifically,
since the diurnal variations in SIF was mainly governed by the PAR [9], and many in-situ
experiments had verified an approximately linear relationship between SIF and PAR at the
diurnal scale [53,57], the SDSIFall−daily can be expressed as:

SDSIFall−daily =
SDSIFclear−daily

PARclear−daily
× PARall−daily (3)

where PARclear−daily and PARall−daily represent the daily PAR averages assuming clear-sky
conditions and under natural situation, respectively, which are both derived from the ERA5
dataset. Thus, the final global 0.05◦ SDSIF product were reconstructed over the period May
2018 to December 2020.

2.3. Validation Approaches

The validation of SDSIF was conducted in three ways. First, we validated the capability
of reconstructed SIF for preserving the temporal and spatial characteristics of original
TROPOMI SIF, similar to the validation strategy in several studies [28,29,31]. On one
hand, by using the pixel-wise R2 and slope of linear regressions as the statistical metrics,
we calculated the temporal consistency between the re-aggregated clear-sky SDSIF and
the daily TROSIF02

s to verify the preservation of day-to-day variations in original SIF. On
the other hand, we calculated residuals between the re-aggregated clear-sky SDSIF and
the 16-day TROSIF01

s as well as the latitudinal averages of both two products to assess
the capability of SDSIF for the preservation of spatial characteristics in original SIF. The
correlations between these two products were assessed using the performance of linear
regressions. Second, we used the continuous tower-based SIF retrievals at five sites to
assess the reliability of SDSIF and its advantage over the original TROSIF005 in temporal
continuity and consistency at daily and 4-day scales. Third, we explored the advantage
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of SDSIF over TROSIF005 with different cloud fractions in spatial continuity and details at
global and regional scales.

3. Results
3.1. Performance of the SIF Reconstruction Models

To determine the explanatory variables involved in modeling, we explored how the
model accuracy was affected by the selection of explanatory variables. Figure 3 shows
the statistical metrics of model accuracy for eight combinations of explanatory variables
based on the testing samples in 2019. On one hand, adding the meteorological factors to
the explanatory variables can significantly improve the performance of model with higher
R2, lower RMSE, and MAE values. On the other hand, for vegetation optical and structural
related variables, the single use of NIRV (the first case in axis) produced the lowest accuracy,
whereas using seven reflectance bands or the first four bands instead of NIRv (the second
and third cases in axis) performed better, both with and without meteorological factors. In
addition, substituting the first two of the seven bands with NIRv (the fourth case in axis)
did not result in an obvious improvement in the statistical metrics, probably because they
contained similar information. Note that the performances of the last three cases had no
significant differences with a small range of R2 (0.927–0.929), RMSE (0.059–0.060), and MAE
(0.042–0.043) when adding the meteorological factors. Therefore, to reduce the complexity
of the model features, we selected the second case (eight variables including cos(SZA), the
first four reflectance bands, Ta, VPD, and NDWI) as the final explanatory variables for
further model development and analysis in this work.

We further evaluated the performances of models with different strategies of model
constraints. Table 2 shows the statistical results for model testing in 2019 with three
strategies of model constraints: a single “universal” model, continent-specific model, and
continent and monthly-specific model. It can be seen that the continent- and monthly-
specific models produced the best results, probably because it considered the similar
response of SIF to environmental variables within closer space and time. More specifically,
the model accuracy for all biomes had been increased by adding the spatial constraints, and
further improved by adding the temporal constraints for specific months. Consequently, in
this work, we developed 60 models for all of five continents and 12 months in one year for
reconstructing the corresponding SIF values across space and time.

Table 2. The statistical metrics for the accuracy of SIF reconstruction models with three strategies of
model constraints based on the testing samples at 0.1◦, 8-day resolutions in 2019.

Biome

Universal
Model

Continent-Specific
Model

Continent- and Monthly-Specific
Model

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

ENF 0.804 0.0681 0.0502 0.819 0.0652 0.0481 0.829 0.0632 0.0463
EBF 0.725 0.0851 0.0636 0.755 0.0800 0.0596 0.778 0.0760 0.0563
DNF 0.886 0.0654 0.0486 0.889 0.0640 0.0476 0.892 0.0631 0.0468
DBF 0.928 0.0735 0.0533 0.933 0.0709 0.0512 0.938 0.0685 0.0491
CSH 0.864 0.0464 0.0329 0.879 0.0440 0.0309 0.886 0.0420 0.0296
OSH 0.775 0.0491 0.0356 0.793 0.0470 0.0340 0.807 0.0454 0.0328
SAV 0.892 0.0702 0.0517 0.902 0.0666 0.0488 0.911 0.0635 0.0464
GRA 0.883 0.0577 0.0417 0.892 0.0554 0.0400 0.899 0.0535 0.0385
CRO 0.937 0.0678 0.0493 0.943 0.0643 0.0468 0.948 0.0610 0.0441
All 0.913 0.0653 0.0472 0.921 0.0622 0.0449 0.928 0.0596 0.0428

Our selected models performed pretty well for reconstructing SIF with testing sam-
ples at each of nine biomes, with the R2 higher than 0.8, and the RMSE lower than 0.07
mW/m2/nm/sr (except for the EBF type). The accuracies for EBF and OSH types were
lower than other biomes, which was probably because (i) the EBF was mainly distributed
in tropical rain forest area where the seasonal variations of meteorology were relatively
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weak, so that the SIF’s responses to driven variables were more complicated to be modeled;
and (ii) the SIF emissions for the OSH type were weak throughout the whole year which
caused higher levels of noise in the original SIF products. The scatterplots between the
TROPOMI SIF and predicted SIF for the testing samples of three cross-validation experi-
ments in 2019 were shown in Figure 4. We can see that the predicted SIF values were highly
consistent with the original ones: the scatters were both distributed closely to the 1:1 line
and produced satisfactory accuracy (the averaged R2 of three experiments is around 0.928,
and the averaged RMSE is around 0.0597 mW/m2/nm/sr).
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Figure 4. Scatter diagrams between the TROPOMI SIF and the SIF predicted by RF models for the
testing samples of three cross-validation experiments: first (a), second (b), and third (c) at 0.1◦, 8-day
resolutions in 2019. The density of points in logarithmic scale is represented by the colorbar. The
black dash line represents the 1:1 line.

3.2. Validation of SDSIF with Original TROPOMI SIF

We validated the capability of reconstructed SIF for preserving day-to-day variations
in original SIF. The pixel-wise R2 and slope values of the linear regressions with intercept
between the re-aggregated daily clear-sky SDSIF and daily TROSIF02

s during 2019 are
displayed in Figure 5. Most pixels across the globe achieved the significance level of
0.05, the rest ones (only around 5% of all pixels) were discarded for our analysis. It can
be observed that the temporal variations between SDSIF and daily TROSIF02

s was highly
consistent at most regions: the mean values of regression slope and R2 were around 0.750
and 0.760 with 80% of all pixels, respectively. Referring to the Landcover map in Figure 2,
relatively weaker consistencies occurred in two cases: the EBF in tropical rainforests with
weak seasonality (including Amazon, Indonesia and Congo areas) and the OSH in central
Australia, South Africa and Argentina, southwestern North America and North Asia, with
the mean R2 and slope values of 0.415 and 0.424, respectively. This phenomenon agreed
with the model accuracies shown in Table 2 and the results in previous studies [32].
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On the other hand, we validated the capability of reconstructed SIF for preserving
spatial variations in original SIF. Figure 6 displays the re-aggregated SDSIF product (the
left column) and its residuals with 16-day TROSIF01

s (i.e., the difference between the former
and the latter, the middle column) for the first 16 days of four months in 2019. In general,
SDSIF values were highly consistent with the original ones: a majority of pixels (around
80%) exhibit minimal residuals with the extent lower than ±0.081 mW/m2/nm/sr for
all months (see red numbers in the middle column). In the northern hemisphere, the
temporal variations in the absolute value of residuals kept pace with the seasonal variation
of SIF magnitude. For example, the absolute values of residuals for GRA, DBF, and CRO
biomes in North America were approximately zeros at the start or end of the growing
season (January or October) and increased with the growing of vegetation, reaching their
highest levels in July. For the tropical rainforest areas (Amazon, Indonesia, and Congo),
relatively large values were exhibited during the whole year due to the high SIF signal
from long-active rainforest. We can see low absolute value of residuals for the OSH types
in central Australia, South Africa and Argentina, southwestern North America, and North
Asia, owing to the low SIF magnitude throughout the year. The latitudinal averages of both
products (the right column) also showed that the re-aggregated SDSIF can well preserve
the latitudinal variations of the original TROPOMI SIF.

Additionally, the quantitative assessment of the consistency between these two prod-
ucts (Figure 7) further verified that the SDSIF can well preserve the spatial variability of the
original SIF, with high spatial correlations between them two: the scatters fell on closely to
the 1:1 line with the R2 larger than 0.890 and the RMSE less than 0.072 mW/m2/nm/sr for
all four months in 2019.

3.3. Validation of SDSIF with Tower-Based SIF

The comparison between the time series of tower-based SIF and the two satellite SIF
products (SDSIF and original TROSIF005) at 0.05◦, daily scales was shown in Figure 8.
The linear regression between satellite SIF and tower-based SIF was also presented. All
regressions in this figure achieved the significance level of 0.05. For better comparison,
the same number of scatters were remained for the regressions of two products both in
Figures 8 and 9. In general, the SDSIF (red curves), TROSIF005 (blue curves), and tower-
based SIF (gray curves) gave similar seasonal trend with the growing of vegetation at five
sites. Thereinto, it was obviously that SDSIF had more continuous daily observations,
whereas the original TROSIF005 was highly sparse and noisy due to its swath gaps, clouds
contaminations, and individual sampling errors. Moreover, SDSIF can greatly capture the
continuous tower-based SIF, which gave better consistencies than the daily TROSIF005 did at
all five sites. Specifically, the R2 values for SDSIF (red texts in the right panel) was all larger
than 0.7 except for the Aurora, which was much higher than those for daily TROSIF005

(blue texts in the right panel). Further, the scatters for SDSIF (red dots) distributed closer
to the 1:1 line than those for daily TROSIF005 (blue dots), except for the GC site where the
overestimated noises in TROSIF005 coincidentally reduced the differences between satellite
and tower-based SIF.
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Figure 9. Comparison between the time series of tower-based SIF and two satellite SIF products
(SDSIF and original TROSIF005) at the 4-day scale for (a,b) sites. All regressions in the right panel
achieved the significance level of 0.05. The blue hollow dots, hollow triangles and solid dots represent
the 4-day averages with valid observations from no more than one or two days, three days and four
days, respectively.

To investigate the performance of SDSIF at larger temporal scales, we conducted the
similar comparison at the 4-day scale, as shown in Figure 9. Due to the limited number of
valid days at HL, AR and Aurora, we only displayed the results at GC and DM sites. We
can see that, although the original TROSIF005 was relatively continuous at the 4-day scale,
it still exhibited lower consistency with the tower-based SIF than the SDSIF does: the R2

value for SDSIF was much larger than that for TROSIF005 at the 4-day scale. One reason
was that the 4-day TROSIF005 averages still had errors from the noisy satellite observations
at daily scale (as shown in Figure 8). More importantly, since SIF was highly changing over
time, the 4-day averages from sparse daily TROSIF005 values cannot represent the real SIF
at this time scale. As shown in the blue curves, most 4-day TROSIF005 averages had only
valid observations no more than one or two days (hollow dots). However, SDSIF filled the
temporal gaps of the daily TROSIF005, which provided the real 4-day SIF and thus improved
the linear relationship with 4-day tower-based SIF. Overall, SDSIF had advantages over the
original TROSIF005 in both temporal continuity and temporal consistency with in-situ SIF
at the daily and 4-day scales.

3.4. Spatial Patterns of the Global SIF Product

The spatial pattern of global annual averages and the 90 percentile of SDSIF in 2019
are displayed in Figure 10a,b. The high values of annual mean SDSIF were observed in
tropical forests, such as Amazon, Indonesia and Congo, which was consistent with the
patterns of OCO-2 SIF in [31]. Annual mean SIF characterized the regions that transit from
dry to wet, such as the Sahel and the gradient of eastern-western United States. The 90th
percentile of SDSIF, which represented the maximal productivity, exhibited hotpots in the
U.S. Corn Belt region, south Asia, center of Europe, and the tropical regions, consistent
with high productive regions shown in [10]. We also compared the spatial patterns of
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SDSIF with TROSIF005 at daily scale and found that SDSIF not only preserved the spatial
pattern but also improved the spatial coverage of the original SIF retrievals. The results
on 3 August 2019 is taken as an example (Figure 10c,d). These two products had the same
spatial patterns. SDSIF filled the discontinuities in the original daily SIF due to swath gaps
and clouds contaminations, and exhibited more continuous global coverage.
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Figure 10. Spatial patterns of annual mean (a) and maximum (90th percentile) (b) of re-aggregated
SDSIF in 2019, as well as the spatial comparison between SDSIF (c) and TROSIF005 (d) on 3 August
2019.

To further illustrate the advantages of SDSIF in spatial details, we display the compar-
ison of SDSIF with the original daily TROSIF005 as well as the corresponding VIsin a local
enlarged image of the Mideastern United States region on 3 August 2019 (Figure 11). In
general, the SDSIF well captured the spatial distributions of different biomes (Figure 11f),
which had the consistent spatial patterns with the results in [32]. Specifically, in August
2019, the highest SDSIF values was observed for the CRO type, including the corn belt in
the Mideastern regions and rice along the Mississippi river. While the DBF and SAV types
showed moderate SIF magnitude and low SIF values were observed in OSH and GRA.
Compared with the original daily TROSIF005, SDSIF had the similar SIF values and spatial
variations. More importantly, it resolved the spatial problems of original daily TROSIF005

described in Figure 1, and thus exhibited finer spatial details at regional scales, such as
the identification of the Mississippi river (black ellipse in Figure 11). In contrast, the daily
TROSIF005 loss many spatial details, especially for the frequently-used clear-sky products
with CF less than 0.2 (Figure 11c). For the comparison with VIs maps, SDSIF can clearly
figure out the differences between agricultural regions with other biomes, while the spatial
extent of the high-productivity regions was much oversize in NDVI and EVI, such as the
DBF type in the eastern America (blue ellipse in Figure 11).
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4. Discussions
4.1. Benefits of the Reconstructed SDSIF

The spatiotemporal limitations of the gridded TROPOMI SIF datasets at high spa-
tiotemporal resolutions (e.g., 0.05◦, 1-day or 2-day interval) have been described in Figure 1,
including spatial insufficiency and spatiotemporal discontinuities. Our reconstructed SD-
SIF can tackle these drawbacks and benefit applications of satellite SIF product in carbon
cycle and ecological studies.

The advantages of SDSIF over original TROPOMI product in terms of spatiotemporal
enhancement can be summarized as follows. First, the spatial gaps due to swath gaps and
clouds contaminations can be filled, and the spatial details away from the nadir have been
improved (Figures 10 and 11). More importantly, the SDSIF largely improved the product’s
ability to track SIF temporal changes at daily scale by enhancing temporal continuity
and reducing noises in original individual observations (Figure 8), and thus corrected the
bias in multi-day SIF averages from sparse days (Figure 9). Consequently, it will tackle
the temporal mismatch between original multi-day SIF averages and continuous GPP
measurements, thereby reducing the accompanying uncertainties in SIF-GPP analysis or
SIF-based GPP estimations. Particularly, for the cases in many studies that only clear-sky
observations are remained for analysis, the averages of them cannot represent the real SIF
to estimate the all-sky GPP [26,60]. Figure 12 displays a comparison between the time
series of tower-based GPP and three satellite SIF products (SDSIF, clear-sky TROSIF005

(CF < 0.2), and cloud-contaminated TROSIF005 (CF < 0.8) at 4-day scale for the DM site.
For better visualization, the clear-sky TROSIF005 is multiply by 0.5 in Figure 12a to reach
the same magnitude with other SIF products. It can be seen that the 4-day SDSIF exhibits
higher temporal consistency and provides a stronger linear correlation with the 4-day GPP
(R2 = 0.811). Whereas, the correlation for two original TROPOMI products are much lower
(R2 = 0.680 and 0.701, respectively) due to their fewer valid observations during a 4-day
period. This advantage of SDSIF is caused by its reducing errors in original TROSIF005 and
its enhancing temporal continuity for real 4-day SIF other than the 4-day averages from
sparse daily TROSIF005 values.
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Figure 12. Comparison between the time series of tower-based GPP with SDSIF and original
TROSIF005 (a), as well as the corresponding correlations (b) at the 4-day scale for the DM site.

Further opportunities are available to apply the SDSIF product as a proxy for global-
scale GPP estimation and provide a new SIF-based GPP product into existing GPP datasets.
The improvement of SDSIF in the relationships with tower-based GPP measurements need
to be further comprehensively investigated based on more tower-based sites at various
landcover types. In addition, SDSIF and the reconstructed method may also provide
references for the generation of other daily seamless products, and bring new perspectives
for our better understanding and application of the forthcoming higher-resolution SIF data
(300 m) from the ESA’s Earth Explorer Fluorescence Explorer (FLEX) mission.

4.2. Reliability and Uncertainties in SIF Reconstruction Method

In this study, a data-driven method using ML approach was designed to reconstruct a
spatiotemporal enhanced TROPOMI product, by using cos(SZA), MODIS reflectance, NDWI,
Ta, and VPD at fine scale to indicate the variations in SIF at space and time. In theory, this
strategy is reasonable since these explanatory variables governed mostly information in SIF,
including leaf optical, canopy structure, and plant physiological parameters, which has been
illustrated in Section 2.2 based on the LUE concept. Meanwhile, the similar data-driven
approach has been affirmed by the downscaling of GOME-2 and gap-filling of OCO-2/Tansat
in previous literatures [27–34]. Moreover, the performance of model testing in this work
(Figure 4) is comparable with that in similar previous literatures, such as the RMSE of OCO-2
SIF predictions ranges from 0.065 to 0.08 mW/m2/nm/sr in literatures [31–33], and the RMSE
of GOME-2 predictions is around 0.06–0.07 mW/m2/nm/sr over 12 months [30].

The strategy of using multiple models with continent- and monthly- constrains is also
reasonable and reliable for SIF reconstruction. Compared with the one “universal” model
strategy, it can better describe the different relationships between ΦSIF and meteorological
parameters (i.e., explanatory variables including PAR, Ta, VPD, and NDWI) among various
regions and phenological stages with space and time. A universal model is more convenient
for application but multiple models can achieve more accurate results for predictions
(Table 2) due to more refined training samples for model development. If there is no
systematic error in the training samples between different models, the usage of multiple
models will not introduce uncertainties for SIF prediction since the models were completely
data-driven and each model was trained using samples with large volume and sufficient
representativeness. However, the usage of multiple models has a limitation that they can
only be applied to periods and regions of which a certain number of original SIF samples is
available for model training. The trained models cannot be extrapolated to other ranges
with completely vacant original SIF.

The uncertainties involved in data sources of explanatory variables are parts of error
propagated to the reconstructed SIF products. The first one comes from the original errors
in TROPOMI SIF retrievals, even though the errors have been reduced by the averaging
from five samples and the screening process by cloudy fractions (less than 0.2) before model
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development in this work. The second one comes from the errors in 0.05◦MODIS reflectance
products, but it is relatively robust and smaller than the SIF noises. The third uncertainty
results from the errors in ERA5 meteorological product, which includes original data errors
in Ta and VPD for model development process and the errors from the interpolation of
PAR data from 0.1◦ to 0.05◦ for SIF prediction. Moreover, high cloud density at tropical
regions may also affect the model accuracy. For model development, we conduct data
screening and only remained SIF soundings with 0.2-CF and 5-N. Due to high cloud density
at tropical regions as South America, the number of the model training and testing samples
in these regions was less than other regions after data screening, which maybe degrade the
model accuracy. In addition, the number of observations in each gird was smaller, so the
errors in gridded SIF samples might be less reduced by averaging than other regions. They
are probably the reasons why the model accuracy for EBF which was mainly distributed in
tropical rain forest was lower than other biomes in Table 2.

Despite the effects of data errors, the assumptions in SIF reconstructing approach also
introduce some uncertainties. For the all-sky SIF prediction at daily scale, we assume that
the diurnal SIF is mainly driven by diurnal PAR variations. First, the effects of diurnal
variations in FPAR and the fraction of SIF escaping the canopy (i.e., ε) on the daily SIF
are not considered, since the effects of these two variables on SIF diurnal variations is
much smaller than that of PAR [9] and current satellite products cannot provide the daily
variation information of these two parameters. Second, the effects of the diurnal variations
in the fluorescence quantum yield (i.e., ΦSIF) are neglected. This simplification can be
supported by evidences from previous studies that the ΦSIF has a weak diurnal variation
with the light level and temperature due to the opposite trends in the fraction of open PSII
reaction centers (qL) and non-photochemical quenching (NPQ) [62], and this effect are
further weakened at the whole canopy scale [69].

More accurate semi-empirical, entirely machine learning, or knowledge-based ML
models need to be developed for the spatiotemporal enhancement of SIF datasets in the
future, like the generation of SIF datasets with daily seamless and sub-kilometer resolutions
for finer applications at different spatial and temporal scales. Our future work will focus
on better utilizing both the spatial and temporal response information of SIF to explanatory
variables into the model development.

5. Conclusions

Due to the nonuniform sampling sizes, swath gaps, and cloud contamination, the
TROPOMI SIF product has drawbacks in spatial insufficiency and spatiotemporal dis-
continuities when gridded at high spatiotemporal resolutions (e.g., 0.05◦, 1-day or 2-day
interval). In this study, a data-driven method based on RF was designed to reconstruct a
spatiotemporal enhanced SIF product, by using MODIS reflectance, VIs, and ERA5 meteoro-
logical datasets as explanatory variables at a fine scale to indicate the variations in SIF over
space and time. The reconstructed seamless daily product, namely SDSIF, can provided a
global daily SIF with seamless spatiotemporal coverage at 0.05◦ resolution. Through the
assessment of model accuracy with different explanatory variables and model constraints,
the final 8 explanatory variables (i.e., cos(SZA), the first four reflectance bands, Ta, VPD,
and NDWI) and continent- and monthly-specific models were selected, which produced a
fairly high accuracy (R2 = 0.928, RMSE = 0.0597 mW/m2/nm/sr) and outperformed one
universal model across the globe over a whole year.

Our validation results show that the SDSIF can well preserve the temporal and spatial
variations in original TROPOMI SIF and reliably track the tower-based SIF retrievals at
daily and 4-day scales. Compared with the original TROPOMI SIF, SDSIF had advantages
in terms of the spatial details and the spatiotemporal continuities. It filled the spatial gaps
in original product and exhibited more details at the regional scale like the Mideastern
United States region. In addition, it improved the temporal continuities and reduced the
individual noises in original product at daily scale, which resulted in higher consistency
with the daily tower-based SIF at five sites (the mean R2 increased from 0.467 to 0.744), and



Remote Sens. 2022, 14, 1504 20 of 23

thus corrected the bias in 4-day SIF averages from sparse daily observations with stronger
correlations with the 4-day tower-based SIF and GPP. This study provided an effective
strategy for SIF reconstruction with TROPOMI datasets and offer preferable SIF datasets
for understanding SIF-GPP relationships and processes at finer spatial and temporal scales.
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