
����������
�������

Citation: Jiang, H.; Zou, Q.; Zhou, B.;

Hu, Z.; Li, C.; Yao, S.; Yao, H.

Susceptibility Assessment of Debris

Flows Coupled with Ecohydrological

Activation in the Eastern

Qinghai-Tibet Plateau. Remote Sens.

2022, 14, 1444. https://doi.org/

10.3390/rs14061444

Academic Editors: Mirko Francioni,

Stefano Morelli and Veronica Pazzi

Received: 21 January 2022

Accepted: 9 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Susceptibility Assessment of Debris Flows Coupled with
Ecohydrological Activation in the Eastern Qinghai-Tibet Plateau
Hu Jiang 1,2, Qiang Zou 1,2,3,*, Bin Zhou 1,2, Zhenru Hu 1,4, Cong Li 1,2, Shunyu Yao 2,5 and Hongkun Yao 1,2

1 Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and
Environment (IMHE), Chinese Academy of Sciences (CAS), Chengdu 610041, China;
jianghu@imde.ac.cn (H.J.); zhoubin@imde.ac.cn (B.Z.); 2019050050@stu.cdut.edu.cn (Z.H.);
licong@imde.ac.cn (C.L.); yaohongkun21@mails.ucas.ac.cn (H.Y.)

2 University of Chinese Academy of Sciences, Beijing 100049, China; yaoshunyu16@mails.ucas.edu.cn
3 China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
4 College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
5 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,

Beijing 100101, China
* Correspondence: zouqiang@imde.ac.cn

Abstract: The eastern margin of the Qinghai-Tibet Plateau is an extreme topography transition zone,
and characterized by significant vegetation zonation, in addition to geographic features (such as
enormous topographic relief and active tectonics) that control the occurrence of debris flows, which
are rapid, surging flows of water-charged clastic sediments moving along a steep channel and are
one of the most dangerous mountain hazards in this region. There is thus an urgent need in this
region to conduct a regional-scale debris flow susceptibility assessment to determine the spatial
likelihood of a debris flow occurrence and guarantee the safety of people and property, in addition to
the smooth operation of the Sichuan-Tibet transport corridor. It is, however, a challenging task to
estimate the region’s debris flow susceptibility while taking into consideration the comprehensive
impacts of vegetation on the occurrence of debris flows, such as the positive effect of root anchoring
and the negative effect of vegetation weight loads. In this study, a novel regional-scale susceptibility
assessment method was constructed by integrating state-of-the-art machine learning algorithms (such
as support vector classification (SVC), random forest (RF), and eXtreme Gradient Boosting (XGB))
with the removing outliers (RO) algorithm and particle swarm optimization (PSO), allowing the
impacts of vegetation on debris flow initiation to be integrated with the topographical conditions,
hydrological conditions, and geotechnical conditions. This method is finally applied to assess the
regional-scale susceptibility of debris flows in the Dadu River basin on the eastern margin of the
Qinghai-Tibet Plateau. The study results show that (i) all hybrid machine learning techniques can
effectively predict the occurrence of debris flows in the extreme topography transition zone; (ii) the
hybrid machine learning technique RO-PSO-SVC has the best performance, and its accuracy (ACC) is
0.946 and the area under the ROC curve (AUC) is 0.981; (iii) the RO-PSO algorithm improves SVC, RF,
and XGB performance (according to the ACC value) by 3.84%, 2.59%, and 5.94%, respectively; and
(iv) the contribution rate of ecology-related variables is almost only one-tenth that of topography- and
hydrology-related factors, according to the factor important analysis for RO-PSO-SVC. Furthermore,
debris flow susceptibility maps for the Dadu River basin were created, which can be used to assess
and mitigate debris flow hazards.

Keywords: debris flow susceptibility prediction; machine learning; the eastern margin of Qinghai-Tibet
Plateau; ecohydrological activation

1. Introduction

The eastern margin of the Qinghai-Tibet Plateau is located at the junction of the
Chengdu Plain and the Qinghai-Tibet Plateau, and this region features significant elevation
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differences, active tectonics, and active ecological conditions [1–3], all of which contribute
to the development of debris flows that endanger human lives and property in this area.
Debris flows are rapid, surging flows of water-charged clastic sediments moving along
a steep channel [4,5], and they are one of the most dangerous mountain hazards in this
region. Examples of these events include: (1) on 25 July 2020, a debris flow broke out in
Wujia gully, Zengda Township, causing damage to the houses at the mouth of the gully;
(2) on 17 June 2020, a mountain disaster chain occurred in Meilong gully, Danba County,
in which a debris flow broke out, blocking the Xiaojinchuan River and forming a barrier
lake with a volume capacity of 100 × 104 m3; then, a landslide occurred in Aniang Village
due to intense erosion at the slope foot caused by the burst of the barrier dam, completely
interrupting National Highway G350 and causing the deaths of two people and damage to
houses; and (3) on 22 June 2019, a debris flow broke out in Shelong gully, Jinchuan County,
with a volume of approximately 17 × 104 m3, causing 300 m2 of farmland and 14 houses
to be damaged and interrupting traffic and power lines [6]. As a result, there is an urgent
need in this region to perform a debris flow susceptibility assessment to determine the
spatial likelihood of a debris flow occurring in an area depending on local conditions [7],
and to ensure the safety of people and property, in addition to the smooth operation of the
Sichuan-Tibet transport corridor.

Because of the unique environmental conditions, this region is characterized by signif-
icant vertical and horizontal vegetation zonation [8,9], and geographic features that control
debris flow formation, such as enormous topographic relief and active tectonics, making it
an ideal natural research site for investigating the relationship between eco-hydrological
conditions and debris flow occurrence [9]. Many studies have been performed to improve
the understanding of the physical mechanisms governing how the mechanics and hy-
drology of vegetation affect debris flow formation [10–12]. The comprehensive effects
of vegetation on the occurrence of the landslide flows, such as the positive effect of root
anchoring and the negative effect of vegetation weight loads, increase the complexity of
debris flow environmental conditions [13–16], presenting a challenging task for accurately
predicting the debris flow susceptibility in the extreme topography transition belt when
the regional debris flow is going to occur [17,18].

Over the past several decades, scholars have proposed several strategies for predicting
debris flow susceptibility, including the expert method, data-driven statistical methods,
and deterministic approaches [19–21]. Among these methods, the expert method [22] is
utilized early in the evaluation of the likelihood of a debris flow occurrence, in which
the relationship between the occurrence of debris flows and causal factors is established
directly based on experts’ experience and background knowledge. This approach may be
controversial since it can be difficult to objectively quantify or evaluate an outcome [23].
Data-driven statistical methods, including principal component analysis [24], logistic
regression [25], and evidence weighting methods [19], are used to predict debris flow
susceptibility by mathematically modeling the link between debris flow occurrence and
disaster-causing factors [21,26]. As opposed to the expert technique, data-driven statistical
methods are more objective [27]. Furthermore, deterministic approaches are utilized to
investigate the physical mechanisms of debris flows and develop models to simulate debris
flow susceptibility [28,29]. These physical methods are commonly restricted to the local
scale and are challenging to use in regional-scale studies due to the need for sophisticated
input data and parameter calibrations [30,31]. Overall, there are few regional debris flow
susceptibility studies that look at the effects of vegetation on debris flow formation from
the perspective of physical mechanisms [18,32].

In recent years, machine learning algorithms have been increasingly used in the pre-
diction of debris flow susceptibility using remote sensing data [20,33,34]. The susceptibility
of debris flows can be estimated using machine learning models by fitting the nonlin-
ear correlations between debris flow occurrence and disaster-causing factors [35]. Many
studies have demonstrated that common machine learning algorithms, including gradient
boosting machines (GBMs) [35], support vector machines (SVMs) [36], and random forest
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(RF) algorithms [33], can produce regional-scale susceptibility prediction results with high
reliability. In addition, scholars generally perform debris flow susceptibility research by
combining machine learning models with other parameter optimization strategies to obtain
more accurate prediction results [37–39]. Due to the capabilities of automated parameter
optimization and data pre-processing, the hybrid model generally outperforms the above
common models in terms of accuracy of predicted outcomes and application in other areas.

The purpose of this study was to assess the occurrence likelihood of debris flows in
the Dadu River basin, a typical extreme topography transition zone on the eastern margin
of the Qinghai-Tibet Plateau, and to provide technical support for disaster prevention and
mitigation. In this study, some novel hybrid machine learning approaches for assessing
debris flow susceptibility were developed in collaboration with the removing outliers
algorithm and the particle swarm optimization algorithm, to integrate topographical
conditions, hydrological conditions, and geotechnical conditions with vegetation impacts
on debris flow formation from the perspective of physical formation mechanisms. Finally,
debris flow susceptibility mapping was performed based on these novel hybrid machine
learning methods.

2. Study Area

The Dadu River basin is located on the eastern margin of the Qinghai-Tibet Plateau,
at the transition zone between the Sichuan Plain and Qinghai-Tibet Plateau (Figure 1).
Due to the uplift of the Qinghai-Tibet Plateau, this region has become a typical extreme
topography transition with high mountains and deep valleys. Affected by enormous
elevation differences, the climate in the northern part of the study area is different from
that in the other regions. The northern part of the study area has a mountainous plateau
climate with little rainfall throughout the year, the annual precipitation is 500–750 mm,
with most precipitation falling as snow, and the snow accumulation period can last up to
5 months. The rest of the region has a monsoon climate with warm winters, hot summers,
and humid and rainy characteristics, with an annual precipitation total of 1000 mm. The
annual precipitation in Luding and Shimian Counties can reach 1200–1500 mm, and that in
the downstream parts of the Dadu River region can reach 1400–1900 mm. Torrential rain
is mainly concentrated in the middle and lower reaches of the Dadu River from May to
September, and especially in July and August. Moreover, the spatial distribution of annual
rainfall shows a trend of high in the south and low in the north, and the annual average
temperature ranges from −19.1 to 18.2 ◦C. The vegetation has significant vertical zonality
in this region due to the influence of the topographically extreme belt, especially in the
alpine and gorge areas, where the vegetation types successively change with elevation and
include broad-leaved forests, mixed coniferous and broad-leaved forests, coniferous forests,
shrubs, and meadows.

Furthermore, the river system in this region is developed. From north to south, the
Suomo River, Dajinchuan River, and Xiaojinchuan River converge to form the Dadu River,
which turns to the east through Luding County and Shimian County and then flows into
the Minjiang River south of Leshan City through Hanyuan County and Ebian County.
There are 28 tributaries draining watershed areas greater than 1000 km2 along the river,
and the river network density is 0.39 [40].

Lithologically, according to the geological map of Sichuan Province [41], the main rock
strata that outcrop along the Dadu River from north to south in the study area include
Triassic sandstones, slates and late granitic intrusions, pre-Sinian granites and granitic
gneiss, Paleozoic limestones, metamorphic rocks, sand shales, and basalts. Tectonically, the
study area is located in three different geological tectonic units, namely, the Ganzi Aba fold
belt, the Kangdiantai anticline, and the Emeishan block fault. In addition, the Y-shaped
junction zone formed by the Longmenshan fault zone, the Xianshuihe fault zone and the
Anninghe fault zone is also located in the study area, as shown in Figure 1. Intense tectonic
activity leads to jointing and folding, and these activities facilitate the formation of debris
flows in this region.
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3. Materials and Methods

This paper proposes new hybrid methods for assessing debris flow susceptibility
coupled with ecohydrological activation from the perspective of debris flow formation,
which includes several parts: parameter collection, indicator system construction, hybrid
model generation, evolution calculation of model hyperparameters, model training, optimal
model determining, and susceptibility assessment. Figure 2 depicts the flow chart that
represents this process.
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3.1. Catchment Boundaries Division

The catchment unit is a self-contained hydrological area, with the river serving as the
mainline and the water division acting as the boundary [42]. Catchment units having more
physical, geological, or geomorphological significance than grid cells are better suitable for
predicting debris flow occurrence [21,43]. Furthermore, in terms of debris flow formation,
activities such as material source initiation, debris flow movement, erosion, and deposition
all occur within catchment units. As a consequence, catchments were selected as mapping
units for this research. As illustrated in Figure 3, the Dadu river basin is divided into a total
of 1780 catchments using GIS spatial analysis tools with the DEM (30 m resolution).
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3.2. Inventory of Debris Flows

In recent years, several field investigations on debris flow disasters in the Dadu River
basin have been conducted. However, due to its complex topographical conditions and
massive area, it is hard to perform an investigation that spans the whole Dadu River basin.
Given that remote sensing interpretations allow for flexibility and low labor costs [44], this
study utilized high-resolution remote sensing images to perform visual interpretations,
giving an abundance of data for model training. Distinguishing factors such as vegetation
changes, landslide scar(s), and clear channel visibility were fully considered in this inter-
pretation procedure to ensure the reliability of the interpretation outcomes [45]. Finally,
562 catchments were picked from the 1780 catchments to train the hybrid machine learning
models, with a total of 281 catchments identified in the study area as being prone to debris
flow (DFs), and the remaining 281 catchments as being not prone to debris flow (NDFs).

3.3. Establishment of an Indicator System Coupled with Ecohydrological Activation

The selection of predictor factors is crucial in predicting the susceptibility of debris
flows [36,46]. The debris flow formation process can be split into several stages based
on the physical formation mechanism, such as accumulation of loose materials, initiation
driven by rainfall, dynamic movement controlled by terrain and channel conditions, and
accumulation at the outlet [47–49]. Based on the aforementioned factors, this article presents
a debris flow susceptibility indicator system coupled with ecohydrological activation from
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the standpoint of physical mechanisms, taking into account the comprehensive effects of
vegetation, such as the positive effect of root anchoring and the negative effect of vegetation
weight loads, on the slope failure from the physical mechanism. Overall, the structure of this
new indicator system (Figure 4) is designed based on the debris flow formation mechanism
and general disaster-causing factors used in traditional debris flow susceptibility methods,
and the indicator system consists of ecological indexes, hydrological indexes, geotechnical
indexes, and topographic indexes. The processed data of this research and their sources
are presented in Table 1. To ensure the consistency of spatial resolution among all data,
the feasibility of parameter calculation, and the applicability of the accurate topography
depicted in the DEM to the debris flow susceptibility assessment [50], all data from different
sources were resampled to the same spatial resolution as the DEM (30 m) using the GIS
platform’s resampling tool. Due to the need for machine learning input parameter formats,
the GIS platform’s Zonal Statistics tools were then used to obtain the feature statistics (such
as the mean or majority) of each catchment.
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Table 1. Employed information and their sources in the current research.

Information Related Factor Maps or Parameters Source Scale/Resolution

Digital Elevation Model (DEM)
The Altitude Difference, Channel
Gradient, Connectivity Index and

Propagation Probability Index

DEM Dataset (GDEMV2)
Downloaded from Geospatial

Data Cloud
30 m

The Soil Thickness The Soil Thickness and Soil Strength Depth to Bedrock (DTB) Map
of China [51] 100 m

Vegetation Types Vegetation Weight Loads and
Root Morphology

Environmental & Ecological
ScienceData Center for West

China, National Natural Science
Foundation of China [52]

1:1,000,000

Precipitation The Flow Depth and Runoff Velocity
The National Data Center of

China for Meteorological
Sciences

90 m
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3.3.1. Ecological and Hydrological Indexes

(1) Vegetation weight loads (VWL) and root morphology (RM).
Vegetation is the producer in the food chain in terrestrial ecosystems; it transports

materials and energy through the ecosystem and is directly tied to the creation of the
natural environment [53]. The vegetation in the studied region has obvious vertical and
horizontal zonality, which is assisted by the topographically extreme belt conditions; dis-
tinct vegetation species with differing vegetation weight loads and root morphologies are
concentrated at different altitudes [54,55]. Given that root reinforcement and vegetation
weight loads are important in the stability evaluation of vegetation-covered slopes [54,56],
and that shallow landslides are one of the main material sources of debris flows, vegetation
weight loads and root morphology are included as ecological indexes in the debris flow
susceptibility assessment indicator system. The root morphological properties of various
plant types in the research region were collected via field investigations (Table 2), and the
quantitative techniques and details of the vegetation weight load calculations were found
to be similar to those employed by Zou et al. (2021b) [8].

Table 2. Morphological parameters of different vegetation types.

Vegetation Type Plant Diameter at
Breast Height/cm Root Depth/m Plant Height/m

Trees 25.0 15.0 20.0
Shrub 1.0 0.5 0.5

Grassy marshland 0.1 0.4 0.4
Alpine sparse vegetation 0.4 0.4 0.4
Agricultural vegetation 6.0 5.0 5.0

Alpine swamp 0.1 0.4 0.4

(2) Flow depth (FD) and runoff velocity (RV).
Water is not only the main triggering factor of debris flow formation, but it is also a

fundamental component of the debris flow; hence, hydrological conditions are important
for debris flow formation. The flow depth and runoff velocity at a gully’s mouth are the
overall outcomes of a dynamic hydrologic process that involves rainfall, water storage,
depression filling, overflowing within the slope area, and channel confluence [57,58]. To
some degree, these characteristics reflect the catchment’s topographic relief, the complexity
of the gully morphology, and the roughness of the gully base. As a result, to represent the
hydrodynamic properties of the runoff in the assessed river branches and channels, the
flow velocity and runoff depth are included as hydrological indicators in the susceptibility
indicator system. However, the study area is too large to use electronic equipment to
monitor flow velocity and runoff depth in each catchment. To compensate for this deficiency,
index values based on five assumptions were derived to substitute real flow velocity and
depth measurements:

i. A constant rainfall intensity,
ii. The water input from rainfall is equal to the output in the catchment,
iii. The effect of potential energy is considered, and the work done by resistance

is ignored,
iv. The influence of different water depths on potential energy is ignored, and
v. Water particles at the same elevation arrive at the gully mouth at the same time.

According to assumption 1, the rainfall per unit time is equal to the volume of water
output from the basin and can be deduced as follows:

PAdt = Qdt, (1)

where P is the rainfall intensity; A is the watershed area; Q is the discharge at the outlet;
and dt is the unit of time.
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Since resistance and the effect of the water depth on the potential energy are ignored,
all gravitational potential energy is converted into kinetic energy. Therefore, the following
formula is given for any particle:

mgh =
1
2

mv2, (2)

where m is the mass of the water particle; g is the acceleration of gravity; h is the height
difference between the water particle and the point at the gully mouth; and v is the particle
velocity at the gully mouth.

The initial potential energy of particles that flow to the gully mouth at the same time
is calculated as follows: ∫

mghdh = Pdt
∫

L(h)B(h)ρghdh, (3)

mgh =
∫

mgdh = Pdt
∫

L(h)B(h)ρgdh, (4)

where ρ is the density of water; L(h) is the length contour line where the relative height is h;
and B(h) is the horizontal displacement of the contour line.

The average kinetic energy of particles that flow to the gully mouth at the same time
is calculated using Formula (5):

1
2

mv2 =
1
2

PAdtρv2 = Pdt
∫

L(h)B(h)ρgdh, (5)

The runoff velocity is calculated as follows:

v =

√
2
∫

L(h)B(h)gdh
A

, (6)

The flow depth is calculated as follows:

H = S/b, (7)

S = Q/v, (8)

Q = PA, (9)

where b is the average width of the wet crossing section and S is the area of the wet
crossing section.

3.3.2. Geotechnical and Topographic Indexes

(1) Thickness (ST) and strength (SS) of the soil mass.
The direct reason for the formation of unstable slopes is that the impervious-layer

soil shear strength is less than the sliding force of the soil mass, which contributes to
the formation of landslide disasters [59,60]. Therefore, the soil shear strength and soil
mass thickness, related to the depth of the impervious layer, are included as geotechnical
indicators in the susceptibility prediction index system. Here, the soil shear strength refers
to the ultimate strength of the soil mass against shear failure. According to the Mohr–
Coulomb failure criterion [61], this variable is calculated using the following formulas:

τf = c + σ tan ϕ, (10)

σ = γz, (11)

τf = c + γz tan ϕ, (12)

where τf and c are the shear strength (kPa) and cohesion (kPa) of the soil mass, respectively;
ϕ and γ are the friction angle (◦) and density (t/m3) of the soil mass, respectively; σ is the
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normal stress of the soil mass (kPa); and z is the elevation difference from the surface of the
soil mass to the bedrock surface (m).

(2) Altitude difference (AD) and channel gradient (CG).
Topographical factors have a considerable impact on the initiation and dynamic

process of debris flow formation [62,63]. The steep channel and enormous relief may
give an abundance of potential energy conditions for debris flow formation [20]. As a
consequence, general topographical characteristics such as altitude difference and channel
gradient are included in this index system for assessing debris flow susceptibility. The
altitude difference (AD) between the catchment’s top and outflow shows the catchment’s
overall potential energy conditions [64]. The channel gradient (CG) reflects the channel’s
overall steepness and is computed by dividing AD by the channel length [65].

(3) Connectivity index (IC) and propagation probability index (PPI).
The formation of a debris flow requires not only an abundant water source and

loose material conditions but also steep topographic conditions that are conducive to the
movement of the debris flow [66]. The lower the stability of a slope with loose material
in the source area, the higher the terrain connectivity from the source area to the gully
mouth, and the more conducive the conditions to the formation of a debris flow. Therefore,
the propagation probability index and connectivity index are incorporated as topographic
indexes into the debris flow prediction index system.

The propagation probability index calculated by the Flow-R model [67] provides the
probability of the unstable materials propagating to a point likely to be reached by debris
flows. The Flow-R model’s key input parameters are a digital elevation model (DEM) and
the loose material source area. The procedure identifying the source area considers the
mechanical anchoring effect of the root system and the vegetation weight loads on the slope
covered with various vegetation types. Details and results of the propagation probability
index computation can be acquired by referring to Zou et al. (2021b) [8].

The connectivity index was used in this study to represent the potential connectivity
between the outlet and other parts of the catchment, and can be quantified by the spatial
analysis tools in geographic information systems (GIS). According to Equation (13), its input
parameters include land-use data (at a 30 m resolution) and a DEM (at a 30 m resolution) [68,69].

ICk = log10

(Dup,k

Ddn,k

)
= log10

W S
√

A

∑i
di

WiSi

, (13)

where ICk is the connectivity index; Dup is the potential of sediments moving from the
upstream channel to the downstream channel; Ddn is the possibility of sediments reaching
the outlet through the flow path; W is the average weight of the upslope catchment area
determined by the land-use type; S is the average gradient of the upslope catchment area;√

A is the square root of the upslope catchment area; di is the length of the flow path from
the debris source area to the ith unit; and Wi and Si are the weight and the gradient of the
ith unit in the watershed, respectively.

3.4. Parameter Preprocessing
3.4.1. Analysis of Selected Characteristics’ Collinearity

Characteristics’ collinearity in machine learning modeling indicates that two or more
features contain similar information, i.e., there is a strong correlation between them, and
that strong collinearity may cause model instability [20,35,38]. The Spearman correlation
analysis technique was used to compute the correlation coefficients (Figure 5) in this
research. There were two pairs of variables with strong relationships, with correlation
coefficients of 0.83 for RM vs. VWL and 0.82 for ST vs. SS. As a result, RM and ST
were eliminated.
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3.4.2. Data Standardization

The indexes involved in the index system can be quantified according to the calculation
methods described above based on the field investigations and collected documentation.
Furthermore, considering the direct use of data with different orders of magnitude and
dimensions for training affects the accuracy of the model [70], these indexes were standardized
using Formula (14) to accelerate model convergence and improve the model accuracy [20].

I f inal =
I − Imin

Imax − Imin
, (14)

where Ifinal is the index value after standardization; I is the index value before standardiza-
tion; Imin is the minimum index value; and Imax is the maximum index value.

Finally, some quantified indexes involved in the index system are shown in Figure 6a–f.
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3.4.3. Generating the Cross-Validation Dataset

There is still a chance of overfitting on the test set because the parameters may be
changed until the estimator performs optimally when testing multiple settings (“hyper-
parameters”) for estimators, and the cross-validation algorithm in Scikit-learn was thus
used to build the cross-validation dataset. As a consequence, the model may be trained
with different subsets of training data before being tested with the test dataset, avoiding
overfitting. In this work, 70% of the sample set was used to construct the cross-validation
dataset (Figure 7), with the remaining 30% used for final model validation.
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3.4.4. Removing Outliers (RO)

Outliers are abnormal values in a dataset, and the goal of integrating the RO algo-
rithm with the machine learning model in this study was to eliminate outliers from the
input dataset since their existence is often caused by human errors caused by the data
collection, recording, or input procedure, or to natural error. The removing outliers pro-
cedure improves the capacity to fit and mine the main relationships between debris flow
occurrence and disaster-causing factors by reducing noisy data learning in the machine
learning model [71,72]. As a consequence, the operation of removing outliers from the
original data was performed in this study before training the hybrid machine learning
models. According to the Pauta criteria [73], the process of removing outliers is separated
into two steps:

Step 1: When the data obey a normal distribution, values outside 3δ from the mean
are discarded since this is a small probability event.

Step 2: For the remaining data that do not obey a normal distribution, data outside x δ

from the mean are determined to be outliers. The δ is the standard deviation, and the value
of x needs to be decided depending on expert experience and the actual situation.

3.5. Machine Learning Algorithms

Due to the abundance of datasets available from remote sensing interpretations, the
use of machine learning methods to interpret patterns or extract information from data [74]
is increasing for mountain disaster prediction. These machine learning algorithms, such as
support vector machines (SVMs), eXtreme Gradient Boosting (XGB), and random forest
(RF) [33,35,36], were selected as the basis of hybrid machine learning methods and then
combined in a hybrid with the RO algorithm and hyperparameter optimization algorithm.

3.5.1. Support Vector Machines (SVMs)

SVM is a general term for some classifiers that are used to solve the separation hyper-
plane with the maximum interval on the feature space, with interval maximization as the
learning strategy [20,34]. The hyperplane is a linear subspace with the residual dimension
equal to 1 in the n-dimensional Euclidean space and is used to split the feature space into
two half-spaces [75]. In this study, support vector classification (SVC) was selected.

3.5.2. Random Forests (RF)

Random forest (RF) is one of the ensemble-learning approaches commonly used
for assessing debris flow susceptibility [36]. This technique improves the decision tree
algorithm by integrating numerous decision trees, the formation of which is based on
samples chosen independently [33]. To be more specific, some samples are drawn at
random from the original training sample set, and then a series of decision trees are created
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to build the random forest based on the decision rules. Finally, the classification results of
the new data are computed based on the number of votes cast by the decision trees. As a
result of the random selection of features and samples during each decision tree training,
random forest (RF) is distinguished by strong noise resistance and steady performance.

3.5.3. eXtreme Gradient Boosting (XGB)

XGB is a cutting-edge machine learning approach for debris flow susceptibility that
quickly implements the Gradient Boosting Decision Tree (GBDT) algorithm and adds many
refinements to it, integrating several tree models to construct a strong classifier [20]. The
technique is several times quicker than conventional algorithms due to the massively
parallel boosting tree, and it has superior computational accuracy since XGB conducts a
second-order Taylor expansion on the loss function, whereas common algorithms only use
a first-order Taylor expansion. XGB was thus chosen for this investigation.

3.6. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) algorithm is a biological heuristic method in
the realm of computer intelligence that is often used for intelligence optimization [38]. The
PSO algorithm is inspired by the study of bird feeding behavior, and reflects an effective
and easy method used by birds to hunt for food by looking in the area nearest the food.
The particle is likened to a bird in that it decides its next move based on its own experience
and the best experience of its companions. The progression of its movement is summarized
in Equations (16) and (17).

Vm+1
ith = ωVm

ith + l1r1(Pbestm
ith − Xm

ith) + l2r2(Gbestm − Xm
ith), (15)

Xm+1
ith = Xm

ith + Vm+1
ith , (16)

where m is the number of current iterations, Vm
ith and Xm

ith are the position and velocity of
ith particle in the mth iteration in the feature space, r1 and r2 are random number of values
between 0 and 1, l1 and l2 are learning factors, ω is the inertial weight coefficient, Pbestm

ith
is the personal best position of particle i in the mth iteration, and Gbestm is the best position
of all particles.

3.7. Generating the Hybrid Machine Learning Models

In this study, the procedure of integrating each machine learning model with RO and
PSO consists of two steps:

Step 1: The RO algorithm removes outliers from the input dataset because their
presence is often attributable to human mistakes or to natural error. The goal of this step
is to improve the capacity to fit and mine the main relationships between debris flow
occurrence and disaster-causing factors by reducing noisy data learning in the machine
learning model. As a result, the operation of removing outliers is important.

Step 2: The dataset that has been processed by the RO algorithm is then utilized to
train the machine learning model. Some parameters, known as hyperparameters, must be
artificially set in the traditional training process of machine learning models. The traditional
hyperparameter debugging procedure cannot easily locate the optimal hyperparameters
from all parameter groups due to time and labor costs, particularly when the hyperparam-
eters can be parameters of the floating-point type. To address this shortcoming, the PSO
algorithm is used to optimize the selection of hyperparameters. By integrating with the
PSO algorithm, the computer can automatically calculate the optimal hyperparameters of
machine learning algorithms, avoiding the intervention of human subjective factors.

Finally, hybrid machine learning models, including RO-PSO-SVC, RO-PSO-RF, and
RO-PSO-XGB, were established by integrating the aforementioned machine learning algo-
rithms with the remove outliers (RO) operation and the PSO algorithm, which boosts the
model’s fitting accuracy and stability. The efficacy of the RO operation in hybrid model
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construction was evaluated further by comparing it to several hybrid models that just use
PSO, such as PSO-SVC, PSO-RF, and PSO-XGB.

3.8. Model Training and Evaluation

The relationship between disaster-causing factors and debris flow occurrence can be
quantified by model training with a set of weights and bias parameters of machine learning
models. However, the hyperparameters of conventional machine learning models have to
be artificially tuned, and the debugging process is subjective and highly dependent on the
experience of experts. In this article, the particle swarm algorithm (PSO) is used to look
objectively for the optimal super parameters for PSO-RF, PSO-SVC, PSO-XGB, RO-PSO-RF,
RO-PSO-SVC, and RO-PSO-XGB, with mean squared error (MSE) and root mean squared
error (RMSE) closest to 0 and prediction accuracy (ACC) (Formula (18)) scores closest to 1.
Additionally, the spatial consistency of these debris flow susceptibility results produced by
different models needs to be evaluated using Spearman’s rank correlation coefficients, since
a similar susceptibility result obtained by different approaches indicates that these results
are reliable [36,76]. To assess the effectiveness of these six hybrid models, the ACC, MSE,
RMSE, and the time consumed for hyperparameters optimization were recorded (Table 3).
According to Table 3, RO-PSO-SVC has the greatest performance with a test data ACC of
0.946. The area under the curve (AUC) was also calculated to estimate the performance
of the models using the receiver operating characteristic (ROC) curve [77,78], as shown in
Figure 8. The higher the AUC value, the better the prediction performance of the model.
The prediction accuracy (ACC) (Formula (3)) is a rate of correct assignment for test samples.

ACC = (TP + TN)/(TP + FN + FP + TN), (17)

where TP and TN show the number of properly identified catchments, whereas FP and FN
show the number of wrongly categorized catchments (Table 4).

Table 3. Final optimal super parameters of the models and consumed time (Note: for an explanation
of each parameter and its role in the model adjustment, refer to the Scikit-learn website: https:
//scikit-learn.org, accessed on 20 February 2022).

No Classifier Algorithm Optimal Parameters ACC AUC MSE RMSE Runtimes
1 SVC Default 0.911 0.968 0.068 0.261 /
2 RF Default 0.888 0.964 0.094 0.307 /
3 XGB Default 0.893 0.952 0.158 0.397 /

4 PSO-SVC

‘kernel’ = ‘rbf’
‘C’ = 7.5675

‘gamma’ = 0.0647
‘probability’ = True

‘decision_fuction_shape’ = ‘ovo’

0.935 0.973 0.063 0.251 649 s

5 PSO-RF
‘criterion’ = ‘gini’
‘ max_depth ‘ = 5

‘ n_estimators ‘ = 159
0.893 0.967 0.077 0.278 3674 s

6 PSO-XGB
‘learning_rate’ = 0.0595

‘max_depth’ = 2
‘n_estimators’ = 35

0.905 0.955 0.084 0.291 1563 s

7 RO-PSO-SVC

‘kernel’ = ‘rbf’
‘C’ = 64.6924

‘gamma’ = 0.0225
‘probability’ = True

‘decision_fuction_shape’ = ‘ovo’

0.946 0.981 0.050 0.224 1103 s

8 RO-PSO-RF
‘criterion’ = ‘gini’

‘ max_depth ‘ = 23
‘ n_estimators ‘ = 665

0.911 0.972 0.073 0.270 8721 s

9 RO-PSO-XGB
‘learning_rate’ = 0.0604

‘max_depth’ = 30
‘n_estimators’ = 337

0.946 0.977 0.055 0.234 4352 s

https://scikit-learn.org
https://scikit-learn.org
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Table 4. Confusion matrix.

Predicted

Positive Negative

Observed
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

The MSE and RMSE are used for estimating the generalization error of the model, and
can be expressed as follows:

MSE = ∑n
i=1

(
xi,tru − xi,pre

)2/n, (18)

RMSE =
√

∑n
i=1

(
xi,tru − xi,pre

)2/n, (19)

where xi,tru represents the observed values in the training dataset or validation dataset,
xi,pre represents the predicted values from the debris flow susceptibility models, and n is
the total number of the samples in the training or validation datasets.

4. Results

Using the techniques described above for parameter optimization, optimal models
with matching hyperparameters (Table 3) were identified and used to predict the suscep-
tibility of debris flows. The spatial consistency of the debris flow susceptibility maps for
the different optimal models noted above was thus analyzed using Spearman’s rank corre-
lation coefficients. The Pearson correlation coefficients range from 0.86 to 0.98 (Figure 9),
indicating that the index system presented in this article can predict the occurrence of
debris flows in the topographically extreme belt, and the results are reliable and effective.
The outputs of the aforementioned hybrid or non-hybrid models were used to reclassify
susceptibility levels into five groups (very low, low, medium, high, and very high) using
the natural break classification technique [36]. Susceptibility maps were then generated on
the GIS platform for visualization (Figure 10). The findings reveal that those catchments
with high and very high debris flow susceptibility are most prevalent in the study area’s
central mountainous region, whereas the northern plateau areas with gentle topographical
change have lower susceptibility. Compared with the distribution of the susceptibility
maps (Figure 10) obtained by different models, the findings show that the catchments with
different susceptibility levels tend to be clustered together with greater spatial continuity
after integrating the machine learning models used in this article with the RO and PSO
algorithms. This may be because the RO and PSO algorithms enhance the machine learning
model’s ability to fit and mine the major relationships between debris flow occurrence and
disaster-causing factors by reducing noisy data learning and hyperparameter optimization.
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Figure 10. The debris flow susceptibility maps of the Dadu River based on the (a) SVC, (b) RF, (c) XGB,
(d) PSO-SVC, (e) PSO-RF, (f) PSO-XGB, (g) RO-PSO-SVC, (h) RO-PSO-RF, and (i) RO-PSO-XGB models.
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Figure 11 depicts the relative distribution of each model’s different susceptibility levels.
The high level has the highest percentage (28.99%) in the RO-PSO-SVC model, with the
remaining 24.33%, 13.82%, 21.35%, and 11.51% of watersheds falling into the very low, low,
medium, and very high susceptibility levels, respectively. The percentages of the total of
low and very low for all of the above-mentioned models’ debris flow susceptibility maps
are quite close to 38.85%. Furthermore, the main classes in the research region include
medium, high, and extremely high debris flow susceptibilities.
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5. Discussion

This study proposes new hybrid machine-learning approaches combined with the
removing outliers (RO)algorithm and the particle swarm optimization (PSO) algorithm
to predict the susceptibility of debris flows in the Dadu River basin, a typical extreme
topography transition belt on the eastern margin of the Qinghai-Tibet Plateau. The PSO
and RO algorithms were implemented in these hybrid models to identify the perfect
hyperparameters for the machine learning model and to lessen the impact of noise on the
model’s convergence speed and prediction accuracy. The model performance evaluation
analysis (ACC) revealed that machine learning models enhanced by the PSO and RO
algorithms outperformed solo machine learning models. According to the ACC analysis,
the RO-PSO optimization algorithms improved the performance of SVC, RF, and XGB by
3.84%, 2.59%, and 5.94%, respectively. The ACC value of SVC, RF, and XGB rose by 2.63%,
0.56%, and 1.34%, respectively, when only the PSO algorithm was used. Furthermore, the
RO algorithm improved the performance of PSO-SVC, PSO-RF, and PSO-XGB by 1.21%,
2.03%, and 4.60%, respectively. The improvement in the performance of these machine
learning models shows that the indicators can shed light on the physical mechanisms
behind the debris flow formation, such as the physical failure mechanism on vegetation-
covered slopes revealed by the index PPI. Another point worth noting is that the degree
of RF improvement is not obvious after integrating only with the PSO algorithm. Results
analysis showed that the PSO algorithm can significantly improve the performance of
machine learning models with floating-point-type super parameters, such as SVC and XGB,
since the PSO algorithm has a stronger parameter search capability for floating-point-type
super parameters than for integer super parameters. The greater the number of floating-
point-type super parameters in the model, the greater the performance benefit. As a result,
the fact that the major super parameters for RF debugging in this study were all integer
types restricts the PSO algorithm’s ability to improve.

RO-PSO-SVC has the strongest spatial recognition capacity to identify debris flow hazards
among all of the aforementioned models, as its total percentage of debris flow catchments
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(Figure 12) with high and very high susceptibility is the biggest, accounting for 91.04%.
Interestingly, we found that RO-PSO-SVC and RO-PSO-XGB result in fewer false alarms
than RO-PSO-RF, with a lower total percentage (1.44%) of debris flow catchments with very
low and low susceptibility levels. RO-PSO-XGB, by comparison, classifies more debris flow
as medium susceptibility than RO-PSO-SVC. In this regard, RO-PSO-SVC is better able to
minimize false alarms since the total percentage of debris flow catchments with very low, low,
and medium susceptibility is 8.96%, compared to 11.47% for RO-PSO-XGB.
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RO-PSO-SVC also has the best performance for predicting debris flow susceptibility,
according to the model performance evaluation analysis (ACC, MSE, and RMSE), and
was thus chosen to interpret and diagnose the contribution of different predictor factors.
SHAP (SHapley Additive exPlanations) [79], a game-theoretic technique to explain the
output of any machine learning model, can quantify the relative importance of each causal
factor. Figure 13 shows that runoff velocity (RV) is the most significant predictor variable
in the RO-PSO-SVC model, with a relative importance value of 49.57%, and flow depth
(FD), the associated predictor variable representing hydrological conditions, has a relative
importance value of 8.45%. Topography-related factors such as AD, CG, IC, and PPI
have a relative relevance of 11.08%, 9.05%, 4.26%, and 3.33%, respectively. Such results
suggest that topography and hydrology play important roles in debris flow formation
as general factors, which is consistent with previous research [34–36] in topographically
extreme belts. Furthermore, the factor importance analysis shows that the ecology-related
factor, vegetation weight loads (VWL), has a relatively low contribution to the debris
flow occurrence, which is similar to the findings of previous studies [35,36] that revealed
that ecology-related factors reflecting vegetation cover, such as Normalized Difference
Vegetation Index (NDVI), contribute less to debris flow formation than topography- and
hydrology-related factors, taking the Sichuan province as the study area.

The top three indicators with the greatest contribution according to Figure 13 were
selected for further statistical analysis to investigate the impact of triggering factors on
debris flow occurrence. Figure 14 depicts the proportion of catchments with different debris
flow susceptibility (as predicted by RO-PSO-SVC) for each level of different triggering
factors. This shows that there is an obvious positive correlation between the factors of
runoff velocity and altitude difference with debris flow occurrence, because the catchments
with high and very high susceptibility levels are concentrated in the catchments with a
greater runoff velocity index and a greater altitude difference index. The performance
of altitude difference is easy to understand since the enormous relief may provide an
abundance of potential energy conditions for the formation of debris flows. After deep
analysis, we attribute the strong sensitivity of the runoff velocity factor to the debris flow
occurrence to the good ability of this index to represent the process of debris flow formation,
which indicates that there is strong link between the physical movement mechanism used
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in the derivation process of the runoff velocity index and the dynamic process of debris
flow movement. The factor of channel gradient also plays an essential role, as implied in
Figure 14. The total proportion of catchments with very high and high susceptibility in
100–200‰ of the channel gradient is 49.60%, the highest of all channel gradient levels. This
result is consistent with the findings of Xiong et al. (2020) [36], who conducted debris flow
susceptibility research in the Sichuan Province.

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 25 
 

 

catchments with high and very high susceptibility levels are concentrated in the catch-
ments with a greater runoff velocity index and a greater altitude difference index. The 
performance of altitude difference is easy to understand since the enormous relief may 
provide an abundance of potential energy conditions for the formation of debris flows. 
After deep analysis, we attribute the strong sensitivity of the runoff velocity factor to the 
debris flow occurrence to the good ability of this index to represent the process of debris 
flow formation, which indicates that there is strong link between the physical movement 
mechanism used in the derivation process of the runoff velocity index and the dynamic 
process of debris flow movement. The factor of channel gradient also plays an essential 
role, as implied in Figure 14. The total proportion of catchments with very high and high 
susceptibility in 100‰–200‰ of the channel gradient is 49.60%, the highest of all channel 
gradient levels. This result is consistent with the findings of Xiong et al. (2020) [36], who 
conducted debris flow susceptibility research in the Sichuan Province. 

 
Figure 13. The relative importance of disaster-causing factors in the RO-PSO-SVC model. The rela-
tive importance is normalized so that they sum to 1. 

  
Figure 14. Proportions of the catchments with different debris flow susceptibility obtained by RO-
PSO-SVC for each level of different triggering factors. 

It is worth noting that the susceptibility classification results show that there is a high 
proportion of catchments with high and very high susceptibility in the study area, which 
is consistent with the study results of Xiong et al. (2020), who explain that this is because 
this region belongs to the transition belt, where the topography varies enormously, from 
the Qinghai–Tibet Plateau to the Sichuan Basin, and is coupled with dry valleys and fault 
zones. Another point of concern is that, although the study improved the performance of 
the debris flow susceptibility assessment by introducing some factors related to physical–

Figure 13. The relative importance of disaster-causing factors in the RO-PSO-SVC model. The relative
importance is normalized so that they sum to 1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 25 
 

 

catchments with high and very high susceptibility levels are concentrated in the catch-
ments with a greater runoff velocity index and a greater altitude difference index. The 
performance of altitude difference is easy to understand since the enormous relief may 
provide an abundance of potential energy conditions for the formation of debris flows. 
After deep analysis, we attribute the strong sensitivity of the runoff velocity factor to the 
debris flow occurrence to the good ability of this index to represent the process of debris 
flow formation, which indicates that there is strong link between the physical movement 
mechanism used in the derivation process of the runoff velocity index and the dynamic 
process of debris flow movement. The factor of channel gradient also plays an essential 
role, as implied in Figure 14. The total proportion of catchments with very high and high 
susceptibility in 100‰–200‰ of the channel gradient is 49.60%, the highest of all channel 
gradient levels. This result is consistent with the findings of Xiong et al. (2020) [36], who 
conducted debris flow susceptibility research in the Sichuan Province. 

 
Figure 13. The relative importance of disaster-causing factors in the RO-PSO-SVC model. The rela-
tive importance is normalized so that they sum to 1. 

  
Figure 14. Proportions of the catchments with different debris flow susceptibility obtained by RO-
PSO-SVC for each level of different triggering factors. 

It is worth noting that the susceptibility classification results show that there is a high 
proportion of catchments with high and very high susceptibility in the study area, which 
is consistent with the study results of Xiong et al. (2020), who explain that this is because 
this region belongs to the transition belt, where the topography varies enormously, from 
the Qinghai–Tibet Plateau to the Sichuan Basin, and is coupled with dry valleys and fault 
zones. Another point of concern is that, although the study improved the performance of 
the debris flow susceptibility assessment by introducing some factors related to physical–

Figure 14. Proportions of the catchments with different debris flow susceptibility obtained by RO-
PSO-SVC for each level of different triggering factors.

It is worth noting that the susceptibility classification results show that there is a high
proportion of catchments with high and very high susceptibility in the study area, which
is consistent with the study results of Xiong et al. (2020), who explain that this is because
this region belongs to the transition belt, where the topography varies enormously, from
the Qinghai–Tibet Plateau to the Sichuan Basin, and is coupled with dry valleys and fault
zones. Another point of concern is that, although the study improved the performance of
the debris flow susceptibility assessment by introducing some factors related to physical–
mechanical mechanisms, the computation of these factors was time consuming, particularly
for the PPI reflecting the physical failure mechanism on vegetation-covered slopes, which
took nearly a month to compute with 26 computers. As a result, the next stage of the
research will look for methods to lower the computing costs associated with introducing
parameters related to physical–mechanical mechanisms at the regional scale.
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It is well known that the physics behind the debris flow formation are closely related
to the accumulation of loose materials, initiation driven by rainfall, the potential of dynamic
movement controlled by terrain and channel conditions, and accumulation at the outlet.
From the viewpoint of indicator selection, all indicators used in this research are focused
on the physical mechanisms behind debris flow formation, such as the failure mechanisms
of the vegetated slope and the dynamic processes of debris flows. As a result, the main
contribution of this paper is to propose a regional-scale susceptibility index system for
predicting the probability of debris flow occurrence in the Dadu River basin, a typical
extreme topography transition belt on the eastern margin of the Qinghai-Tibet Plateau,
from the perspective of the debris flow formation mechanism. This system takes into
account not only the common geographic features (such as enormous topographic relief
and active tectonics) that control the occurrence of debris flows, but also the comprehensive
impacts of vegetation on the occurrence of debris flows, such as the positive effect of root
anchoring and the negative effect of vegetation weight loads. In this respect, this study is
innovative and essential for the development of regional-scale debris flow susceptibility
evaluation. To ensure that the causal factors selected in this study stand up to scrutiny, these
indicators were classified into different categories, as is commonly done in the traditional
methodology. This was undertaken to ensure that the primary concept of constructing the
indicator system in this article was based on three fundamental disaster-causing factors
that control debris flow formation, namely, topographic condition, hydrological condition,
and material condition. Furthermore, the novel hybrid models formed by integrating the
machine learning model with RO and PSO algorithms were, for the first time, also used in
the catchment-based assessment of regional-scale debris flow susceptibility. These hybrid
models with good performance also provide a scientific reference for future regional-scale
debris flow susceptibility assessments.

6. Conclusions

A novel hybrid machine learning approach combined with the RO and PSO algo-
rithms is presented to assess the debris flow susceptibility in the Dadu River basin, a
typical extreme topography transition zone on the eastern margin of the Qinghai-Tibet
Plateau, taking into account the effects of vegetation on debris flow formation from the
perspective of physical mechanisms. Some of the significant findings are as follows. Based
on the index system coupled with ecohydrological activation, the hybrid machine learning
technique RO-PSO-SVC can effectively predict the occurrence of debris flows in an extreme
topography transition zone. The factor important analysis (for the RO-PSO-SVC method)
reveals that the ecology-related factor, vegetation weight load (VWL), contributes to the
occurrence of debris flows at a lower rate than topography- and hydrology-related factors,
and the contribution rate of the ecology-related factor is one-tenth that of topography- and
hydrology-related factors. Furthermore, according to the ACC value, the RO-PSO algorithm
enhanced SVC, RF, and XGB performance by 3.84%, 2.59%, and 5.94%, respectively. The
RO-PSO algorithm was included in the machine learning model, which provided the capac-
ity to remove anomalous data and automatically optimize hyperparameters. Nonetheless,
caution should be used when applying this model to determine debris flow susceptibility
since performance varies among research locations. The given susceptibility results can
offer scientific assistance to local governments for debris flow prevention and mitigation.
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