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Abstract: Conservation practitioners require cost-effective and repeatable remotely sensed data for
assistive monitoring. This paper tests the ability of standard remotely piloted aircraft (DJI Phantom
4 Pro) imagery to discriminate between plant species in a rangeland environment. Flights were
performed over two 0.3–0.4 ha exclusion plot sites, established as controls to protect vegetation
from translocated animal disturbance on Dirk Hartog Island, Western Australia. Comparisons of
discriminatory variables, classification potential, and optimal flight height were made between plot
sites with different plant species diversity. We found reflectance bands and height variables to
have high differentiation potential, whilst measures of texture were less useful for multisegmented
plant canopies. Discrimination between species varied with omission errors ranging from 13 to 93%.
Purposely resampling c. 5 mm imagery as captured at 20–25 m above terrain identified that a flight
height of 120 m would improve capture efficiency in future surveys without hindering accuracy.
Overall accuracy at a site with low species diversity (n = 4) was 70%, which is an encouraging result
given the imagery is limited to visible spectral bands. With higher species diversity (n = 10), the
accuracy reduced to 53%, although it is expected to improve with additional bands or grouping like
species. Findings suggest that in rangeland environments with low species diversity, monitoring
using a standard RPA is viable.

Keywords: species differentiation; remote sensing; UAV; monitoring and evaluation; rangelands

1. Introduction
1.1. Remotely Piloted Aircraft Environmental Monitoring

Australian conservation monitoring is often conducted manually at the plot-scale [1].
Satellite remote sensing as an assistive dataset for testing plot-scale conservation efficacy
has been largely untapped due to previous impediments, such as prohibitive costs or
acquisition of capture with insufficient resolution. Remotely Piloted Aircrafts (RPAs) have
begun to fill the void between open access satellite imagery with moderate resolution
and very high resolution satellite imagery, too costly for repeat monitoring of vegetation
changes at the plot-scale [2]. There is an urgent need for guidelines to assist conservation
practitioners with best-practice RPA capture and subsequent processing [3].

Modern RPAs can capture imagery with subcentimetre spatial resolution [2,4] and
have been used to monitor individual plants and grasses [5]. Differentiation of a single
target species by timing imagery acquisitions with some distinguishing feature (e.g., flow-
ers, leaf colour, defoliation) relative to coexisting species is important for tracking the
trajectories of individual species (e.g., [6]), though it is less useful for studies that require
quantification of multiple species with different phenological cycles. Studies that attempt to
differentiate numerous species from very high resolution (VHR) remotely sensed imagery
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vary in heterogenous environments and could benefit from having a universally applicable
approach (e.g., [3,7]).

1.2. Object-Based Image Analysis

Traditional methods of classifying VHR aerial imagery focus on the spectral reflectance
per pixel [8–10]. However, it has been shown that pixel-based approaches to classification
may produce suboptimal results with RPA imagery [11–14]. Instead, RPA imagery benefited
by being complemented with Object-Based Image Analysis (OBIA) techniques [15]. OBIA
groups homogenous raster pixels into objects or segments [16], which are then classified
as a unit [17]. In general, OBIA is considered to be an improvement over traditional
per-pixel techniques due to pixel adjacency considerations [18], a reduction in positional
inaccuracies [19], mitigation of the ‘salt-and-pepper’ phenomena [20], and for identifying
features with high spectral variability within classes [14].

Commonly, the segment is bounded to the object being delineated, e.g., individual
land cover areas or entire tree canopies [10,18]. However, it is not feasible to bind the
segment to the whole canopy where rangeland plant species coexist in space and low-lying
growth forms intertwine. Here, we propose that multisegmentation of the individuals
within an image may overcome this challenge.

1.3. Dirk Hartog Island History

Dirk Hartog Island, on the west coast of Western Australia, was used by pastoralists to
farm sheep between c. 1869 to 2009, which, combined with the presence of exotic ungulates
(goats) and feral cats, grossly altered the landscape ecology, including the local extinction
of at least eleven vertebrate taxa [21–23]. In 2009, the island was established as a national
park by the Department of Biodiversity, Conservation and Attractions [24]. To restore
biodiversity and ecosystem services, the Dirk Hartog Island National Park Ecological
Restoration Project (‘Return to 1616’) was initiated in 2011, with a vision to return the
island to its original state when Dutch explorers first visited in 1616 [25]. Sheep, goats,
and feral cats were removed or eradicated by 2018 [23,26]. This subsequently allowed for
the successful conservation introduction of two threatened macropod species, the rufous
and banded hare-wallaby (Lagorchestes hirsutus and Lagostrophus fasciatus, respectively) [27].
Additional translocations are planned or underway with the aim of restoring the island’s
former fauna assemblage, which may result in beneficial conservation outcomes for some
threatened species, e.g., the dibbler (Parantechinus apicalis). Other species, such as the
boodie (Bettongia lesueur) and Shark Bay bandicoot (Perameles bougainville), may also help
restore ecosystem services through their digging activities [28,29]. Identifying the flow-on
effects that these changes may have on the island’s biodiversity and ecosystem function
requires a framework for repeat environmental monitoring. These methods should allow
for both climax and pioneer plant species to be mapped.

1.4. Objectives

An operational remote sensing approach would greatly assist monitoring flora species
composition and change on Dirk Hartog Island as it recovers. This study examines the po-
tential of RPA imagery for monitoring plant species at the plot-scale. We have the following
aims: (a) identify a suite of image-derived variables suitable for species-level discrimination
and explore if these change between study sites, (b) provide a method for determining
optimal height for practitioners, and (c) compare the classification measurements of two
study sites, differing in species richness, using canopy multisegmentation.

2. Materials and Methods
2.1. Study Area

Dirk Hartog Island is situated on the Gascoyne coast of Western Australia (central
point: 25◦50′ S 113◦05′ E; Figure 1A). It is approximately 630 km2, 80 km long, and up to
12.5 km wide (Figure 1B). Denudation from prolonged erosion and the absence of tectonic
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activity has resulted in a low-lying landscape, approximately 180 m above sea level at the
highest point [30]. The soil is predominantly composed of wind-transported aeolian sand
and contains carbonate grains from biogenic materials [31]. It experiences an annual semi-
arid climate [32,33]. Average annual rainfall from the weather station at Denham, c. 40 km
away, was estimated to be 204.6 mm per year between 2000 and 2019 [34]. The minimum
and maximum annual temperature is approximately 18 ◦C and 27 ◦C, respectively. The
island supports five vegetation communities: hummock grassland, low closed heath, low
open heath, low open shrublands, and tall open heath [35].

Figure 1. Map showing the location of (A) Dirk Hartog Island and (B) study sites in relation to Dirk
Hartog Island. An exemplar of the aerial imagery and species compositions found at (C) study site 1
and (D) study site 2. (E) Researcher flying remotely piloted aircraft to capture Dirk Hartog Island
(Photo: Lucy Wilson).

Exclusion plots (40 m × 40 m; fencing 90 cm high) were erected for the purpose of
protecting vegetation from ground-dwelling fauna for future studies measuring change.
Given that vegetation is still in recovery from grazing/browsing by ungulates, exclusion
plots retain this process without being confounded by the activity of translocated fauna.
The two study sites used for analysis comprise an exclusion plot location and peripheral
areas, hereby referred to as study sites 1 and 2 (Figure 1B). The northernmost site (study
site 1) is c. 0.4 ha (Figure 1C), whilst study site 2 is c. 0.3 ha (Figure 1D).

2.2. Reference Data and Study Species

Aerial imagery (RGB) was captured using a DJI Phantom 4 Pro RPA on 16 September,
2018 with a radiometric resolution of 8 bits. A flight plan was prerecorded in Litchi version
4.14.0 g for drone navigation in the field [36]. The starting flight height above ground for
study site 1 was 22.1 m, resulting in a pixel resolution of 5.52 mm. For study site 2, the flight
height was 25 m with a pixel resolution of 6.06 mm. RPA imagery tiles were mosaicked
into a single image for each study site using Photoscan-pro version 1.4.2 [37].

Field surveys were conducted in autumn between 29 April 2019 and 1 May 2019. A
Samsung Android tablet was used to display the georectified RPA images as an assistive tool
for mobile field collection. Plants that could be unambiguously matched in the field to the
image were delineated, and each individual was photographed and given an incremental
photo number. A unique identifier (ID) was recorded for each sample using a composite of
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the site ID and the photo number. The centroid coordinates of each sample were recorded
(Zone 49, Map Grid of Australia 1994) along with the species name and general notes.
Vegetation was identified to the species level by the field team and later confirmed by
double-blind assessment from photo assessments by two botanists familiar with plant
species of the area.

Plant samples ranged from pioneer to climax individuals, and their respective canopy
boundaries were digitised using ArcGIS Pro version 2.4.0 [38]. Canopy extent, without ex-
ceeding the boundary, was approximated from the RPA imagery. Plant canopy boundaries
and segmented datasets were overlaid in RStudio 1.2.1335 executing R version 3.6.1 [39,40]
for later training of the machine learning algorithm.

A total of 174 individual plants across 9 species were sampled at study site 1 (Figure 2).
Study site 2 sampling totalled 82 individuals across 4 species. This included three species
that were found at both sites: A. ligulata, A. vesicaria, and T. plurinervata. Vegetation
comprised greater vegetated ground coverage and less exposed earth in study site 2 than 1.
Numbers of plants found in each study site can be found in Figure 2 caption.

Figure 2. Common plants found on Dirk Hartog Island within the areas of interest. (A) Acacia ligulata
(N = 25, 21), (B) Acanthocarpus preissii (N = 17, 0), (C) Alyogyne cuneiformis (N = 25, 0),
(D) Atriplex vesicaria (N = 27, 20), (E) I Cenchrus ciliaris (N = 22, 0), (F) Exocarpus aphyllus (N = 19, 0),
(G) Scaevola spinescens (N = 0, 21), (H) Threlkeldia diffusa (N = 13, 0), (I) Triodia plurinervata (N = 16, 20),
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and (J) Pittosporum phillyreoides (N = 10, 0). All species except S. spinescens were found at study site 1.
Study site 2 was considerably less diverse, comprising only A. ligulata, A. vesicaria, T. plurinervata, and
S. spinescens. Numbers of species sampled are shown as (N = number at study site 1, number at study
site 2).

2.3. Object-Based Variables

RPA imagery was segmented using eCognition version 9.5.1 (Figure 3 [41]). For
each object, a suite of 21 variables were computed based on spectral reflectance (mean of
the red, blue, and green bands), height (mean, median, minimum, maximum, and 90th
percentile), texture (mean, correlation, contrast, homogeneity, and entropy), and shape
parameters (roundness, compactness, length/width, and area). Additionally, the mean,
median, minimum, maximum, and 90th percentile was calculated from the Green Leaf
Algorithm [42]:

GLA = (2G − R − B)/(2G + R + B) (1)

where G = green spectral reflectance, R = red spectral reflectance, and B = blue spectral
reflectance. The GLA produces an image in the range of −1 to 1, where negative values
are generally soil and values of 1 indicate green leaves and stems. Maximum, median,
and mean GLA values were calculated for each segment. A canopy height model was
produced for both study sites by subtracting an upper digital surface model from a digital
terrain model.

Figure 3. Detailed exemplars of multisegmentation for (A) study site 1 and (B) study site 2 quantified
per the initial c. 5 mm imagery and a scale of 50.

Variable Importance in the Projection—VIP [43] scores were used to determine the
subset of variables that could differentiate between the species found at each study site [6].
A VIP score ≤ 1 indicates that the variable is less likely to differentiate between species and
may be excluded [44]. VIP scores using the preliminary segmented images were calculated
for both sites.

2.4. Flight Height

To identify a suitable flight height for future surveys, we resampled our RPA imagery
to mimic the capture resolution at higher altitudes. Both study sites were resampled using
pixel sizes of 10, 15, 20, 25, 30, 35, 40, 45, and 50 mm. The resampled images and the initial
c. 5 mm capture were segmented using 5, 10, 20, 50, 100, 200, 300, and 400 scale levels. The
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accuracy of each pixel and segment scale combination was quantified per study site using
the error estimate technique in lieu of a best-fit combination. Mean segment size (m2) was
plotted against Kappa to identify the optimal capture approach.

Spatial resolution is measured using Ground Sample Distance (GSD), which is the
ground area from which reflectance is measured for an individual pixel. GSD here assumes
pixel units are regular quadrilaterals and was measured based on the following equation:

GSD =
FlightHeight × SensorWidth × 1000

FocalLength ∗ ImageWidth
(2)

where GSD is the distance between the centre point of two consecutive pixels (mm/pixel);
flight height is the distance (in metres) between the terrain and RPA lens; and sensor width,
focal length, and image width are optical properties that vary with camera make and model.
For the DJI Phantom 4 Pro used here, sensor width = 12.83 mm, focal length = 8.6 mm, and
image width = 5472 pixels.

2.5. Classification

The Random Forest (RF) algorithm was implemented in R version 3.6.1 [31] using the
ranger [37] and caret [38] library packages. Model constants applied to each iteration were
mtry = default values 4 and 6, minimum node size = 1, and number of folds = 5. The mtry
value determines the number of variables or predictors sampled at each tree split. Mtry
values of 4 and 6 were trialled with the RF model operating on the best performing option.
Minimal node size was set to 1 to ensure tree growth was not restricted, but this is the most
computationally intensive choice. The number of folds parameter randomly portions 20%
of the data per each iteration for an out-of-bag error estimate using a process known as
bootstrapping. Out-of-bag bootstrapping ‘drops’ a percentage of testing data for iterations
n1, n2 . . . nmax to determine accuracy [45].

An out-of-bag error was estimated from 100 iterations to quantify overall accuracy
(OA) and Cohen’s Kappa coefficient values. Kappa evaluates the agreement between
random and observed class values [46]. Out-of-bag error estimation was complemented
with an independent accuracy assessment using a stratified random testing subset of 30%
of the sampled plant species. The independent cross-validation accuracy separated all
segments within the plant canopy into testing and training subsets. Training and testing
data partitioning was based on objects comprising the entire plant canopy, whereas the
out-of-bag training used individual segments of the plant canopy.

The scale and pixel parameter combination that resulted in the highest accuracy value
was used to calculate the final segmented outputs across both study sites, per the VIP
subset variables. Error matrices, errors of omission, errors of commission, OA, and Kappa
were computed for each site and calculated using the independent accuracy assessment
previously described.

3. Results
3.1. Object-Based Variables

Both study sites returned eight variables that were likely to discriminate between all
respective species, having a VIP score greater than 1 (Table 1). Whilst these differed in
their importance, six of those variables were common to both sites. These were reflectance
for each of the three RGB bands and three height variables (median, maximum, and 90%
percentile). Study site 1 also identified the maximum GLA and 90th percentile GLA,
but no texture or shape variables. The minimum height variable was also identified as
discriminable in study site 2, along with one texture variable (Homogeneity). No other
texture variables or shape variables were useful.
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Table 1. Variables derived per object and Variable Importance in the Projection (VIP) scores quantified
for study sites 1 and 2. The values highlighted in grey show the variables that were significantly
differentiated (above VIP threshold for rejection).

Variable Group Variable Study Site 1
VIP Score

Study Site 2
VIP Score

Mean red band 1.76 1.17
Reflectance Mean green band 1.58 1.10

Mean blue band 1.79 1.24

Spectral
index–Green Leaf
Algorithm (GLA)

Mean GLA 0.25 0.80
Median GLA 0.06 0.56

Maximum GLA 1.58 0.98
GLA 90th percentile value 1.53 0.97

Height–Canopy
Height Model
(CHM)

Mean CHM 0.74 0.80
Median CHM 1.18 1.43

Minimum CHM 0.88 1.01
Maximum CHM 1.35 1.68

CHM 90th percentile value 1.30 1.61

Texture

Mean 0.11 0.79
Correlation 0.65 0.68

Contrast 0.35 0.76
Homogeneity 0.52 1.24

Entropy 0.51 0.74

Shape

Roundness 0.02 0.53
Compactness 0.00 0.51
Length/width 0.04 0.27
Area per pixel 0.03 0.75

3.2. Flight Height

The maximum OA and Kappa coefficient obtained for the study site 1 out-of-bag error
assessment were 0.58 and 0.48, respectively (Figure 4A,C). The independent error assess-
ment returned a slightly lower OA and Kappa of 0.51 and 0.41, respectively (Figure 4B,D).
Isolines plotted against segment scale over size heat maps show an accuracy hot spot
following the diagonal intersection between segments computed with a scale of 20 and
pixel size of 5 mm to a scale of 5 and pixel size of 45 mm. Australian RPA flights are
restricted to 120 m above ground [47], which would result in an optimal pixel size of 33 mm
per the GSD equation.

The diagonally accurate values pattern was also found for study site 2. This site
returned higher maximum independent (OA = 0.67 and Kappa = 0.56) and out-of-bag
(OA = 0.71 and Kappa = 0.62) accuracies when compared with study site 1.

According to Landis and Koch [48], Kappa values between 0.4 and 0.6 equate to a
moderate reliability for study site 1 (out-of-bag Kappa = 0.48) and a 0.6–0.8 Kappa range
shows that study site 2 has substantial reliability (out-of-bag Kappa = 0.62).

The optimal mean segment area per the out-of-bag error assessment was found to be
0.0116 m2 (Kappa = 0.48) and 0.0112 m2 (Kappa = 0.62) for study sites 1 and 2, respectively,
with a scale of 5 and pixel size of 40 mm for both.

The mean segment area quantified for study site 1 per the independent assessment
achieved optimum at 0.0361 m2 (Kappa = 0.41) with a scale of 10 and pixel size of 30 mm.
Mean segment area quantified for study site 2 per the independent assessment achieved
optimum at 0.0162 m2 (Kappa = 0.56) with a scale of 5 and pixel size of 45 mm.
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Figure 4. Segmentation scale over pixel size (mm) heat maps with isolines for each study site
showing (A) out-of-bag overall accuracy, (B) independent overall accuracy per a 30% split of the data,
(C) out-of-bag Kappa, and (D) independent Kappa per a 30% split of the data.

3.3. Classification

Errors of omission, also referred to as type II errors, represent false-negative samples
that were omitted from their correct class. Errors of commission, or type I errors, refer
to false positives where samples are incorrectly included in a class and thus the true null
hypothesis is rejected. High errors of omission and commission across study site 1 were
found for A. preissii, A. vesicaria, T. diffusa, T. plurinervata, and P. phillyreoides (Table 2A).
C. ciliaris and E. aphyllus also showed high errors of commission (80.90% and 60.66%,
respectively) for study site 1.

Study site 2 had low to moderate errors of omission for all species (Table 2B). A high
error of commission was found for A. vesicaria (74.17%).

The final outputs for study sites 1 and 2 showed overall classification accuracy values
of 53.03% and 70.24%, respectively (Figure 5A,B).
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Table 2. Confusion matrix calculated with errors of commission (Comm) and omission (Om) shown for (A) study site 1 and (B) study site 2.

A. ligulata A. vesicaria Ground T. plurinervata S. spinescens A. preissii A. cuneiformis C. ciliaris E. aphyllus T. diffusa P. phillyreoides Comm
Error (%)

(A) A. ligulata 268 31 54 3 - 23 123 2 89 9 4 55.8
A. vesicaria 28 59 129 11 - 26 33 1 10 26 2 81.8

Ground 12 22 838 7 - 16 18 2 14 11 1 10.9
T. plurinervata 4 8 48 14 - 12 17 1 0 19 0 88.6
S. spinescens - - - - - - - - - - -

A. preissii 17 30 60 2 - 62 35 0 1 10 3 71.8
A. cuneiformis 55 12 53 2 - 10 412 2 27 9 1 29.2

C. ciliaris 1 4 37 5 - 5 6 17 1 13 0 80.9
E. aphyllus 162 6 1 1 - 9 53 1 155 4 2 60.7
T. diffusa 2 14 58 9 - 12 30 2 3 11 0 90.5

P. phillyreoides 10 4 0 0 - 6 18 0 0 4 1 97.7
Om error (%) 52.1 68.9 34.4 74.1 - 65.8 44.7 37.0 48.3 90.5 92.9

Overall accuracy (%) 53.0

(B) A. ligulata 1274 26 25 80 248 22.9
A. vesicaria 34 70 0 28 139 74.2

Ground 4 0 212 7 0 3.6
T. plurinervata 16 1 34 317 2 14.3
S. spinescens 145 64 18 50 294 48.51

Om error (%) 13.3 56.5 26.6 24.2 56.9
Overall accuracy (%) 70.2
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Figure 5. Study site 1 (A) and study site 2 (B) maps showing predicted segments quantified per a
scale of 5, pixel size of 45 mm, and each individual VIP variable subset.

4. Discussion

Achieving an affordable, replicable, and accurate method for plot-scale monitoring
is crucial to ensure that conservation actions are successful (Buters et al., 2019). There
have been successful classification studies identifying larger growth forms using canopy
delineation from RPA imagery [49]. For example, Baena, Moat, Whaley, and Boyd [7]
showed that RPAs could accurately identify 95.3% of dry forest tree species in San Francisco
de Asis, Northern Peru, each with the segment bounded to individual canopies. However,
this study showed similar morphologies with no canopy mixing between the tree species
(n = 3) being measured and thus entire canopies could be differentiated. Furthermore,
restoration efforts can result in successional vegetation changes and require mapping of
both pioneer and climax plant species with varied growth forms [50]. To overcome the
challenge of identifying rangeland plants with coexisting plant species and growth forms
(grasses to large shrubs), this study modelled the segment closer to the leaf size than the
canopy size. The optimal segment size was found to be approximately 0.01 m2, which
achieved an overall detection rate greater than 70% when species diversity was low (n = 4).

Significantly important variables identified were derived from visible bands (n = 6)
and height variables (n = 3). Spectral reflectance and height are commonly used in imagery
classification, and our results support traditional remote sensing practices (e.g., [10,51,52]).
Study site 1 also recognised two variables based on the GLA as important for differentiating
plants, which follows the logic that spectral indices can be used to separate different plant
species [53]. However, there were no texture or shape variables identified as important for
study site 1, which are argued to be an advantage of OBIA [54,55]. Furthermore, study site
2 returned a sole texture variable and no shape variables. Studies examining land use and
land cover show texture and shape variables can be valuable at a regional scale [56–58]. Our
results suggest that in plant-species-level classifications, texture and shape may provide
less information on the degree of separation between classes.

Another advantage of OBIA is the ability to mitigate the ‘salt-and-pepper’ phe-
nomenon which can occur in traditional per-pixel methods [59]. This is when individual
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pixels cannot be classified due to the sensor’s instantaneous field of view being smaller than
the size of the object being recorded or the surface being highly heterogenous [60]. Whilst
RF did assign a class to each segment, close inspection of the canopies showed that there
was possible noise present within the plant boundaries of multisegmented individuals. The
intraclass heterogeneity and/or interclass similarities may have resulted in inaccuracies
when determining a species-level classification. There is the potential to predict the correct
class of erroneous segments postclassification based on peripheral segments to improve
the classification accuracy [61]. As it stands, there are limited studies applying a multiseg-
mentation approach for species-level classification using an affordable RPA, and thus the
refinement of the technique has yet to be achieved.

Comparisons between pixel size, segment scale, and Kappa values showed that a
finer spatial resolution does not always result in a higher accuracy. Studies examining the
accuracy achievable in relation to resolution have shown varying results (e.g., [62,63]. Our
results show that a pixel size of 45 mm appears just as capable as 5 mm. Increasing the
capture altitude can expedite survey time and capture a greater area of imagery [64]. The
maximum regulatory flying height of 120 m [47] can achieve an optimal pixel size of 33 mm
on Dirk Hartog Island. Therefore, with the increase in altitude corresponding to an optimal
accuracy estimate, conservation practitioners can achieve a greater image coverage and
thus an increase in survey efficiency. Aerial surveys for repeat environmental monitoring
should consider whether the flight plan could be enhanced by increasing the flying altitude
whilst maintaining an optimal accuracy.

In this study, we used variance importance in the projection (VIP) for dimensionality re-
duction. A measure known as the Bhattacharyya distance is another possibility for seeking
the best combination of variables and has been shown to be a robust measure in range-
lands [65]. Metrics of under- and over- segmentation could be utilised to complement the
use of Kappa used here for exploring the optimal segmentation scale. Under-segmentation
occurs when the segment exceeds the unit of reference and over-segmentation results from
the unit of reference being excessively divided [66].

Testing for errors of commission and omission indicated that there was a greater level
of plant species confusion for study site 1 when compared with study site 2. Increased
species diversity may result in difficulties for machine-learned classification of standard
RPA imagery. Literature applying RF to successfully classify vegetation has either grouped
species into plant communities (e.g., [67]) or analysed fewer species in the landscape
(e.g., [68]. Species such as A. preissii, A. vesicaria, T. diffusa, and T. plurinervata were omitted
from their true class whilst some, e.g., C. ciliaris and E. aphyllus, were inaccurately included
in false classes for study site 1. A. preissii and T. diffusa are both low-lying perennial herbs
with similar branching [69,70]. Another example of species which share similar growth
forms are the grasses T. plurinervata and C. ciliaris. Grouping herbs and grasses into a single
class can still provide information on plant responses after species translocation and may
improve the accuracy of environmental monitoring using RPA imagery [71,72]. If feasible,
it is suggested to group species with similar characteristics (e.g., growth form) to reduce
classifier confusion [73]. Another reason classes can be confused in species-diverse sites is
that finer variation in spectral reflectance, such as the greyish hues present in A. vesicaria
leaves [74] or verdant chlorophyll pigmentation of E. aphyllus [75], may not be measured
using course multispectral imagery. Increasing the spectral resolution, through splicing
bands or increasing the number of bands captured, could allow for the differentiation
of species with diverse plant communities. For example, near-infrared is a useful band
for measuring vegetation [4]. Lastly, species such as C. ciliaris and S. spinescens can show
different colouration after rain. Timing the capture per the season may provide more
variation between species, thus improving classification. This highlights the need to ensure
consistent timing if undertaking repeat monitoring.

This paper has shown that affordable RPA capture is viable for repeat monitoring of
plant species on Dirk Hartog Island where species diversity is low. The translocation of
native animals to Dirk Hartog Island was planned with the aim to quantify their restoration
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of biodiversity and ecosystem services [25]. Measuring vegetation in areas excluded from
reintroduction can be compared to areas where fauna is permitted for the purpose of
long-term ecosystem monitoring. Momentum for protecting native fauna in Australia
is currently shifting towards the aim of ecosystem restoration, with 74% of post-2018
digging mammal translocations stating this as a goal [29]. Bioturbation by a digging
mammal can reduce soil hydrophobicity [28]; increase soil nutrients [76]; improve soil
density [77]; and influence seed germination [28]. These qualities can restore plant species’
heterogeneity and ecosystem function, thus resulting in landscape changes over time [78,79].
Optimisation of the Dirk Hartog Island RPA capture using OBIA and RF will provide
conservation practitioners a best-practice guideline to assist with measuring the efficacy of
restoration efforts.

5. Conclusions

Very high resolution RPA imagery analysed using the DJI Phantom 4 Pro and an OBIA
is viable for repeat vegetation monitoring in rangeland environments, including at the
species level if species diversity is sufficiently low. Common imagery variables between
the study sites found spectral reflectance bands and canopy height model variables to be
the most useful for detecting plant species, whilst measures of shape and texture were
not. Results show that the 45 mm image pixel size can be as capable as a 5 mm pixel in
classifying vegetation. This suggests that a higher spatial resolution does not necessarily
result in a greater classification result. Optimal flight height for monitoring exclusion plot
sites was considered to be the regulatory maximum of 120 m above ground, corresponding
to a spatial resolution of 33 mm. This would allow for a greater survey area to be captured
for future monitoring surveys whilst maintaining optimal accuracy. Future environmental
monitoring using RPA imagery to detect plant species may improve the accuracy obtainable
by grouping like species or applying a postclassification probability filter. Increased spectral
bands, such as near-infrared, would also likely increase classification accuracy. The methods
and data presented here provide an important guideline to understand plant responses
from translocated animals on Dirk Hartog Island.
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