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Abstract: Recently, forest management faces new challenges resulting from increasing temperatures
and drought occurrences. For sustainable, site-specific management strategies, the availability of up
to date soil information is crucial. Proximal soil sensing techniques are a promising approach for rapid
and inexpensive collection of data, and could facilitate the provision of the necessary information.
This study evaluates the potential of visual and near-infrared spectroscopy (vis-NIRS) for estimating
soil parameters relevant for humus mapping in Saxon forests. Therefore, soil samples from the
organic layer are included. So far there is little knowledge about the applicability of vis-NIRS in the
humus layer of forests. We investigate the spectral behaviour of samples from organic (Oh) and
mineral (0–5 cm, Ah) horizons, pointing out differences in the occurring absorption features. Further,
we identify and assess the accuracy of selected soil properties based on vis-NIRS for forest sites,
compare the outcome of different regression methods, investigate the implications for forest soils
due to the presence and different composition of the humus layer and organic horizons and interpret
the results regarding their usefulness for soil mapping and monitoring purposes. For this, we used
retained humus soil samples of forests from Saxony. Regression models were built with Partial Least
Squares Regression, Support Vector Machine and Cubist. Investigated properties were carbon (C) and
nitrogen (N) content, C/N ratio, pH value, cation exchange capacity (CEC) and base saturation (BS)
due to their importance for assessing humus conditions in forests. In organic Oh horizons, prediction
results for C and N content achieved R² values between 0.44 and 0.58, with corresponding RPIQ
ranging from 1.58 to 2.06 depending on the used algorithm. Estimations of C/N ratio were more
precise with R² = 0.65 and RMSE = 2.16. Best results were reported for pH value, with R² = 0.90 and
RMSE = 0.20. Regarding BS, the best model accuracy was R² = 0.71, with RMSE = 13.97. In mineral
topsoil, C and N content models achieved higher values of R² = 0.59 to 0.72, with RPIQ values between
2.22 and 2.54. However, prediction accuracy was lower for C/N ratio (R² = 0.50, RMSE = 3.52) and
pH values (R² = 0.62, RMSE = 0.29). Models for CEC achieved R² = 0.65, with RPIQ = 2.81. In general,
prediction precision varied dependent on the used algorithm, without showing clear tendencies.
Classification into pH classes was exemplified since this offers a new perspective for humus mapping
on forest soils. Balanced accuracy for the defined classes ranged from 0.50 to 0.87. We show that
vis-NIR spectroscopy is suitable for assessing humus conditions in Saxon forests (Germany), in
particular not only for mineral horizons but also for organic Oh horizons.

Keywords: forest soils; vis-NIR spectroscopy; humus; machine learning; partial least squares regres-
sion; proximal soil sensing; support vector machine; cubist
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1. Introduction

Forests in Europe are highly affected by changing environmental conditions caused by
increasing annual temperatures and drought events. As a result, tree mortality increased
and forest stands remain vulnerable to further impacts like insect or fungal attacks [1].
This can lead to rapidly altering forest ecosystems [2]. Further, persistently high nitrogen
inputs shift the nutrient balance of forests. In order to avoid decreasing resilience of forests
and loss of forest ecosystem services, this has to be addressed by management strategies.
For sustainable and site-specific forest management, the availability of up to date soil
information is crucial. Hereby, information is needed at desired spatial scale [3], as soil
properties such as carbon content are spatially highly variable [4].

This information can support management decisions regarding tree species selection,
silvicultural treatments, timber harvesting and soil protection measures [5]. However,
forest soils are complex systems and it is challenging to properly describe and classify
their properties and functions, in particular in the organic and the uppermost mineral soil
layer [6,7]. In the methodological approach of forest site mapping in Eastern Germany, it is
common to subclassify soil properties in stable and variable components [8]. Soil properties
which are stable over a time span of at least one rotation period or 100 years are mainly
vinculated to parent material, physical properties and typical sequence of pedogenetic soil
horizons. These properties are summarized in so called soil forms.

In contrary to this, variable properties in particular of the organic layers and upper
mineral soil are defined by chemical properties, C/N-ratio, pH-value, cation exchange
capacity (CEC) and base saturation (BS). Variable soil properties are consolidated in hu-
mus forms. Currently, a vegetation scheme consisting of indicator plants is used to map
humus properties according to the mapping field guide for the Northeastern Lowland of
Germany [8]. Element input, anthropogenic overprint in vegetation as a result of forest
management and changing climate cause fast changing base conditions. Thus, the current
methods have weaknesses and are increasingly questioned.

There is a substantial need for inexpensive and viable methods for periodic mapping of
the variable soil properties in particular [3]. The National Forest Soil Inventory in Germany
(NFSI) provides periodic information about the conditions of forest soils [9]. Its focus lies
on long term observations and monitoring of the same sampling points. Its sampling raster
is too coarse to assess forest stands.

Proximal soil sensing (PSS) is an interesting approach for rapid and inexpensive
collection of data, and could facilitate the provision of the necessary information at desired
scale. It can be used for a better understanding of soils spatial variability [10], and for
meaningful statistical analyses. One PSS technique which arouses widespread interest
to provide data for soil mapping purposes is diffuse visual and near-infrared reflectance
spectroscopy (vis-NIRS). It is known to be fast, cost efficient and non-destructive. Further,
it does not require complex soil preparation and is suitable for estimation of several soil
properties [11,12].

Despite the widespread use on agricultural sites and mineral soils (e.g., [13–16]),
there are so far only few examples for applications on forest soils and humus layers.
Pietrzykowski and Chodak [17] evaluated the potential of vis-NIRS to estimate, amongst
other properties, soil organic carbon content (SOC), N content, C/N ratio on mineral soil
samples from afforested former mining sites. They report the development of successful
models for prediction, even though the studied soils differed from natural conditions in
chemical and microbial properties. Ludwig et al. [18] investigated the applicability of
spectroscopy to predict SOC, N content and pH value along with enzyme activities on
mineral horizons in two forest sites in Germany. They used partial least squares regression
(PLSR) approaches and confirmed the usefulness for SOC and N contents, but had variable
results for pH-values dependent on the data range. Comparing different sensors for
acquiring spectral data, Thomas et al. [19] found useful results for C and N content in
Saxon forests.
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On a large-scale approach across Chinese forests, Liu et al. [20] built the Chinese
forest soil spectral library with high spatial heterogeneity. Samples were taken from
different depths, but horizons were not separated during analysis. They were able to
accurately predict SOC and confirmed the feasibility of estimating forest soil parameters
based on vis-NIR spectra. Pinheiro et al. [21] reported good prediction for SOC and
reasonable results for other properties including CEC in a study in the Brazilian Central
Amazon. Investigating forest soils of the Czech Republic, Gholizadeh et al. [22] were able
to accurately estimate SOC in organic horizons, also using material from whole soil profiles
instead of investigating a specific horizon. As separation of horizons can be challenging
during sample collection, an approach with sample collection at defined depths might be a
solution to face this problem, as done in agriculture.

To our knowledge, there are so far no other studies investigating the applicability of
vis-NIRS for prediction of N content, C/N ratio, pH value, CEC and BS on organic surface
layers of forest soils. Most studies focus on mineral soil and investigate samples from other
land use forms. However in terms of forest soil mapping the organic surface layer has a
major role and its condition has impact on management decisions. For humus assessment
in forest management, the selected properties, including CEC and BS, are important to
assess current soil conditions. Previous studies show that vis-NIR spectra are sensitive to
differences in soil organic matter from different land use and vegetation forms [23]. We
therefore investigate organic and mineral layers separately.

Nutrient availability is part of the basis for decision making when developing site-
specific management strategies. It shall supplement or enhance current methods of
vegetation-based mapping of humus properties as well as grid based periodic soil in-
ventory. If successful, vis-NIRS raises the possibility to predict desired soil parameters
without expensive chemical analyses of all collected samples. In this study, we focus on
using vis-NIRS to predict selected forest soil properties that are relevant for the periodic
mapping of humus properties of forest soils in Saxony. We investigate C and N content,
C/N ratio, pH, CEC and BS. We apply the method to samples from the organic layer
(Oh horizon, mainly humic material and decomposed plant residues with at least 30%
organic substance) and mineral soil samples (0–5 cm, Ah horizon with less than 30% organic
substance). Within this scope, the objectives are (i) to identify and assess the accuracy of es-
timations of selected soil properties based on vis-NIRS for forest sites in the state of Saxony
(Germany) using different algorithms, (ii) investigate the implications for forest soils due to
the different composition of the humus layer and organic horizons and (iii) discuss options
for the usage of vis-NIRS predictions for classification and soil monitoring purposes.

2. Methods
2.1. Study Area

For this study, retained soil samples from forest sites in Saxony (Germany, approx.
17,400 km², with 5209 km² covered by forests) were used. Data collection took place within
the periodic NFSI between 2006 and 2014 in a grid-based approach and during a previous
study at forest sites representing the typical natural areas lowland, hilly terrain and middle
mountain range [24].

An overview of the locations of the sampling sites and the corresponding natural areas
can be seen in Figure 1.
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Figure 1. Location of sampling points in Saxony, Germany.

2.2. Vis-NIR Spectroscopy

Vis-NIR spectra are sensitive to mineral and organic soil substances [25] and reflectance
spectroscopy is a well-known method in soil science to predict chemical and physical soil
properties, even on a global scale [26]. Reflectance spectra are obtained by measuring
scattered light from an illuminated soil sample. The light causes molecular vibrations,
which absorb parts of the radiated energy. A comparison of emitted and reflected light holds
information about molecules present in the sample [27]. As molecules consists of chemically
bonded atoms, the exposition to electromagnetic radiation results in excited atoms and
therefore in vibrational processes, e.g., in changing length (stretching) or changing angle of
the bonds. As this absorbs energy, the absorptions are visible in the measured spectra [28].
In the visual range, the spectra is mainly related to iron oxides [29] and soil organic matter
due to the darkness of organic compounds and humic acid which is caused by absorption
of organic compounds in the visual range [25,30]. The predominant absorbers in the NIR
region are overtones of the C–H, N–H and O–H functional groups, making the NIR region
ideal for quantifying forms of carbon and nitrogen [27,31]. A short overview of spectrally
active molecules can be seen in Table 1.

Table 1. Spectral Assignments.

Wavelength Suggested Molecules/Compounds Source

400–700 nm humic acids [25]
517, 665 nm iron oxides [29]
1400 nm O-H [31]
1450, 1730 nm C-H [32]
1520 nm N-H [32]
1900 nm O-H [29]
1904, 2097, 2185 nm clay [33]
1824, 1904, 1930, 2014, 2033,
2060, 2137, 2208 nm

organic matter components [25]

2200 nm O-H, Al-OH [34]

It is important to notice that especially C-H, N-H and O-H molecules imply correlations
to organic compounds present in upper soil layers, like hemicellulose, cellulose, lignin,
proteins and sugar [32]. Regarding our selected properties, Xu et al. [35] states that the
spectral active wavelength ranges for C and N content are similar. For pH value, e.g.,
Xu et al. [35] found high correlations in the ranges of 480, 780, 1120, 1910, 2200 and
2390 nm. However, Stenberg et al. noted that pH value has no direct relationship to vis-NIR
spectra, but can be predicted through co-variations with buffering capacity of organic
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matter, clay and mineralogy [34]. For CEC, Ben-Dor and Banin [33] suggest important
spectral assignments around 2000 as well as around 1400 nm. As they also mention a
high correlation of CEC to clay minerals, these assignments are probably caused by the
correlation and therefore indirect. BS has no direct spectral assignment as well. However,
Xu et al. [35] found good prediction results, suggesting indirect assignments due to its
strong correlations to clay, salt and iron oxide.

2.3. Soil Samples and Laboratory Analysis

All soil material was collected based on the German sampling standard for the NFSI [9].
In brief, this method consists of the sampling on eight points around each sampling center
point with a radius of 10 m. A schematic presentation of the sampling design is shown in
Figure 2. If one or more points could not be probed due to specific site conditions, they
were shifted two meters in- or outwards the circle. At all points, soil material from organic
layer (Oh) as well as mineral soil (0–5 cm, Ah) was collected and then mixed, resulting in
one organic and one mineral sample per point. The separation of the organic and mineral
horizons was carried out via visual assessment (see Figure 2 on the right). In this procedure,
the soil horizons are separated manually based on the distinguishable colour and structure.

Figure 2. Schematic presentation of the sampling design (left) and humus sample during data
collection (right).

Chemical analysis of all samples was performed by the laboratory of Sachsenforst
public enterprise, following German-wide standards of forest soil chemical analysis [36].
The pH value was analyzed on the basis of the norm DIN-ISO-10390 (2005) [37] using KCl
solution, as recommended for soils in Germany [38]. To quantify total carbon content the
dry combustion method with elementary analysis was applied (DIN10694, 1996) [39]. As
we focused on humus properties, we used the soil samples and legacy lab data from both
Oh-horizon and Ah-horizon.

From a total of 727 retained samples, we stratified the population into the dominant
two classes: spruce (Picea abies) and pine (Pinus sylvestris) stands. Within these classes we
performed conditioned Latin hypercube sampling (clhs) in order to optimize the number
of samples. Samples from mixed stands were then added manually due to their smaller
number. In order to cover the full range of observed values and represent humus con-
ditions in Saxony, the minima, maxima and median values of C/N ratio, pH value and
CEC were added per horizon and vegetation type as these properties are also used for
humus assessment. A graphical illustration of the sample selection procedure can be seen
in Figure 3.

Figure 3. Graphical illustration of the sample selection procedure.
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In total, the procedure resulted in a data set consisting of 360 soil samples (176 from Oh
and 184 from Ah, with 287 samples originating from NFSI and 73 from Wellbrock et al. [24]).
The most abundant parent materials were sand, loess loam, gneiss, granite, shale and
phyllite, main soil types were cambisols, gley and podsols. Prior to the spectral analysis,
the samples have been dried. To avoid changes or loss of structures or volatile compounds,
all soil material was dried according to laboratory standards [36]. Samples from Oh were
dried at 60 ◦C, mineral samples at 40 ◦C. Further, the dry samples were sieved with a two
mm mesh in order to homogenize the soil material.

2.4. Spectral Measurements and Pre-Processing

For data collection, we used a Veris vis-NIR Spectrophotometer by Veris Technologies
Inc. (Salina, KS, USA). It contains two sensors, an Ocean Optics USB4000 (340 to 1100 nm)
and a Hamamatsu Minispectrometer TG series (1100 to 2220 nm), working with a spectral
resolution of five and six nanometres. Calibration of the spectrometer was done using four
Fluorillon grey scale standards as external references [40]. Based on the protocol, two petri
dishes have been filled per soil sample, and each dish was measured five times in direct
contact. To homogenize the measured surface, it was softly pressed using the lid of the
dishes. Samples were rotated and shifted between the measures to capture more of the
sample variability. This procedure also balances the values within the measured area [41].
The chosen method results in ten spectra for each soil sample. Vis-NIR spectra can be
influenced by light scatter during data acquisition, causing, e.g., baseline shifts and non-
linearities. Suitable preprocessing is able to largely eliminate these unwanted effects [42].
Selected methods for spectral preprocessing were applied to the spectra. To smooth the
data without distorting the signal trend, the Savitzky–Golay filter [43] was applied, using a
window size of 11 and a polynomial order of three. It operates as a weighted sum over a
given window, computed as follows in Equation (1):

si∗ =
1
N

k

∑
h=−k

chsi+h (1)

where si∗ is the new signal value, si the old signal value, N is a normalizing coefficient, k
is the gap size on each side of i and ch are pre-computed coefficients, that depend on the
chosen polynomial order and degree [44].

Light scatter and multiplicative interference correction as well as adjusting base line
shifts was done using standard normal variate (SNV) [42,45]. It is calculated as shown in
Equation (2):

SNVi =
si − s̄i

sdi
(2)

where si is the signal of a sample i, s̄i is its mean and sdi its standard deviation. All
preprocessing steps were carried out by means of the R package prospectr [46].

Measurements taken below 430 nm and above 2205 nm and data between the ranges
of the sensors (1000 to 1100 nm) were removed due to occurring noise at the sensors edges.
We then formed the mean of ten single measurements per sample. Outlier detection was
performed on the data set by means of the R package mvoutlier [47] for both horizons
separately. In this approach, a principal component analysis (PCA) builds the basis for the
outlier detection. The first two principal components are used to identify outliers based on
Mahalanobis distance. Filzmoser et al. [48] states that the Mahalanobis distance of gaussian
distributed data follows a chi-square distribution. Data points laying beyond a defined
threshold of the chi-square distribution were flagged and removed from the data set. After
this procedure, ten samples (four Oh and six Ah) were removed from the data set. The R
language for Statistical Computing was used for all processing and calculation steps in this
study [49].
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2.5. Regression Approaches

Numerous studies use PLSR to calibrate regression models to estimate soil properties
based on vis-NIR spectra (e.g., [50–52]). However, new methods from the field of machine
learning are applied recently. Stevens et al. [44] and Shi et al. [53] used Support Vector
Machine (SVM) to estimate organic C and total N, respectively. Cubist regression was also
already successfully used, e.g., for prediction of SOC, total N and pH value [54].

PLSR was introduced by Wold et al. [55] as one way to solve multivariate calibration
problems. Today, PLSR is widely known as a standard algorithm to calibrate models for
predicting soil properties [56]. PLSR constructs a set of linear combinations of the input
data by producing a sequence of derived, orthogonal directions [57]. These combinations
have high variance as well as high correlation with the response variable. For the regres-
sion, these components are used instead of the original data, resulting in a remarkable
data reduction.

SVM is based on the idea of non-linearly mapping the data into very high dimensional
feature space. A linear decision boundary is then constructed in this space, ensuring high
generalization ability [58]. The data points lying on the edge between classes are important
for the creation of the boundary. These are called support vectors. For predicting on new
data, the distance to the support vectors is calculated and used as basis for the decision [59].
In this study, a radial basis function kernel was used for the calculation of the distances.

As another algorithm from the field of machine learning, we calibrated Cubist regres-
sion models. This algorithm was introduced by Quinlan [60] and can be used for learning
tasks with high dimensionality. It is based on a regression tree, where intermediate linear
models at each step are the basis of the predictions. Contrary to other tree based models, it
retrieves a set of rules associated with sets of multivariate models [61]. The rules are then
connected using if/else statements. If a condition is fulfilled, the regression rule for this
subset is applied, otherwise, the next rule is probed [62]. The predictions can further be
improved by creating several models (“committees”), where each new model corrects the
previous one to reduce the error [63]. It was already used for soil property estimations in
previous studies [19].

2.6. Spectral Model Tuning and Validation

To predict forest soil properties relevant for humus mapping, we calibrated regression
models based on samples from Oh and Ah horizon separately. However, the separation
of the horizons was challenging during the sampling of soils. Disturbances can alter the
sequential arrangement of the horizons.

Model calibration and validation was done using a nested cross validation. In a
cross-validation procedure, the data is randomly split into n subsets of approximately same
size. The model is calibrated with n − 1 folds and then used to predict on the holdout
data. This procedure is repeated until every fold was treated as validation set once. In
total, n models are built with different parts of the data being used to train and test the
performance, resulting in n estimates of the model performance and in predicted values for
every sample in the data set. Then, the mean of the n individual prediction error estimates
is formed [57].

In a nested cross-validation, there is an inner and an outer loop over the splits of
the data into training and test sets. For each of the inner splits, a grid search is done and
the inner test set performance using the best tuning parameters is reported for the outer
left out validation set with the final model [59]. For the calibration part using the inner
splits and a grid search, the models were built using a 10-fold inner cross validation to
ensure a robust tuning of hyperparameters. In a grid search procedure, models are trained
using different combinations of values of the hyperparameters. The best combination
resulting in the lowest prediction error is then used to predict on the test set from the
outer cross validation. PLSR was tuned using one up to 20 components. For SVM, sigma
values lay between 0.00001 and one, cost values between one and 10,000. Regarding the
Cubist models, we probed values between one and 50 for committees and between zero
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and seven neighbours. The evaluation during the model tuning process was based on the
root mean square error (RMSE) of the output of each parameter combination. Model tuning
and validation procedure was performed by means of the R package caret [64]. We were
working in a closed system as validation does not include prediction on new sampling
sites. For all properties except BS, logarithmized values were used.

We computed different error measures to evaluate the model performance: RMSE,
coefficient of determination (R²), and ratio of performance to interquartile (RPIQ).

The RMSE is computed as described in Equation (3):

RMSE =

√
1
n

n

∑
i=1

(yi − xi)2 (3)

where yi are the predicted, xi are the observed values. Apart from the deviations of the
predictions to the actual observed values, overall model performance was assessed using
the model efficiency coefficient developed by Nash [65]. It is shown in Equation (4).

R2 = 1 − ∑(xi − yi)
2

∑(yi − x̄)2 (4)

where xi are the observed values, yi are the predicted values and x̄ is the observed
mean value.

As complementary quality criteria for performance assessment for data without Gaus-
sian distribution, the RPIQ was calculated as described below in Equation (5) [66]:

RPIQ =
Q3obs − Q1obs

RMSE
(5)

where Q1 and Q3 are the first and the third quantile of the observed values. In order
to rank the RPIQ values, we used the system suggested by Chang et al. [67] for ratio of
performance to deviation (RPD) values. Transformation was done by multiplying the values
with 1.34896 (as the interquartile range of a Gaussian distribution equals 1.34896 × SD).
Thus, the threshold for good models is >2.70, moderate models are between 1.89 and 2.69
and poor performance is for values < 1.89. Nevertheless, the usefulness of a model should
be assessed regarding its context. Generally, large values for R² and RPIQ and low RMSE
values are desired.

We further calibrated PLSR models using all points as training data in order to identify
the most important wavelength ranges for the regression models for each property. The
cross-validation procedure results in numerous models per property and is therefore not
suitable to identify important wavelengths as they can differ between the different splits.

2.7. Evaluate Feasibility for Soil Mapping

Apart from calculating soil parameter estimations based on spectral data, the results
are evaluated with respect to their usefulness for soil mapping purposes. For practical
applications, simple classes of values are desirable, as they are more easy to interpret as
basis for decision making when compared to continuous values. Therefore, we classify our
samples to see how well the predictions can be used for such classification purposes.

Schulze and Kopp [8] proposed a classification scheme for humus of forest soils. It is
to be used for evaluating nutrients availability. We use this example to present a possible
way to classify the soil samples and evaluate the usefulness of the predicted values. The
measured and predicted pH values build the basis for the classification. As examples of
application of vis-NIRS for organic layers are scarce, the samples from Oh horizon and
predictions from SVM are used as basis for the classification.

A confusion matrix is then calculated to compare the outcome of the classifications
based on chemically measured and predicted values. This opens up the possibility to
see which classes are robust in both classifications and where confusion between defined
classes is present. The defined class thresholds can be see in Table 2 (modified after Schulze
and Kopp [8]).
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For each class, balanced accuracy is used to assess the outcome of the classification. It
is calculated as shown in Equation (6):

sensitivity + speci f icity
2

(6)

where sensitivity is the true positive rate while specificity is the true negative rate. The
calculation of the confusion matrix and their evaluation was done as well by means of the
R package caret [64].

Table 2. Classes and corresponding pH values, (modified from Schulze and Kopp (2013) [8]).

Class Strongly Acidic Very Acidic Moderate Acidic Weakly Acidic Neutral

pH values ≤3.3 3.4–4.1 4.2–4.9 5–6 ≥6

3. Results
3.1. Descriptive Statistics of Soil Properties

A summary of descriptive statistics for the observed soil parameters investigated in
this study, separated by horizon, is presented in Table 3. In the organic layer, values for
C content range from 8.60 to 49.43%. The mean is 27.47% , representing large variation
due to the use of sampling locations across whole Saxony. The standard deviation is 7.83%.
For 18 samples from Oh horizon, C content lay below 17.5%. Therefore, these samples do
theoretically not contain enough organic matter to be counted to the organic horizon.

Table 3. Summary statistics of investigated soil properties for Oh (n = 172) and Ah (n = 178) horizon,
Pctl = percentile.

Horizon Parameter Mean St. Dev. Min 25. Pctl 75. Pctl Max

C [%] 27.47 7.83 8.60 22.37 32.67 49.43
N [%] 1.23 0.37 0.32 0.97 1.55 2.08

Oh C/N 22.77 3.67 14.36 20.59 24.46 36.33
pH 3.39 0.62 2.55 3.03 3.48 6.16
CEC [µeq/g] 261.58 160.22 59.07 166.71 309.91 1065.50
BS [%] 46.63 26.01 9.34 27.28 63.30 99.80

C [%] 5.05 2.60 0.40 2.90 6.94 12.27
N [%] 0.22 0.13 0.02 0.11 0.31 0.58

Ah C/N 24.55 4.87 11.36 22.13 26.90 45.20
pH 3.32 0.48 2.46 3.07 3.40 5.75
CEC [µeq/g] 100.05 54.70 18.16 53.41 143.52 239.60
BS [%] 20.08 20.66 2.77 8.86 20.38 99.28

In the Ah samples, C content ranged from 0.40 to 12.27% with a mean 5.05%, showing
the big differences in C content between the horizons. Similar remarks can be done on
the N percentages, ranging from 0.32 to 2.08% in the Oh horizon and from 0.02 to 0.58%
in the Ah. The C/N ratio is more evenly distributed, with mean values of 22.77 (Oh) and
24.55 (Ah). The mean of the samples pH-values is 3.39 (Oh) and 3.32 (Ah). It is notable that
the majority of the samples have acidic pH-values below 4 and that samples from basic
soils are not present in the data set. Values for CEC range from 59.07 to 1065.50 µeq/g in
the Oh and are much higher than in the Ah (18.16 to 239.60 µeq/g). Measured values for
BS are higher in the Oh as well, with a mean of 46.63% compared to 20.08% in the Ah.

A correlation matrix of the soil parameters for both horizons is shown in Figure 4.
Significant correlations are marked. In Oh horizons, C and N show the strongest positive
correlation. C is moreover correlated with CEC only. N content is positively correlated
with CEC and BS and shows negative correlation to C/N ratio. The C/N ratio is moreover
negatively correlated with pH, CEC and BS. CEC shows correlations to all other properties
and BS only shows no dependence to C content. In comparison, results for Ah horizons
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differ from these observations. Here, C content shows positive correlations to N content
and CEC, but also negative correlation to C/N and pH value. N has dependence to all
other properties, also including pH value. In contradiction to Oh samples, C/N shows
no correlation to pH value, and pH value is correlated with C content. CEC correlation
with pH is negative. The correlations regarding BS do not differ from the Oh samples, even
though they are less strong. The different observations regarding the correlations between
the selected soil properties for Oh and Ah horizons reveal differences between organic and
mineral horizon.

Figure 4. Significance of Pearsons correlation coefficients between investigated soil properties for Oh
(left) and Ah (right) horizon (* , ** and *** indicates a p-value < 0.05, < 0.01 and < 0.001, respectively).

3.2. Spectral Differences between Horizons

The raw spectra, the mean and the 1st derivative of preprocessed spectra, separated
by horizon can be seen in Figure 5. The mean absorbance is shown on the left, the 1st
derivative on the right. The absorbance shows the characteristic decline through the visible
range up to 1000 nm. The raw spectra show that samples from Oh horizons have higher
absorbance values through all measured wavelengths. Further, the most obvious features
can clearly be seen in the absorbance around 1400 and 1900 nm in both horizons. However,
the 1st derivative allows a more detailed qualitative analysis. Smaller features in the
visual range as well as around 1550 and 1700–1800 nm become more visible. Further,
differences in the absorption of both horizons were more clear. We identified four ranges
with remarkable differences, and marked them with letters inside the plot. In the visual
range (A), mineral horizons have two peaks at around 470 and 600 nm, the Oh samples
behaved differently here and show several smaller peaks inside a general decline of values.
The next difference (B) can be detected at the dip following the peak at 1400 nm, which
is stronger for the mineral samples. On the other hand, the peak and dip at 1900 nm are
stronger for samples form Oh horizons (C). The last distinction takes place above 2000 nm.
Here, the Oh samples show another higher peak with a following decline, while Ah samples
show no corresponding dip.

3.3. Predicting Oh Properties

The results of the selected model approaches for all investigated soil properties can be
seen in Table 4. The models results for the Oh samples are shown on the left, performance
measures for Ah horizon on the right side. Predicted vs. observed values for all investigated
soil properties and both horizons are shown in Figure 6. The plots show the prediction
results of the best performing algorithm per property and horizon.
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Figure 5. Raw spectra (black line represents the mean) and preprocessed absorbance and 1st
derivative spectra of samples from Oh and Ah samples, ranges with remarkable differences are
marked by letters A–D.

Table 4. Model results for selected soil properties and algorithms for Oh (left) and Ah (right) samples
from Saxony.

Horizon Oh Ah

Property Method RMSE R² RPIQ RMSE R² RPIQ

PLS 6.16 0.46 1.58 1.77 0.61 2.22
C SVM 5.59 0.54 1.75 1.56 0.72 2.54

Cubist 6.14 0.44 1.58 1.71 0.59 2.31

PLS 0.28 0.48 1.82 0.08 0.63 2.27
N SVM 0.25 0.58 2.06 0.07 0.71 2.44

Cubist 0.26 0.52 1.97 0.08 0.63 2.32

PLS 2.19 0.66 1.75 3.51 0.45 1.35
C/N SVM 2.26 0.64 1.73 3.52 0.50 1.37

Cubist 2.16 0.65 1.81 3.58 0.45 1.31

PLS 0.20 0.90 2.47 0.29 0.62 1.22
pH SVM 0.21 0.88 2.38 0.31 0.56 1.14

Cubist 0.21 0.89 2.38 0.34 0.45 1.05

PLS 102.47 0.54 1.36 33.94 0.67 2.67
CEC SVM 99.69 0.54 1.43 39.04 0.58 2.34

Cubist 103.60 0.54 1.43 33.16 0.65 2.81

PLS 14.56 0.69 2.51 15.75 0.39 0.71
BS SVM 13.97 0.71 2.61 16.66 0.33 0.67

Cubist 14.52 0.69 2.53 17.98 0.29 0.63

For C content, values for R² lay between 0.46 and 0.54, with corresponding RMSE val-
ues ranging from 5.59% to 6.16% and RPIQ between 1.58 and 1.75. Wavelengths important
for model building lay between 500 and 600 nm.

The prediction of N content showed similar accuracy and achieved R² values ranging
from 0.48 to 0.58, with RPIQ values between 1.82 and 2.06.

For both C and N content, the plot showed no patterns as the points cluster around the
x = y line. Regarding the C/N ratio of the Oh horizon, the predictions resulted in higher
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R² values of 0.64–0.66. For this property, RMSE lay between 2.16 and 2.26, with Cubist
yielding the most accurate results. RPIQ was calculated between 1.73 and 1.81. The features
around 2200 and 1900 nm were most important.

For pH value, we found little differences between the used algorithms. R² were
between 0.88 and 0.9 and RMSE ranged from 0.2 to 0.21, with corresponding RPIQ values
of 2.39–2.47. The scatterplot of the predictions also shows that even the underrepresented
high pH values show small deviation and cluster tightly to the x = y line. Again wavelength
ranges around 1900 and 2200 nm were most important for model calibration.

The predictions derived for CEC were less precise, with R² being 0.54. Relevant
spectral ranges were identified between 570 and 690 nm.

Regarding BS, again little differences between the used algorithms are reported. R²
values ranged from 0.69 to 0.71, RPIQ lay between 2.51 and 2.61. Important spectral features
lay around 1900 and 2200 nm.

The scatter plot reveals that especially high BS values close to 100% seem to have
bigger deviation from the observed values as they form a visible cluster.

Regarding the used algorithms, none of the chosen methods was superior among all
investigated properties, while SVM resulted in the most accurate predictions for C and N
content, the differences were minor for the other properties, with no clear trends in favour
for one of the algorithms.
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Figure 6. Predicted vs. observed plots for the investigated properties separated by horizon, results of
the most accurate algorithm per property.

3.4. Predicting Ah Properties

Models results for samples from Ah horizon showed different trends. Prediction of C
and N content was more precise for mineral samples. For C content we achieved R² values
between 0.59 and 0.72 and corresponding RPIQ values of 2.22–2.54. The calculated RMSE
ranged from 1.56% to 1.77%. SVM regression outperformed PLSR and Cubist. The models
for N content reached R² values between 0.63 and 0.71 and RPIQ values from 2.27 to 2.44.
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Again, SVM regression yielded the most accurate predictions. Important features for C and
N content lay between 2150 and 2200 nm as well as in the visual range. Unlike for the Oh
models, prediction for C/N ratio was less precise, with R² ranging from 0.45 to 0.5. The
predicted values mostly lay between a C/N ratio of 20 and 30. Relevant spectral ranges
were around 450 and 2050 nm.

Compared to predictions for Oh samples, accuracy decreased for pH values, with R²
values between 0.45 and 0.56 and RMSE ranging from 0.29 to 0.34. For this property, PLSR
outperformed the other algorithms. The visual interpretation reveals that some high values
were underestimated. In contrary to Oh samples, most important wavelengths were in the
visual range, but also around 1900 nm.

In contrast, results for CEC in Ah horizons achieved better model predictions. De-
pending on the algorithm, R² values ranged from 0.58 to 0.67, with RMSE values between
33.16 and 39.04 µeq/g. RPIQ was calculated from 2.34 to 2.81. The spectral feature around
1900 nm was identified to be most important.

Prediction of BS based on mineral samples resulted in lowest R² and RPIQ values.
The scatter plot shows that the model has difficulties in detecting a relationship between
measured spectra and chemically obtained BS values.

Similar to the results for Oh horizon, SVM showed the most accurate predictions for
C and N content. For the other investigated properties, again no clear trend was visible.
Cubist was most accurate for CEC values. On the other hand, SVM and Cubist showed
poorer results for pH, where PLSR was most precise.

3.5. Classification for Mapping Purposes

For a better assessment of the usefulness of the predicted soil property values, we
classified both measured and estimated values based on pH value. We then calculated a
confusion matrix to see if the defined classes are robust. This classification was done using
the Oh samples and the prediction results from SVM.

The results of the classification based on chemically determined and predicted pH
values in form of a confusion matrix can be seen in Table 5. Based on the chemical values,
107 samples were classified as strongly acidic, 40 as very acidic, 17 as moderate acidic, seven
as weakly acidic and one as neutral. When classified on basis of predictions, 107 samples
ended up strongly acidic, 48 as very acidic, 11 as moderately acidic, 6 as weakly acidic and
none as neutral. Balanced accuracy is highest for strongly acidic class with 0.87, while the
accuracy for the other classes range from 0.5 to 0.79. In total, a value of 0.73 was reached.

Table 5. Error matrix of predicted and observed pH-classes.

Reference

Prediction strongly
acidic

very
acidic

moderately
acidic

weakly
acidic

neutral total

strongly acidic 95 10 0 0 0 105
very acidic 12 29 8 0 0 49
moderately
acidic

0 1 8 3 0 12

weakly acidic 0 0 1 4 1 6
neutral 0 0 0 0 0 0

total 107 40 17 7 1 172

balanced
accuracy 0.87 0.79 0.72 0.78 0.50 0.73

4. Discussion
4.1. Data Ranges of Soil Properties

The data ranges of the investigated properties show typical conditions for Saxon
forests. Remarkable are the acidic conditions. Reasons for the low measured pH values
lie in the parent materials. Alkaline parent materials are scarce and many forest sites were
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further acidified by historical coniferous usage on unsuitable sites. In addition, industrial
element input (mainly sulfur and nitrogen) also led to soil acidification.

4.2. Spectral Behaviour

The investigation of the spectra obtained from Oh and Ah horizons showed divergent
absorbance features. The most remarkable differences occurred in the visual range between
500 and 700 mn, at 1400 nm, at 1900 nm and above 2000 nm. We assume that the differences
in spectral behaviour are a result of the distinct composition of Oh horizons when compared
to mineral Ah horizons. As the differences occurred in wavelength ranges that are known to
be sensitive for organic matter, it is reasonable to assume that the much higher percentage
of organic matter in organic layers leads to the observed differences. It also explains higher
absorbance values through the whole spectrum and especially the differences in the visual
range and above 2000 nm. The feature differences at 1400 nm and 1900 nm can be caused
by differences in organic matter, but also due to divergent percentages of clay, which is
active in this regions. The differences arelikeweise pronounced in the variable importance
of the PLSR models. For example, relevant features for C content prediction for Oh samples
lay in the visual range while features around 2200 nm were most important for Ah samples.
Regarding pH values, features around 1900 and 2200 nm were most important for Oh
samples. On the other hand, the visual range was relevant as well in Ah horizons. Similar
observations could be made for CEC, were the visual range was important in Oh samples,
but models for Ah horizons mostly relied on the feature around 1900 nm.

4.3. Predicting Oh Properties

Prediction results for soil properties based on samples from Oh horizon yielded diverse
results. Accuracy for C content was weak, as no algorithm was able to reach the proposed
threshold of RPIQ = 1.89. However, keeping in mind that C content values were up to
49.43% in the Oh horizon, the RMSE values of 5.59 and R² of 0.54 could still indicate useful
results. The identified important spectral ranges in the visual range point to humic acids.

Due to the numerous examples of successful C content prediction in various settings,
we expected better results. Possible reasons for the low accuracy could lie in the complex
and heterogeneous structure of humic material compared to mineral soil material. A more
intensive soil preparation in form of milling could help to address this issue. In an approach
using soil samples from all over Europe and PLSR, Nocita et al. [68] reported R² values
of 0.76 for organic samples. However, they did not collect samples explicit from organic
horizon, but selected samples with C content > 18% from a larger data set. Further, the
sample location also included other land use forms such as cropland and grassland. These
differences may explain the differences in prediction accuracy. Investigating forest soils in
the Czech Republic, Gholizadeh et al. [22] reported R² = 0.78 for combined organic horizons.
They used material originating from L and F horizons as well. For Oh horizons, they
reported R² = 0.63 and RMSE = 4.2. Using samples originating from forests across China,
Liu et al. [20] reached R² = 0.75 for PLSR and R² = 0.93 using Cubist. In this case, samples
were taken from different depths without separating the horizons and thus covering a
much wider range of carbon content values (0.2–99.6%).

We achieved moderate prediction results for N content using SVM and Cubist regres-
sion, with R² up to 0.58 and RPIQ > 1.98 for SVM and Cubist. Thus, N content in humus
samples can be estimated using vis-NIRS at sufficient accuracy. Relevant features in the
visual range and around 2200 suggest humic acids and organic matter as spectral response.
Vohland et al. [69] found similar spectral assignments for C and N content.

The model results of the used algorithms were quite similar for C/N ratio. However,
no models reached results classified as moderate as RPIQ values were slightly below the
proposed threshold.

Highest accuracy amongst investigated soil properties was found for pH value of
Oh samples. Our models reached R² values of 0.88 to 0.9 and RPIQ > 2.38. The relevant
wavelengths around 1900 and 2200 nm point to indirect assignments via O-H and organic
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matter components. Thus, we conclude that pH value can be successfully predicted for Oh
horizons using vis-NIR spectral data. It is remarkable that predictions are more accurate
for pH than for C content, despite the high C content values. One reason might be the
differences in wavelengths important for the predictions. In another study investigating vis-
NIRS for SOM and pH prediction, Yang et al. also found different relevant wavelengths [70].
The results underline that predictions through indirect spectral assignments can be useful
as well.

The RMSE values for CEC prediction in the Oh horizon were high, with values around
100 µeq/g. As a result, RPIQ values do not reach the threshold of 1.89. One reason for the
high values were the few sample points with high CEC values, which are not predicted
precisely. Another explanation could be the absence of clay in the organic horizon, as
CEC correlation to vis-NIR spectra is suggested to be indirect and due to the correlation of
CEC and clay [33]. This is also likely as the model relies mostly on the visual range. Even
though BS has no direct spectral assignment, the models achieved meaningful results with
RPIQ between 2.51 and 2.61 and R² between 0.69 and 0.71. The important features around
2200 and 1930 nm suggest indirect assignments via hydroxy and carbonyl groups [25].
The scatter plot reveals a cluster of points at highest possible measured value. BS can not
be greater than 100 per definition. However, some points were predicted to have values
exceeding this threshold. The cluster therefore indicates that the defined valid values can
be a problem for predictive modeling purposes. For the potential usage of predicted values
in practical application, it is necessary to find a way on how to deal with such occurrences.

4.4. Predicting Ah Properties

Models calibrated for mineral Ah horizon achieved higher prediction accuracy for C
and N content. The estimates of all algorithms resulted in RPIQ values ranging from 2.22
to 2.54 and R² values between 0.59 and 0.72. According to the generally lower C and N
percentages in mineral soil, RMSE was also lower (C: 1.56–1.77%, N: 0.07–0.08%). Therefore,
vis-NIRS is suitable for C and N prediction in Ah horizons of forest soils. The better results
compared to Oh samples could lie in the more homogeneous soil material producing a
clearer spectral response. Gholizadeh et al. [22] reported R² values of 0.53 when estimating
C content of mineral horizons from Czech forests using SVM, which is less precise than
our findings. However, they were using soil material from depths up to 40 cm. For A
horizons, they reached an R² of 0.72. On the other hand, e.g., Coûteaux et al. [71] reached
R² values of 0.8 for mineral soils. Therefore, our findings are in-between the results of other
similar investigations.

Regarding N content, other studies reported similar prediction accuracy. Shi et al. [53]
reached R² values of 0.68 for PLSR and 0.76 for SVM on soil samples from different land
use forms. A study investigating N content on grasslands in Norway reported models with
R² between 0.68 and 0.8 [72]. Thus, our results are within the same prediction accuracy
as similar studies. For C and N content, the visual range as well as features around 1900
and 2200 nm were found to be important. These ranges were also found relevant in other
studies [69].

Despite the results for C and N content prediction, model accuracy was weaker for
C/N ratio for the mineral samples, with RMSE values being higher compared to models for
Oh horizon. This is surprising, as more accurate values for single C and N values should
also result in precise estimations for C/N ratio.

Other research reported likewise results for estimating C/N ratio. Ludwig et al. [73]
had comparable PLSR results on forest soils, with R2 values C and N content being higher
(>0.9) than the ones for C/N ratio (0.57). On agricultural sites, Mutuo et al. [74] observed
similar findings. In their predictions, R² for C (0.84) and N (0.87) was much more accurate
than their attempt to estimate C/N ratio (0.37). Contrariwise, other studies indicate more
precise predictions of C/N ratio. Chang et al. [51] obtained R² of 0.88 when predicting
using PLSR. Their samples were originating from grassland and agricultural sites. This
contradictions raise the question if N is measured by direct response to vis-NIR spectra or
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as a result of correlation with C content within the samples. Chang et al. [51] interpret their
results in favour of direct measurement. Ludwig et al. [18] name possible error propagation
within the single measurement as possible source for the poorer performance, whereas
Mutuo et al. [74] did not suggest any reasons for the different outcomes.

Regarding pH value, models were as well less precise for the Ah samples. None of the
used algorithms were able to reach the proposed RPIQ threshold. The relevant wavelengths
in the visual range and around 1900 nm suggest a indirect assignment to humic acids and
hydroxy groups. However, the small range in the data set and the majority of samples
having low pH values also results in low RPIQ values for pH. Further, the underestimation
of few high values increases the RMSE value. Thus, we conclude that the PLSR results with
R² = 0.62 and RMSE = 0.29 could nevertheless be useful for forest soil mapping.

Investigating samples from 0 to 20 cm depth, Conforti et al. [75] calibrated models that
reached higher prediction accuracy with R² = 0.7 and RMSE = 0.15. In another study using
only 0–5 cm depth from wetlands, Cohen et al. [76] reported RMSE values of 0.36, which
is less precise than our PLSR results. Again, our predictions are in between the results of
other investigations.

CEC prediction was successful for mineral samples as all algorithms achieved RPIQ
values > 1.89. RMSE values were much lower than for organic samples, best R² was 0.67.
The better results and the importance of spectral features around 1900 nm underline the
indirect prediction through correlation with clay, as mineral horizon contain more clay than
organic layers. In comparison, Chang et al. [67] reported models with R² = 0.81. Leone
et al. [50] presented R² values between 0.59 and 0.85, depending on the study site. Reasons
for the occurring differences in some cases could be the usage of deeper depths up to 30
and 60 cm.

It was not possible to create meaningful models for BS in Ah horizons. Even though
RMSE values were not much higher than for the Oh samples, predictions were unreliable as
scatter was high and occurred through the whole range. One reason could be the different
chemical analysis, which was carried out using ammonium chloride whilst Oh samples
were analyzed using barium chloride. Another explanation could lie in the divergent
percentages of organic compounds.

4.5. Classification Based on pH Values

To assess the prediction accuracy with regards to practical application for forest soil
mapping, the Oh samples were classified based on predicted and observed pH values.
Balanced accuracy for the different classes lay between 0.5 and 0.87. We conclude that the
values obtained from vis-NIRS can therefore be used to classify the samples based on pH
values to provide easy to interpret information for assessing humus conditions. This can be
used to support silvicultural decision making regarding, e.g., selection of tree species or
soil liming measures.

It is important to notice that the less acidic soils are highly underrepresented in the
data. This impacts the classification result, as the majority of the samples ended up in the
strongly and very acidic classes. Only a few samples have pH values high enough to be
classified in the other classes. Especially the accuracy for the classes weakly acidic and
neutral are therefore not very meaningful. However, we show how a classification could
be implemented in future forest monitoring and the acidic conditions emphasize the need
for management strategies. The approach should be repeated with samples that are more
evenly distributed and not biased towards one class. One problem of this approach is that
the location of the values within classification influences the precision. Unfortunately, there
is no solution for this when a classification of the samples is desired.

4.6. Further Implications

We expected generally better prediction results for Ah horizons due to numerous
examples for successful application on forest areas as well as other land use forms. Despite
the more complex and heterogeneous structure of the humic material, the prediction
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accuracy was higher for samples from Oh horizons regarding the properties C/N ratio, pH-
value and BS. As the latter are likely to be predicted through indirect spectral assignments,
the better results can be explained by the different composition of the horizons regarding
organic compounds.

As already mentioned, 18 samples collected as Oh horizon do not contain enough C to
be classified as organic samples. On the other hand, it is also not possible to assume that
these samples originate from the Ah horizon, as the separation during the sample collection
was erroneous.

One way to overcome this problem when applying vis-NIRS to assess forest soil
humus could lie in a combined investigation of every sample point. This way, an unclear
separation of the horizons during the sample collection could not interfere with the model
result. This approach has already been applied, e.g., for mixed samples of whole soil
profiles [22] as well as modelling samples from both Oh and A horizon with the same
model [71]. On the other hand, this could imply further difficulties as the wider data range
for C and N contents could result in overoptimistic error measures [19]. Another reason
against combined modeling is the different spectral behaviour of the investigated horizons.

Further, our samples originate from various forest types and from soils with different
parent material. However, deciduous stands are highly underrepresented. This, e.g.,
impacts the distribution of pH values, for which it leads to an over-representation of
acidic conditions. In addition, forest management strategies vary through the stands. The
heterogeneity of the data set can affect the model accuracy, and local modelling approaches
may have higher prediction power [44].

It would therefore be of great interest to expand the investigations to other study areas
covering different forest types, soil forms and parent materials. Our results indicate that
vis-NIRS could also be applied for humus assessment in other regions.

5. Conclusions

In this study, we investigated the applicability of vis-NIRS to predict soil properties
relevant for humus assessment for samples from Oh and Ah horizon in Saxony.

Applications of vis-NIRS for the prediction of properties of organic soil layers of
forests soils were not investigated so far, and our findings enrich the knowledge about the
feasibility of this scenario.

For the Oh samples, we found useful predictions for N content, C/N ratio, pH value
and base saturation based on the proposed classification scheme. Model results for C
content and CEC did not reach the required threshold (RPIQ < 1.89).

Oh and Ah horizons showed distinct absorbance features in wavelength ranges that
are known to be sensitive for organic matter. Thus, we assume that the much higher
percentage of organic matter in organic layers leads to the observed differences. Therefore
our results point to the relevance of the different composition of the humus layer and
organic horizon for vis-NIRS. This is also reflected in the results.

In the Ah we achieved satisfying accuracy for C and N content, pH value and CEC.
However, our results for C/N ratio were poor, and the predictions for BS turned out to
be unreliable. We used calibrated regression models based on different algorithms. While
SVM turned out to be most accurate for C and N content prediction, differences were minor
for the other properties. None of the used algorithms clearly outperformed the others
regarding the prediction of the investigated properties. With respect to its usefulness for
forest soil mapping based on pH values, we compared classification into classes based on
measured and predicted pH values and provided classification accuracy for the different
classes, with satisfying results. We would like to emphasize the potential of retained soil
samples for building spectral libraries. A great benefit for future studies can be achieved by
adding samples from deciduous sites with less acidic conditions as well. We can conclude
that our results indicate useful possibilities for the usage of vis-NIR spectroscopy for forest
soil mapping and could help identifying areas in need for mitigation strategies to face soil
degradation. Based on the feasibility of predictions and the comparably low effort and
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costs, we recommend the further development of the method to supplement the periodic
forest soil mapping procedure.
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