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Abstract: Since 2014, Sentinel-1 (S1) Synthetic Aperture Radar (SAR) data have become an important
source in the field of displacement detection thanks to regular acquisitions and 7.5 years of temporal
coverage at global level. Despite the increasing number of publications on the role of S1 in landslide
detection, there is still a need for research to further clarify the capabilities of the sensor and the
applicable image analysis techniques. Previous studies have successfully exploited high-resolution
ALOS-PALSAR image-based intensity and coherence analysis at the 2018 Hokkaido landslides.
Nevertheless, they expressed a clear need to analyse the capabilities of other sensors (such as S1). This
raises the question: Do we need SAR imagery with higher spatial resolution (such as ALOS-PALSAR)
or are freely available S1 imagery also suitable for rapid landslide detection? The S1 images could
provide suitable material for a comparative analysis and could answer the aforementioned question.
Therefore, 17 ascending and 19 descending S1 images were analysed to test S1 accuracy on landslide
detection. Multitemporal analyses of both intensity and coherence were performed along with
coherence differences, multitemporal features (MTF) and MTF differences of coherence images. In
addition, the spatial analysis of the classification results was also evaluated to highlight the potential
of S1 coherence analysis. S1 was found to have limitations at the site, as single coherence differences
provided low-quality results. However, the results were significantly improved by calculating the
MTF on coherence and almost reached the success rate of the ALOS-PALSAR-based coherence
analysis, even though the improvement of the results with intensity was not possible. Half of the false
positives were identified in the 30–45-m buffer zone of the agreement, underlining that the spatial
resolution of the S1 is not appropriate for accurate landslide detection. Only an approximation of
the landslide-affected area can be given with considerable overestimation. Due to the inclusion of
post-event images, the sensor is not perfectly applicable for rapid detection purposes here.

Keywords: Sentinel-1; landslide mapping; change detection; coherence; intensity; multi-temporal
features

1. Introduction

Due to intense population growth, urbanisation, economic development and climate
change, landslides have become the most hazardous surface processes, causing economic
and human losses worldwide [1–6]. Therefore, landslide detection and analysis has become
one of the most important research topics in geosciences. The number of papers focusing
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on landslide mapping, monitoring and prediction is rapidly rising [7], and it is essential to
further refine landslide toolboxes.

To best match their needs, researchers can choose from dozens of landslide map-
ping and monitoring techniques [8–10]. Most common ground-based techniques, such
as field geodesy, including total station or levelling-based monitoring networks [11,12],
inclinometer and extensometer surveys [13], GPS (Global Positioning System) surveys [14],
geomorphological mapping [15] and TLS (Terrestrial Laser Scanning) [16] and GB-InSAR
(Ground-based Synthetic Aperture Radar Interferometry) [17], require more effort for on-
site measurements [18,19] and provide high-resolution, detailed data, but only for a limited
area [20–22]. Remote sensing techniques, such as orthophoto interpretation, photogramme-
try, LIDAR [23], InSAR (Synthetic Aperture Radar Interferometry), DInSAR (Differential
Synthetic Aperture Radar Interferometry) and interferometric stacking techniques [24–26]
on the other hand usually focus on larger areas from a remote location [27,28]. In addition
to the resolution, the accuracy and precision of the obtained results may differ according to
the applied technique [10,29], but the applicability of the methods may also vary depending
on the actual field conditions [30]. Moreover, there are various GIS tools and modelling
approaches available for landslide hazard and risk assessment [31–33].

Active SAR satellites have overcome the limitations of passive sensors (e.g., cloud
cover that normally obscures surface processes) and provide coherent measurements of
the ground surface in different weather and light conditions, even day and night [34].
Therefore, InSAR and DInSAR in particular have become standard tools for landslide
detection, mapping and monitoring [24]. The continuous flow of freely available data from
the European Space Agency’s (ESA) Copernicus Programme has significantly increased the
number of published papers since the launch of S1 in 2014 [35–39]. Despite the ability of
SAR sensors to collect data in all weather conditions, during day and night, atmospheric
processes still affect the detection of surface deformations [17]. By processing dozens of
SAR images from the same site while evaluating various advanced interferometric stacking
techniques such as permanent scatterers (PS), persistent scatterers (PSI), Small-Baseline
Subsets (SBAS) or others [28,40–44], it is possible to eliminate the effect of atmospheric arte-
facts from measurements applying an Atmospheric Phase Screen (APS). Thus, the accuracy
of the detection of surface movements can reach a few mm/year (highly depending on the
wavelength of the applied sensor), while DInSAR measures, which are based on usually
one image pair, are far more inaccurate (cm-scale accuracy). However, stacking techniques
can only detect slow or extremely slow-moving landslides, where the displacements do
not exceed a quarter of the wavelength between subsequent acquisitions. If fast surface
changes cannot be detected with stacking tools, how can we survey landslides caused by a
single event over a larger area?

It should also be noted that the above-mentioned techniques can only be applied to
displacements of coherent surfaces (mostly non-vegetated, built-up environments). In
addition, surface topography, especially in mountainous regions, has a significant impact
on the quality of the images, which is influenced by the imaging geometry and the satellite’s
angle of view. Foreshortening and shadow effects can significantly reduce the extent of
recognisable surfaces [45]. Foreshortening can also lead to significant image distortions in
mountainous regions, which can be compensated for with high-quality digital elevation
models if they do not reach their extreme case, layover, which cannot be resolved. Surfaces
in shadow normally cannot be detected but by using different sensor geometries (ascending
and descending paths), they could be completely or at least partially explored.

Interferometric techniques use the phase of the measured signal, which describes the
distance between the target and the antenna [46]. However, intensity is another useful
component of the signal, indicating the amount of backscatter from the surface. Both
SAR amplitude and phase are sensitive to changes in the targets within the resolution cell
(changes in the scatterers) [34]. Therefore, two different approaches have been developed
to use both phase and intensity information from the SAR imagery, referred to as coherent
and non-coherent change detection, respectively [47]. These techniques are often used
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to map frequent changes, e.g., detecting phenological changes in vegetation, changes in
land cover and forests, crop mapping [48–51], or to map rapid, dramatic changes in areas
reshaped by diverse destructive processes, e.g., human activities [52], rapid erosion [53],
floods [54], earthquakes [55], typhoons or hurricanes [56], urban destruction in conflict
zones [57] and landslides [58].

Authors have developed sophisticated change detection techniques in recent decades
[53,59–61], testing the capabilities of almost all available sensors individually [62]. Methods
such as phase correlation (coherence) [63], coherence difference, coherence ratio [64], nor-
malised coherence difference [65], coherence change index [66], amplitude differences [67],
normalised amplitude differences and backscatter coefficient [68], or intensity correlation
coefficient [69] were evaluated separately or combined in various ways [70,71]. Accord-
ing to Matsuoka and Yamazaki [72], coherence is more reliable in identifying small-scale
changes, while intensity correlation is more informative for large-scale changes. How-
ever, the combination of both signal components often leads to more success in mapping
landslides [62].

Interferometric coherence and intensity analysis of the Hokkaido landslides was first
performed by Aimati et al. [73] and Fujiwara et al. [74]. The authors successfully exploited
pre- and co-event (L-band) ALOS-PALSAR imagery with a 3 m resolution for landslide
detection. Jung and Yun [75] studied the same area by evaluating multiple coherence and
intensity processing techniques and using multi-temporal ALOS-PALSAR imagery. The
same authors pointed out that it is necessary to analyse the capabilities of other sensors
(e.g., S1) in the landslide detection of the area.

Since 2014, dense coverage of C-band imagery acquired by S1 has been available
almost worldwide for surface deformation monitoring. Regular S1 acquisitions (with a
6-day lag over Europe and with 12 days of temporal separation over Japan) so far provide
7.5 years of temporal coverage for each location, which means continuous monitoring
of the Earth’s surface. However, we know little about the role S1 can play, especially in
detecting abrupt-failure landslides such as the 2018 Hokkaido movements. Our paper is
dedicated to answering the following questions: 1. Is it possible to use S1 imagery to detect
sudden landslides? 2. What types of features/parameters computed from SAR imagery
can effectively describe and map landslides? 3. What are the limitations, advantages
and disadvantages of S1 imagery in the case of coherent change detection for landslide
mapping? 4. Do we need higher spatial resolution imagery (such as ALOS-PALSAR), or can
S1-based change detection techniques produce adequate results? In addition, this article
also focuses on identifying and revealing problem areas and sources of error in Sentinel-1
data in the case of landslide mapping.

The remainder of the article is organised as follows. Section 2 begins with an intro-
duction to the study area, then lists the data and algorithms used and describes the image
processing and classification methods in detail. Section 3 presents the results, while the
discussion and conclusions can be found in Sections 4 and 5, respectively.

2. Material and Methods
2.1. Site Description

In August 2018, Typhoon Jebi caused heavy rainfall in Hokkaido, Japan [76], which
softened the topsoil layers. Subsequently, on September 6, a magnitude 6.7 earthquake
struck the Iburi-Tobu region. The epicentre of the earthquake was near Tomakomai at a
depth of 35 km. It involved 41 confirmed deaths and about 700 casualties, and triggered
thousands of coseismic landslides. The Geospatial Information Authority of Japan (GSI)
identified approximately 6000 landslide scarps and 1000 interconnected debris deposits
in a 400 km2 area around Atsuma after the event [77]. We believe that these coseismic
landslides triggered by the Iburi-Tobu earthquake could provide an ideal study area to test
the detection capabilities of S1 imagery.

Most of the landslides were identified as shallow, planar spoon-shaped landslides [78],
and only a few deep-seated, dip-slipping landslides were found on the east side of the



Remote Sens. 2022, 14, 1350 4 of 24

affected area [77]. The long-runout landslides were characterized by exposed, uncovered
upper slip surfaces [76], while the landslide tongue (fine sediments mixed with pine trees
and other debris) often reached rice fields and filled valley floors [77]. The average extent
of each landslide reached about 8200 m2 [79], and the cumulative area of landslides was
46.3 km2 [76]. The landslide inventory of the event conducted by Wang et al. [79] contains
7837 landslides, and they reported 23–38 million m3 of landslide deposits and a density of
326 movements per square kilometre in the affected area.

Landslides have occurred at an elevation of 100–250 m, mainly on slopes of 15–35◦ [76].
The bedrock consists of Neogene sedimentary rocks and is covered by ~1.5 m thick layers
of pumice and ash derived from the Early Holocene eruption of the Tarumai volcano [80].
According to Yamagishi and Yamazaki [77], the thickness of the surface deposits here is up
to 4–5 m. Due to the liquefaction and grain crushing caused by the earthquake, the sliding
mass was moved on the Ta-d pumice layer [81] and on underlying paleo soils [76].

Our research area is located in central Hokkaido at the westernmost part of the Hidaka
Mountains. The site is confined to the western side of the area affected by landslides during
the Hokkaido seismic event (based on satellite image coverage) and extends to 384.72 km2

(Figure 1). From a geomorphological perspective, the topography of the area consists of
young mountain ranges with a maximum elevation of 535 m a.sl. and adjacent lowland
terraces of the Ishikari Depression [76]. Narrow, dissected mountain ridges dominate the
landscape. Narrow, deep valleys and short steep slopes connect them to broad floodplains.
The landslide area covers 32 km2 within our study area (Figure 1A), representing 65.61% of
the total area affected by landslides (triggered by the seismic event).
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Figure 1. Land use and land cover (A) and terrain forms (B) of the study site. Legend (A): 1 = water;
2 = urban and built-up; 3 = rice paddy; 4 = crops; 5 = grassland; 6 = deciduous broadleaf forest;
7 = deciduous needle-leaf forest; 8 = evergreen broadleaf forest; 9 = evergreen needle-leaf forest;
10 = bare land (data source: HRLULC ver. 16.09 [82]). Dashed line on Figure A indicates the extent of
the closer study area. Legend (B): 1 = flat; 2 = summit; 3 = ridge; 4 = shoulder; 5 = spur; 6 = slope;
7 = hollow; 8 = footslope; 9 = valley; 10 = depression. Terrain forms were calculated using the
r.geomeorphon module of GRASS GIS and they were named after Jasiewicz and Stepinski [83].
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The terrain forms of the entire study area reflect heterogeneity (Figure 1B), with
slopes being the predominant terrain types (Figure 2), while ridges, spurs, flat surfaces,
and valleys play a roughly equal role in the landscape. The proportions of landforms on
which landslides developed, on the other hand, present a different picture. Slopes and
valleys were equally dominant, while spurs and hollows played a less important, but still
significant part in the developed landslide areas.
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and Stepinski [83].

In terms of vegetation, 91.9% of the landslide area was covered by forest and 7.5% by
rice paddies, crops, and grasslands before the event (Figure 3). The land cover of the entire
pre-event site reflected different proportions of land use/land cover (LULC) categories,
with forests occupying 71.8% of the whole site and rice paddies, crops, and grasslands
another 25%.

1 
 

 

Figure 3. Land use and land cover (LULC) of the research site (left diagram) and the landslides (right
diagram). 1 = water; 2 = urban and built-up; 3 = rice paddy; 4 = crops; 5 = grassland; 6 = deciduous
broadleaf forest; 7 = deciduous needle-leaf forest; 8 = evergreen broadleaf forest; 9 = bare land (data
source: HRLULC ver. 16.09 [82]).
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2.2. Data

To test S1′s capabilities for landslide detection, S1 imagery was downloaded from
NASA’s Alaska Satellite Facility server [84] as input data. Specifically, 30 images were
acquired in ascending (68 relative orbit) and descending mode (46 relative orbit) during
the year 2018 (Figure 4). The images were downloaded as Level-1 Single Look Complex
(SLC) data.
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Since snow cover can change both the backscatter of the surface and the sensor–target
distance, imagery taken during the snow cover period were removed from the image stacks.
The selection of the images to be removed was based on ECMWF ERA-Interim ‘Snow
depth’ data downloaded from the ECMWF data dissemination service [85] and S2 imagery
of Sentinel Playground [86].

Ascending images before 22 April and after 12 November and descending images
before 14 April and after 16 November were rejected because of the presence of snow.
Although the remaining images were processed as stacks according to geometries (see next
section), both image stacks were later separated into pre-event, co-event, and post-event
imageries. The pre-event images (11 ascending and 12 descending) were acquired before
the seismic event (as such, not affected by the slides) (Figure 4). The co-event imagery
(6 ascending and 7 descending) contains the first image of the event and subsequent S1
images. Post-event imagery (5 ascending and 6 descending) refers to all acquisitions after
the event, except the first image after the appearance of the landslides. It should also be
mentioned that the complete image stacks for each geometry were analysed separately.

A 5 m resolution DEM provided by the GSI [87] was used for interferometric data
processing and later for image classification. In addition, a land use/land cover map
of Japan with a resolution of 10 m (HRLULC ver. 16.09 [82,88]) was integrated into the
image classification. As ground truth, landslide inventory published by Zhang et al. [76,89]
was used.

2.3. Methods
2.3.1. A Priori Considerations

The detection of land cover changes is generally one of the fundamental applications of
remote sensing data [90] and is also playing an increasingly important role in the specialised
field of SAR remote sensing. When using SAR sensors, the backscattered signal intensity
variation in most cases is considered a key indicator of changes. Change detection with SAR
images has several advantages. The most important is that the SAR systems are coherent.
Due to this technical advantage, the phase differences of the image pixels are estimated
from the repeat pass image pairs. For this reason, InSAR coherence is commonly used for
change detection [91]. Observing the degree of SAR image pixel similarity, it is possible to
estimate the sample complex cross-correlation coefficient between the SAR image pairs:

γ =

∣∣∑ s1(x) · s2(x)∗
∣∣√

∑ |s1(x)|2 ·∑ |s2(x)|2
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where γ is the coherence, and s1 and s2 two coregistered complex SAR images. The
coherence ranges from 0.0 (meaning total decorrelation, phase is random) to 1 (meaning no
significant changes, phase correlation is preserved) [92].

In addition to the theoretical considerations, other important assumptions should be
taken into account. We assumed that most of the areas were covered with dense forests
on the pre-event acquisitions. In this case, the signal backscatter was characterised by
continuous small-scale changes due to the variation in the tree canopy surface, resulting
in the low coherence of these targets over time (Figure 5). Sudden landslides caused
dramatic changes in ground cover and, consequently, in the backscattered signal as well.
The change in surface geometry with the removal of forests and topsoil further reduced the
coherence. Therefore, the difference between the pre- and post-event coherences should
reflect significant changes where landslides occurred. As the landslides developed, smooth
surfaces without any vegetation or major irregularities were formed, which could provide
stable signal returns and high coherence after the event. The high coherence of post-event
imagery compared with pre-event coherences could be a good indicator for landslides. On
the other hand, the landslide deposits were often mixed with woody debris, resulting in
low coherence.
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Figure 5. Sketch of coherence changes and the limitations induced by the acquisition geometries
triggered by suddenly developed landslide in Hokkaido. (A) = pre-event optical image; (B) = post-
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foreshortening/layover according to the geometry. The dashed line indicates the mass of the landslide,
while the zig-zag line represents the main scarps.

Following these theoretical considerations, we focused our investigation exclusively
on the comparison of pre- and co-event and pre- and post-event coherence. In these
particular contexts, and considering the roughness of the debris that was covering the
slopes after the sliding events, the intensity of the backscatter signal was not affected by
significant changes. Therefore, the use of intensity as an indicator of change was excluded.

In addition, multitemporal features (MTF) of coherence pairs were introduced and
compared to compensate for the frequent variations in coherence, observed in single
coherence pairs.
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One of the main drawbacks of the applied technology is the presence of shadows and
layover in hilly terrain due to the SAR acquisition geometry, which can corrupt coherence results
due to image distortions in case of layover and does not provide information from the field
in case of shadows. Shadow and layover occur both before and after the event depending on
topography. Therefore, shadow and layover surfaces were masked according to the geometries
and ascending and descending shadow/layover-free end results were fused later.

2.3.2. Image Processing

In the first step of the processing, the preselected ascending and descending images
were imported into the Envi 5.6. SARscape 5.5.4. and orbit data were applied to the
images at the same time (step 2 in Figure 6). The Sentinel-1 input frames were cropped to a
defined area of interest corresponding to that of a previous study based on ALOS-PALSAR
imagery [73–75]. The 5 m resolution DEM and the mask of the research area were used to
crop the images before performing the further steps.
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4 = comparing classified images with ground truth, 5 = map preparation.

The Coherence Change Detection (CCD) TimeLine workflow was run to calculate
coherence maps of successive image pairs. The CCD TimeLine processing chain involves
an initial data co-registration followed by the interferometric step to produce coherence
maps. It should be noted that coherence was calculated through a Boxcar approach in a
5 × 5 matrix to improve the signal to noise ratio. Shadow and layover maps were also
calculated to mask the pixels that were affected by possible distortion of the signal before
the following steps were performed. As a last step of the process, the coherence and
shadow-layover maps were geocoded with a 15 m spatial resolution.

The Intensity Time Series module of SARscape was used to calculate intensity changes
across the site in VV and VH polarisation in both geometries. The sample selected images
were first multilooked, coregistered, and filtered with the DeGrandi spatio-temporal fil-
ter [93]. Finally, geocoding and radiometric calibration of the images was performed with
15 m spatial resolution.

One of the cornerstones of change detection is time series analysis. It can identify
different processes in the land cover transition. Multi-temporal features (MTF) are specific
temporal descriptors of different land cover change processes. Well-chosen features can
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describe different trends on the surface [94]. The MTF were calculated on pre-, co-, post-,
and full-event coherences. The applied MTF were thresholded using the distribution of
the pixel value of successfully identified pixels to improve the quality of the classification.
Technically, this was a semi-mechanical approach where the MTF thresholding results
were continuously compared to the reference data provided by GSI to fine-tune the final
thresholds. Three threshold values of MTF were summarized within a decision tree during
the subsequent classification. Therefore, thresholds of three MTF images (co-, post- and
pre-event) were defined at both geometries (Table 1).

Table 1. Thresholds for multi-temporal coherence features and pre-and post-event coherence differ-
ences used during the classification according to event types and geometries.

Event-Type Calculated
Feature

Ascending
Threshold

Descending
Threshold

MTF

Co-event

mean >0.3 >0.3

maximum >0.45 >0.45

span difference >0.4 >0.4

Post-event

minimum >0.175 >0.175

mean >0.3 >0.35

maximum >0.45 >0.5

Full event

maximum >0.45 >0.55

mean >0.21 >0.25

standard
deviation >0.12 >0.125

MTF differences

Co-event
Pre-event
difference

mean >0.1 >0.1

maximum >0.15 >0.175

standard
deviation >0.075 >0.075

Post-event
Pre-event
difference

minimum >0.1 >0.1

mean >0.14 >0.125

maximum >0.14 >0.15

Post-Pre event coherence difference >0.2 >0.2

To improve landslide detection, co-pre- and post-pre-event coherences were also
compared using the following method: First, multi-temporal descriptors of the coherence of
the pre-, co-, and post-events were generated. Then, differences of the coherence descriptors
of pre-event and co-event, and pre-event and post-event were calculated separately. In the
next step, thresholds were applied to the differences of the coherence descriptors (Table 1).
Therefore, three thresholded descriptors defined the co-event-pre-event MTF difference
image and the other three thresholded descriptors defined the post-event–pre-event MTF
difference image. These descriptors were summarized in both cases within a decision tree.

Single pre-co- and pre-post-event coherence images (generated from image pairs) were
also calculated. However, due to the very low coherence values, pre-co-event coherence
differences were not considered for further analysis. Therefore, their threshold values were
excluded from the table, and only post-pre-event coherence differences were retained for
further consideration. All of the above coherence differences were calculated using the
Band Math tool of Envi.

2.3.3. Image Classification and Post-Processing

Shadow and layover pixels, which were detected during the coherence processing,
were removed from the imagery as the first step of the image classification. The masking
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procedure was continued with the removal of all LULC pixels except for the three forest
categories. This procedure was necessary due to the strong influence of agricultural fields
on the results, as frequent coherence changes occurred at rice paddies, grasslands, and
crops. Therefore, these fields could not be separated from landslides based on coherence
alone. The final step of data preparation (Figure 7) is to remove the portion of the slope
with an elevation below 75 m a.s.l. and adding a 7◦ incline to exclude flat areas that are not
prone to landslides.
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Figure 7. Scheme of image classification and following processing steps.

After masking the images, decision three-based classification was performed according
to the thresholds defined in Table 1. The aggregation of individual pixels (Post Classification,
Aggregation) followed the classification using a 3 × 3 matrix to reduce the presence of
sparse pixels.

In the fourth step of the workflow (box 4 in Figure 6), the classified images were compared
to the ground truth data using simple Boolean algebra provided by Grass GIS. A comparison
was performed separately according to geometries, and geometries were fused later and
compared to ground truth. The validation was performed at a resolution of 15 m to meet
the lower resolution S1 (15 m) with the high-resolution control data [76]. Ground truth areas
were used to identify false negatives (pixels that are landslides but were not detected), false
positives (pixels that were falsely detected as landslides), and accurately classified pixels
(agreement). The areas of valid pixels and false negatives were separately compared to
the landslide ground truth, while the proportions of false positives were compared to the
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area of the research site (excluding landslides) [95]. Due to the significant portions of false
positives, the false negatives and their relation to the well-identified pixels were examined.
Therefore, the proportion of false negatives and positives within the 30 and 45 m zones
of the agreement were calculated. In addition, the proportions of pre-event topographic
elements were also determined in case of false positives, false negatives and the agreements.
To calculate topographic elements, the r.geomorphon module [83] of GRASS GIS 7.8.2 was
used based on the 5 m resolution DEM. Final results were visualised using QGIS 3.10.

3. Results
3.1. Temporal Changes in Intensity

Continuous changes in intensity values were observed over the whole site in both
polarisations and geometries (Figure 8). Most of the selected sampling points of LULC
categories reflected similar temporal intensity patterns. However, the intensity values of
the VV polarisation are one order of magnitude higher than those of the VH polarization.
Furthermore, it is clearly visible in the graphs that these LULC categories cannot be
separated from each other considering the intensity of the site due to the overlap of the
intensity curves. Therefore, intensity images were not included in further analysis.
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Figure 8. Temporal changes in the intensity of landslide (ls, orange), forest (fo, green), crop field
(cr, pink) and rice paddy (rp, blue) samples. (Top left map contains the location of the samples.)
(A) = LULC map of the site (see Figures 1 and 3 for legend); (B–E) = intensity time series: (B) = VH,
ascending geometry; (C) = VV, ascending geometry; (D) = VH, descending geometry; (E) = VV,
descending geometry. Please note, that the y axis of the plots is different for each geometry
and polarisation.

3.2. Temporal Changes of the Coherence over the Study Site

As shown in Figure 9, the development of landslides led to a drastic change in the
coherence of the affected surfaces. In general, coherence suddenly dropped after the
event (visible in co-event images) and later increased on post-event coherence pairs in
both geometries. These changes are well identifiable on the graphs of the same figure
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(‘asc_landslide’ and ‘desc_landslide’ curves). However, similar changes in coherence were
parallelly observed on surfaces that were not affected by the event. In fact, agricultural fields
(crops, rice paddies and grasslands) show similar temporal behaviour of the coherence at the
same time. This means that the landslides and other landscape features behaving similarly
could not be separated even when using multitemporal descriptors of the coherence time
series. This fact fundamentally controls the potential identification strategies for landslide-
affected areas. More than 90% of the landslide area was primarily forested where the
pre-event coherences were usually below 0.3 with small fluctuations. Post-event coherences
reached ca. 0.5 and higher values here with moderate fluctuations. Therefore, a clear
temporal difference of pre- and post-event coherences was identified in the case of forest
cover, which unfortunately does not apply to landslides affecting other land use categories.
Hence, we focused exclusively on the identification of landslides over forested areas, thus
retaining more than 90% of the landslides.
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forest; 7 = deciduous needle-leaf forest; 8 = evergreen broadleaf forest; 9 = evergreen needle-leaf
forest; 10 = bare land (data source: HRLULC ver. 16.09 [82]). The upper left figure shows the LULC
of the site and sampling points (see Figures 1 and 3 for legend). Upper right graphs represent the
time series of the coherence at the selected points in 2018 in ascending and descending geometry
(full coherence image stack was sampled). The two lower image series present the coherence of the
site at four selected time periods (single samples from events) in ascending and descending imagery.
(Coherence pairs before classification.) ls = landslide; fo = forest; rp = rice paddy; cr = crops.

3.3. Image Classification Results

Pre- and co-event image differences were discarded because of the low values of the
coherence images in both geometries. Therefore, pre- and post-event coherence differences
were calculated and classified (Tables 2 and 3). Despite the rejection of the lowest quality
pre-co-event coherence pairs, the remaining pre- and post-event image differences provided
the lowest quality results, with a weak agreement with the control data (35–42%) and high
proportions of false positives (6–9%).

Table 2. Results of classification on ascending geometry data. (The best match is marked in bold text).

Geometry Feature Type Event
Type False Negative % False Positive % Match %

Ascending

MTF

co 47.843 5.7192 52.1569

post 51.2658 6.5564 48.7341

full 38.4679 9.4082 61.5319

MTF differences
Co-Pre 55.5643 4.0258 44.4356

Post-Pre 52.4908 5.028 47.5091

Post-Pre event
coherence
difference

Post-Pre 57.7057 9.2115 42.2942

Table 3. Results of classification on descending geometry data. (The best match is marked in bold
text).

Geometry Feature Type Event
Type False Negative % False Positive % Match %

Descending

MTF

co 42.2337 6.389 56.5002

post 51.9506 4.9792 46.7833

full 47.7736 6.2605 50.9602

MTF
differences

Co-Pre 57.4704 4.1647 41.2635

Post-Pre 51.69 4.8705 47.0495

Post-Pre event
coherence
difference

Post-Pre 63.6516 6.7891 35.0823

The use of MTF in both geometries provided the best classification results. Classified
MTF reached 48–61% of correctly classified landslides, while the proportion of false nega-
tives remained at 38–50%, while the proportion of false positives varied between 5–9% in
ascending geometry. In descending geometry, the proportion of agreement ranged from 46
to 56%, false negatives reached 42–51%, while the proportion of false positives was about
4–6%. The classification of MTF differences provided lower quality results considering first
the proportion of agreement (41–47%), while the proportion of unidentified pixels (false
negatives) was higher (52–57%). On the other hand, we found the lowest proportion of
false positives here (4–5%).
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The highest quality result was obtained by classifying the MTF of the full image stack
in ascending geometry. Here, the proportion of the agreement is the highest at 61%, the
false negatives occur in only 38%, but the proportion of false positives is also high (9%).
In descending geometry, the classification of the MTF of co-event imagery provided the
highest quality results (Figure 10). The proportion of agreement reached 56% here, the
proportion of false negatives was 42% and false positives were detected in 6%.
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The above-mentioned trends in the classification results remained almost constant,
while the ascending and descending classifications were fused. Simple coherence dif-
ferences provided the lowest quality classification. In the case of MTF differences, the
proportion of agreement reached only 43–48%, the proportion of false negatives fluctuated
between 56 and 51%, and the proportion of the false positives again remained the low-
est (4–5%) of all the fused images. MTF provided better results in the case of landslide
recognition (48–57% of agreement, 42–51% of false negatives), while the proportion of false
positives was again higher compared to results (6–8%).

The highest result was obtained with the combination of the ascending full-event MTF-
based classification and the descending co-event MTF-based imagery. Here, the proportion
of agreement reaches more than 60% (about 40% of false negatives) and the proportion of
false positives remains at 8.5%.

The significant number of false negatives and false positives should be further in-
vestigated. Since the coherence was calculated in a spatial convolution matrix, we can
assume that instead of a single-pixel calculation, we have to introduce a buffer zone around
the correctly classified pixel. According to the calculations, 58.5% of the false positives
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lie in the 30 m buffer zone of the agreement (Figure 11). Furthermore, 67.2% of the false
positives lie in the 45 m buffer zone of the agreement. Other false positive pixels appear
sporadically outside of the buffer zone and are spatially distributed across the study area.
Only the southern part of the area shows higher concentrations of false-positive pixels.
False negatives show similar spatial behaviour where 46.9% of them are located in the 30 m
buffer zone of the agreement and 56.5% of them lie in the 45 m buffer zone. They are as
sporadic as the false positive pixels are outside the buffer zones and false negatives have
the same concentration in the southern part of the site.
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Figure 11. False negatives, false positives, and agreement of the classification results with the 30 m
(A,B) and 45 m (C,D) buffer zone of the agreement. © OpenStreetMap contributors.

Figure 12 shows which type of classification result was situated in which terrain form
category. A total of 31% of the agreement lies on slopes, 21% on valleys, 16–17% of them on
spurs and hollows and 9% on ridges. False negatives were identified on surfaces composed
of approximately 30% of valleys, 27% of slopes, 13–16% of spurs, and hollows, and 6% of
ridges. A total of 36% of false positives area developed on ridges, 23% on spurs, 24% on
slopes and only 6–9% in valleys and hollows.
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Figure 12. The distribution of terrain forms over false negatives (FN), false positives (FP) and
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calculated and named after Jasiewicz and Stepinski [83].

4. Discussion

This section focuses on the discussion of the results with special attention to the
nature of coherence processing and classification. Furthermore, the results of intensity
processing, the role of adequate input data for the processing steps (e.g., SAR images, LULC,
etc.), terrain form analysis, and S1 capabilities are discussed. The chapter is structured to
systematically answer the questions posed at the end of the introduction.

Question 1. Is it possible to use S1 imagery to detect sudden landslides?
Answer 1. The results indicate that the application of the S1 sensor cannot provide a

perfect solution for the detection of sudden landslides at the given site due to the involve-
ment of more than one post-event image and the limitations of the sensor. However, it can
approximate the size of landslide-affected areas with considerable overestimation.

Co-event coherence images provide poor results (30–40% of agreement and a high
proportion of false positives). Therefore, a rapid response and landslide detection are not
possible based on S1 coherence imagery, and even using the first post-event image does
not increase the quality of landslide detection at a given location. Coherence degradation
would be more visible in areas with better pre-event coherence, and therefore the technique
would be applicable in, for example, a built-up environment. Therefore, the technique is
again less suitable for accurate quick detection purposes at the given location.

Question 2. What types of features/parameters computed from SAR imagery can
effectively describe and map landslides?

Answer 2. Coherence images calculated from pre- and post-event images pairs sup-
plied poor results, while the application of MTF significantly improved the results. Never-
theless, researchers still need to carefully select and fine-tune the site-specific features that
can be applied to the given site, such as the size of the convolutional matrix of coherence,
the applicable MTFs, the coherence thresholds in ascending and descending geometry, and
the DEM and LULC base maps.

Using the MTF of coherence image stacks significantly improved the results compared
to single coherence image pairs which had been the only option previously. However, this
technique required a significant amount of post-event imagery, on which the coherence of
the landslides was improved.



Remote Sens. 2022, 14, 1350 17 of 24

The relatively low proportion of marching pixels and the high proportion of false
positives could be an indication of the low quality of the classification results. Nonetheless,
more than 46% of the false positives are within the 30 m buffer zone of agreement, and
more than 56% of them are in the 45 m buffer zone of the agreement. Firstly, this could be
explained by the low spatial resolution of S1 compared to the size of the landslides. Sec-
ondly, the 5 × 5 convolution matrix of the coherence algorithm, which averages the spatial
differences, could be the reason. A 3 × 3 convolution matrix could also be appropriate
to preserve spatial resolution; however, it could increase noise. It should be noted that
other authors such as Aimati et al. [73] have used additional filtering on ALOS-PALSAR
coherence images, which reduces both noise and spatial resolution. However, this suggests
that the size of the convolution matrix should be carefully considered at the beginning of
image processing.

Considering the thresholds applied during the classification process, it is worth noting
that the best settings of the identified thresholds of the two geometries differ slightly from
one another. Firstly, this could be due to the geometric characteristics of the scatterers
(which are determined by the geomorphology of the site). Secondly, this also suggests that
it is hardly possible to formulate universal thresholds applicable across different sites for
landslide classification.

Having analysed the coherence time series, it became clear that the successful landslide
classification requires the exclusion of agricultural fields because rice paddies, crop fields
and even grasslands produce similar coherence variations as landslides on co- and pre-event
imagery. Unfortunately, the exclusion of croplands resulted in the loss of approximately
9% of the detectable landslides. Even if 9% of the landslide area was significant, it was not
possible to distinguish cropland from landslide areas directly using SAR data. It should
be mentioned that the LULC map of Japan provided a reliable, high-resolution basis for
the masking procedure. However, such LULC maps had been sparsely available in other
countries until recently, which could encumber former S1-based landslide identification
elsewhere. On the other hand, Sentinel-based world coverage with a 10 m resolution is
freely available [96].

The best available 5 m resolution DEM of GSI was used to remove image distortions.
On the other hand, despite the high-quality DEM, landslide formation radically altered the
surface and led to the significant repositioning of the layover pixels. These newly emerging
pixels were not filtered due to the lack of an up-to-date DEM. Even if no current DEM is
available due to the nature of the event, users should carefully select the best available
DEM that can improve the quality of image processing.

Question 3. What are the limitations, advantages and disadvantages of S1 imagery in
the case of coherent change detection for landslide mapping?

Answer 3. The limitations of using S1 for coherent change detection are due to
the spatial resolution, temporal separation of the images, the wavelength of S1 and the
particular field conditions (size, shape and spatial distribution of the landslides). Therefore,
the ca. 15 m resolution is less suitable for the detection of elongated, narrow landslides,
such as the ~5.6 cm wavelength, which is too sensitive for the successful detection of
the features (which here mainly concerns the intensity). On the contrary, the temporal
separation and the fact that the images are freely available make the sensor an obvious
choice for at least preliminary site investigations. Additionally, as we have seen, it can
approximate the landslide-affected areas and perhaps provide even better results when
dealing with landslides of greater magnitude elsewhere.

The dramatic coherence change triggered by the event occurred not only at landslides
but was visible all over the study area. Furthermore, large-scale changes occurred time
after time in post-event coherence images over the landslides. On one hand, the decrease
in overall coherence eliminated the possibility to identify the landslide areas using only the
pre- and post-event coherence differences, or only the coherence based on pre- and post-
event coherence pairs. On the other hand, the coherence stability of post-event imagery
was also questionable and affected the applicability of multi-temporal features. The first
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problem could be caused by the dense vegetation cover, which provided low (less than
0.3 on average) coherence. Fujiwara et al. [74] observed the same phenomenon on ALOS-
PALSAR coherence imagery. Thus, the changes occurred in this low coherence area, where
the phase was less stable, making it very difficult to measure them. The fluctuations in
coherence could be due to the displacement of unconsolidated landslide material on the
slip surface [74] or the erosion of the slip surface. Thirdly, we should consider that the
water content of the topsoil changed temporarily after the event, which determined the
penetration depth of the bare slip surfaces. Moreover, the spatial variability of soil water
content is probably due to the physical heterogeneity of the suddenly developed landforms
(bedrock, altitudinal position, aspect, etc.). Therefore, soil water content could influence
the coherence of the landslides. It should also be considered that the landslides triggered
not only the downward movement of the topsoil layers. Vegetation is usually transported
to the valley floors, mixed with or covering the landslide material. These wrung tree trunks
and other tree remnants reflected similar signals towards the sensor as intact forests on the
pre-event images.

At first glance, the poorer results obtained with S1 image stacks contradict the findings
of Aimati et al. [73], Fujiwara et al. [74], Jung and Yun [75], who used ALOS-PALSAR
imagery for the same purpose, and found that intensity is the indicator that gives the best
results in landslide detection. The main reason for the unsuccessful intensity analysis could
be the short wavelength of the S1 compared to ALOS-PALSAR data. The sensor offers a
lower penetration rate, and the short wavelength is more sensitive to small-scale changes.
In addition, the changing moisture content of the topsoil layers (or bare bedrock layers of
slip surfaces) could strongly influence the surface dielectric constant. Therefore, backscatter
intensity could reflect the soil moisture pattern rather than the actual LULC changes.

Regarding the classification results and topographic elements, it is clear that 28% of
the landslides affected valleys, but only 21% of the agreements and more than 29% of the
false positives were located in valleys in pre-event times. First, narrow valley bottoms
hindered landslide detection, as the spatial resolution of S1 is only 15 m. Second, as
mentioned above, landslide debris moved along valley floors and was mixed with tree
trunks, the complex geometry of which made it very difficult to separate the landslide
deposits from surrounding intact forests. Similar trends were observed on slopes, spurs and
ridges, which played a significant role in the detection of pre-event surface elements, where
landslides developed. However, their role was more pronounced in the false positives.
They could be considered as different types (convex, concave), but still as slope elements of
the surface, where most false positives occurred during the calculations. Slopes can cause
serious image distortions due to the side-looking geometry of the SAR imagery, which were
compensated here, by removing shadow and layover pixels in the very first step of image
classification. Therefore, spatial resolution, accuracy and timeliness of the DEM applied
during the processing have an important impact on the quality of the final result.

Question 4. Do we need higher spatial resolution imagery (such as ALOS-PALSAR) or
can S1-based change detection techniques produce adequate results?

Answer 4. Since higher resolution sensors provided better results than S1 during
landslide detection, the answer is undoubtedly yes. A sensor with better spatial resolution
can provide more details from the surface and the detection can be more accurate. However,
we should also consider the wavelength (thus the sensitivity) of the sensor as well as
the temporal separation of the images. S1 performance is better taking into account the
temporal separation of the images, as well as the freely available images, providing excellent
raw material for long-term coherence and intensity investigations. However, the ALOS-
Palsar sensor was an adequate choice of previous authors due to its better spatial resolution
and longer wavelength. In an ideal case, a more advanced system will involve satellites,
which simultaneously and frequently cover the same area on different wavelengths (C and
L), with higher spatial resolution (3–5 m) in two geometries.

Considering former papers on the landslide detection of the site, the S1 coherence-
based classification results seem to be ambiguous. Firstly, Fujiwara et al. [74] and Aimati
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et al. [73] used co-event pre-event coherence differences and normalised where the success
rate was analogous to the presented approach (cf. Table 2 in [73]). However, Aimati
et al. [73] and Jung and Yun [75] significantly improved their results by evaluating the
intensity and multitemporal features of the coherence. In the case of the ALOS-PALSAR
imagery, the main advantage of the sensor is its high spatial resolution, which in some
cases should be strongly filtered [73]. The main disadvantage of the same sensor is the low
temporal resolution, which triggers temporal decorrelation and encumbers multi-temporal
coherence analysis. On the one hand, all the authors indicated that intensity processing
or multi-temporal analysis of the intensity could be the solution for detecting landslides
of the site. On the other hand, S1 is more sensitive to small-scale changes with a lower
resolution. Therefore, S1-based intensity processing will not provide better quality results
than coherence analysis of the same imagery.

The temporal separation of S1 images can also vary with region. While S1 images are
acquired every 6 days all over Europe in both geometries, the temporal lag between images
is 12 days over Japan, and this temporal decorrelation significantly affects the quality of
change detection. On the other hand, the temporal separation of S1 is better than that
of other SAR missions, such as ALOS-PALSAR, where the temporal decorrelation was
evidenced [73] at the same site.

According to the review of the literature and our experiences related to this specific
topic, we summarize the most relevant aspects of Sentinel-1 and ALOS-PALSAR satellites
(Table 4) regarding landslide detection purposes. This comparison is based on a relative
scale (1–5/poor-excellent). We are aware that it contains a certain level of subjectivity, but a
general overview could support the efforts of experts in nearly real-time landslide mapping.

Table 4. Comparison of S1 and ALOS-PALSAR satellites regarding landslide detection purposes [97,98].
Asterisk: relative scale (1–5/poor–excellent).

Features S1 ALOS-PALSAR

wavelength *** *****

pixel spacing *** *****

revisit-coverage frequency ***** ***

data availability (costs) ***** **

processing time ***** ***

coherence *** ****

intensity * *****

5. Conclusions

Considering the results and their discussion, it is obvious that S1 images can be used
for landslide detection at the observed site only with strong limitations. Pre- and co-event
and pre- and post-event coherence differences provide poor results, with a low number
of agreements and a high proportion of false detections. On the other hand, the results
were significantly improved by applying the MTF of coherence and almost reached the
success rate of the coherence analysis conducted by previous authors using ALOS-PALSAR
imagery. Nevertheless, the improvement of MTF coherence results using S1 intensity was
not possible, as was performed in the case of ALOS-PALSAR data, due to the general
sensitivity of the short wavelength. Similar to the wavelength, the revisit time of S1 is
also a factor that strongly affects the coherence reconstruction of the site and the response
time of the system considering the quick detection purpose. Compared to Europe, where
the temporal separation of images in both geometry is 6 days (between 2016 and 2021),
the revisit time over Japan is 12 days, which could improve significantly in the future
considering that the country is prone to natural disasters.

It should also be mentioned that apart from the low number of agreements, approxi-
mately half of the false positives were detected in the 30–45 m buffer zone of the agreement.
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This shows that the spatial resolution of the sensor is not appropriate for an accurate
identification. Only a rough approximation of the area affected by the landslides is possible.
While the co-event and full-event MTF coherences provided the best approximation of the
landslides, it is evident that the sensor and the above-mentioned techniques cannot be used
for rapid detection at the given location.

These observations are applicable to the present site and are strongly influenced by
the geomorphological (and geometrical) characteristics of the landslides. This means that
further testing of S1 could still be relevant for larger-scale landslides. Improving the results
is potentially possible by applying the non-adaptive coherence filtering technique, which
could significantly raise coherence values. Although the technique is time consuming and
computation intensive, there is the potential to obtain more accurate results, with well
reconstructed coherence representing surface forms with less noise. In addition, it is worth
considering the ESA WorldCover map for image masking, which could significantly im-
prove the results. Moreover, the capabilities of other sensors with higher spatial resolution
and different wavelengths, such as SAOCOM, Capella, and ICEYE, should also be explored.
The usability of the ROSE-L and Sentinel-1 Next Generation satellites announced by ESA
as well as the NISAR announced by NASA for rapid change detection purposes should
also be clarified in the future. The intensive development of new SAR sensors will boost
the improvement of landslide monitoring and mapping by microwave satellites. For this
reason, our article has attempted to establish new ground by investigating the applicability
of S1 to facilitate future multi-sensor-based landslide detections.
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