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Abstract: Seafloor topography and grain size distribution are pivotal features in marine and coastal
environments, able to influence benthic community structure and ecological processes at many
spatial scales. Accordingly, there is a strong interest in multiple research disciplines to obtain seafloor
geological and/or habitat maps. The aim of this study was to provide a novel, automatic and simple
model to obtain high-resolution seafloor maps, using backscatter and bathymetric multibeam system
data. For this purpose, we calibrated a linear regression model relating grain size distribution values,
extracted from samples collected in a 16 km2 area near Bagnoli–Coroglio (southern Italy), against
backscatter and depth-derived covariates. The linear model achieved excellent goodness-of-fit and
predictive accuracy, yielding detailed, spatially explicit predictions of grain size. We also showed that
a ground-truth sample size as large as 40% of that considered in this study was sufficient to calibrate
analogous regression models in different areas. Regardless of some limitations (i.e., inability to predict
rocky outcrops and/or seagrass meadows), our modeling approach proved to be a flexible tool whose
main advantage is the rendering of a continuous map for sediment size, in lieu of categorical mapping
approaches which usually report sharp boundaries or rely on a few sediment classes.

Keywords: MBES; supervised modeling; unsupervised modeling; seafloor sediment distribution

1. Introduction

Studying the spatial and temporal distribution of seabed sediments is a pivotal topic
in marine and coastal environmental research, ranging from biological and ecological
research to engineering applications. It has been shown that seafloor geology, in particular
topography and grain size distribution, can influence benthic community structure and
ecological processes at many spatial scales (e.g., [1–7]). At the same time, characterizing
grain size distribution is also important in harbour and coastal management [8–10], and
can be essential when dealing with pollution and environmental remediation [11–14].

Consequently, there is a strong interest in multiple research disciplines to undertake
seafloor geological and/or habitat mapping, and recent studies have presented differ-
ent modeling approaches for the classification of seabed sediments [15–18]. Such clas-
sification approaches have been performed manually based on the experience of opera-
tors [4,19,20], while supervised or unsupervised modeling approaches have recently been
proposed [10,21–26]. Manual segmentation and classification can be problematic due to
subtle variations that may occur in the large volume of data being collected during modern
surveys which might present reproducibility issues between different operators [27]. Su-
pervised approaches, alternatively, rely on statistical methods based on ground-truth data,
such as grab samples or dives [28], while unsupervised approaches often rely on some
form of statistical clustering [29]. Supervised methods are the preferred approach in marine
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geological and ecological research [30] but, despite their importance, studying seabed
sediments is challenging, given that obtaining representative samples of ground-truth data
is usually complex, time-consuming and expensive [31]. Automated approaches relying
on remote sensing, along with several statistical tools and dedicated software, can address
these issues and are commonly employed nowadays (e.g., [27,32–39]).

Accordingly, a widespread remote sensing instrument used in studying seafloor sedi-
ment characteristics is the multibeam echosounder (MBES), which is currently becoming
a fundamental tool for the exploration of both coastal and deep-water environments, al-
though other instruments, such as side-scan sonar, are still widely used [5]. MBES is able to
return both bathymetric and acoustic information on seabed characteristics, with applica-
tions rapidly increasing in seafloor mapping. MBES backscatter allows the application of
quantitative and qualitative analysis to obtain important information for mapping seafloor
habitats [40–43], such as surface roughness [44–47], seafloor classification [36,48–51], sub-
strate type and benthic biota [2,35,52]. Backscatter intensity is related to sediment prop-
erties [47,53,54], depending on two main components: volume scattering from sediment
inhomogeneities and interface scattering from bottom roughness. The scattering from the
sediment volume is created by fluctuations in sediment density or sound velocity. The
scattering from the sediment surface is controlled by the impedance difference between
the overlying water and the sediments [55,56]. Thus, fine sediments generally exhibit
low backscatter intensity due to low sediment bulk density and low acoustic impedance
contrast at the water-sediment interface, whereas coarse sediments generally result in
higher backscatter strength (e.g., [44,57]). Furthermore, it has been shown that backscatter
intensity decreases with mean grain size in sandy sediments [47]. Since the relationship
between acoustic backscatter, sediment grain size and benthic community structure has
been demonstrated [58–60], an accurate grain size classification deriving from the acoustic
backscatter becomes a priority from ecological, geological and management perspectives.
At the same time, seafloor geology, depth, and topography, along with sediment distribu-
tion, are significant drivers of benthic community structure and ecological processes, being
widely used in the development of benthic habitat maps [4,5,10,31].

Even though many methods are already available for categorical seabed classification
based on MBES data, it has been shown that all of them may have low accuracy [30]. Such
lack of accuracy could be due to the classification system, which is often an oversimplifi-
cation of reality that fits into a rigid scheme failing to detect gradual changes in sediment
size and substrate type [30,61]. Some of these issues might be circumvented by means of
continuous rather than categorical mapping and, in recent years, continuous modeling ap-
proaches have been proposed [18,62,63]. Yet, there is still a need to develop new approaches
that might render accurate and detailed benthic habitat maps for the management of coastal
environments, which are also those with higher threats from anthropogenic activities [64].

The aim of this study was to provide a novel, automatic and simple model to obtain
high-resolution seafloor maps that could provide accurate grain size distribution in coastal
environments. For this purpose, we regressed grain size observations gathered from
50 ground-truth samples collected in a 16 km2 area near Bagnoli–Coroglio (Southern
Italy) against backscatter and depth-derived covariates. We compared spatially explicit
model predictions in the area with an expert-based seafloor map already available [65].
Additionally, the same model was also projected onto a test area of 18 km2, i.e., Lampedusa
Island, although here no ground-truth samples were available, except for a few remotely
operated vehicle images, along with a former map of the seafloor features based on a mixed
expert-based and unsupervised approach [35]. Lastly, we estimated the minimum number
of ground-truth samples per km2 that were needed to recalibrate the model and/or validate
the results for new areas.
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2. Materials and Methods
2.1. Data Acquisition

The bathymetric data were collected during two different surveys, i.e., “Abbaco
2017” and “Lampedusa 2015”. The Teledyne SeaBat 7125, a multi-frequency MBES set
at 400 kHz, providing high-resolution data and collecting backscatter signal for acoustic
mosaic production, was used for both surveys [35,65,66]. An SBG EkinoxU inertial system
and a Trimble BX982 dual antenna differential global positioning system (DGPS) were
used. Sound velocity corrections were provided by a Valeport mini-SVS probe and a
Valeport Mini SVP sound velocity profiler. Data were acquired and processed using the
PDS 4.1 (Teledyne©inc) software package. Tide data were applied (from https://www.
mareografico.it, accessed on 1 February 2022) to the logged files to set up the real depth,
and data de-spiking was carried out in order to produce a high-resolution image of the
seafloor (chart datum mean sea level, ellipsoid WGS84). The backscatter signal (i.e., snippet
data) was processed with an FMGeocoder Toolbox (FMGT) Fledermaus 7.6 version [67].
These data were corrected for receiver gain, transmit power, transmit pulse width, spherical
spreading, attenuation in the water column, insonified area, beam pattern, speckle noise,
and for angular dependence and local slope [35,65,68].

2.1.1. Bagnoli-Corogolio Calibration Area

The data acquisition of this study area was carried out in 2017 by CNR–ISMAR
Naples (formerly CNR–IAMC), within the framework of the ABBaCo Project (Italian
project ‘Restauro Ambientale e Balneabilità del SIN Bagnoli–Coroglio’—pilot experiments for
the environmental restoration and bathing possibility of the Bagnoli–Coroglio coastal area)
coordinated by the SZN-Anthon Dohrn, Naples. The project was designed to produce new
approaches addressing the remediation of contaminated sites and restoration of marine
habitats [66,69]. The study area (Figure 1) was located in the eastern Gulf of Pozzuoli
(Naples, southern Italy) and is an integral component of the Campi Flegrei volcanic system,
located in the Campania region [66].
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The marine area of the Bagnoli coastal zone is part of the caldera collapse that orig-
inated from the eruption of the Neapolitan Yellow tuff [70]. The infralittoral setting is
characterized by relatively coarse-grained sediments, mainly sand and silty–sand, rep-
resenting the grain size distribution in equilibrium with a shallow–water, high-energy
environment. The sediment constituents are mainly formed by bioclasts and volcaniclasts
with a sandy–silt matrix that becomes more abundant towards the distal sector of the
gulf [65]. The Bagnoli area has undergone intense industrial activity during most of the
last century, from the 1910s until the 1990s. Human-related activities altered the original
morphology of the coast, e.g., for the construction of infrastructures on both land and at sea.
Steel production ultimately ended in 1990, and the industrial facilities were completely dis-
mantled in the early 2000s [70]. Since then, a series of surveys were carried out with the aim
of providing a characterization of soil on land and marine sediments offshore, addressed to
the environmental recovery of the area (e.g., [11,13,71,72]). With the ABBaCo project, new
results were obtained aimed at the acquisition of new and updated data [8,65,66,73–76].
Similarly, a high-resolution shaded image derived from bathymetric data (Figure 1) and
acoustic mosaic from backscatter data (Figure 2) were obtained, covering about 16 km2 in a
water depth range of 1.5–115 m bsl.
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The inner shelf is characterized by the presence of stepped terraced surfaces located,
in the western sector, at water depths of 10, 25, and 35 m, S-SW oriented. These terraces
are expressions of erosional features or toplap/offlap surfaces of local prograding wedges
and are likely the result of the dynamic equilibrium between seafloor erosion at the base of
storm waves and the sediment supply from the coastline during the Holocene sea-level
rise [77]. Stepped terraced surfaces, mainly W oriented, are also present around Nisida
island, where the morphology displays a rugged seafloor with a gentle slope (<1◦) within
30 m of depth. Two slope breaks bound the island (~10◦ at 30 m depth and ~15◦ at 45 m),
connecting the inner continental shelf to the deeper part of the bay (see Figure 4 in [66]).
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During the ABBaCo project, 50 grab samples were collected and processed for sedimen-
tological and grain-size analysis. The gravel/sand fraction (4000−0.063 mm) was analysed
using dry sieving at phi interval, while the fine-grained fraction (0.063−0.0040 mm) was
processed with a SYMPATEC laser particle size analyzer [74].

2.1.2. Lampedusa Test Area

Lampedusa is the largest island of the Pelagie Archipelago, followed by Linosa island
and the Lampione islet (Sicily, Italy; Figure 3). The island is located in the southern
Mediterranean Sea, inside the Sicily Channel, arising from the northern edge of the African
continental plate [78,79].
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The island (surface area 20 km2; maximum elevation 133 m asl) shows a sub-planar
surface inclined toward the south-west and is carved by deep valleys that connect with
the narrow inlets along the coast. The island displays rocky cliffs up to 120 m high, which
outline a rugged coastline, with tens of rocky highs at a short distance from the coast,
mostly occurring along the north-western sector [79,80]. The Lampedusa shoreline can be
divided into two main sectors: in the north (from Capo Ponente to Capo Grecale) they are
indented, with dominant coastal features varying from steep to sub-vertical cliffs, along
with small promontories and bays. In the south, the coast gradually slopes down and
includes pocket beaches in the coves. A geophysical survey of Lampedusa was carried out
in 2015 by CNR–ISMAR Napoli (formerly CNR–IAMC), within the framework of the project
“CAmBiA—Contabilità Ambientale e Bilancio Ambientale” to assess the conservation status
and map the distribution of Posidonia oceanica (L.) Delile (Potamogetonaceae) meadows.
The aim of the survey was the characterization of the seabed of Lampedusa Island with
MBES (both for bathymetric and backscatter data) along with video-camera inspections as
ground-truth data (see Figure 3 in [79]) to assess the distribution and the conservation of
the P. oceanica meadows. The high-resolution bathymetric map of Lampedusa (depth range
of 2–50 m bsl) showed a rugged seafloor all around the island within the first 20–40 m
depth, due to extensive rocky outcrops, localized talus deposits and relict morphologies of
the seabed, such as P. oceanica meadows on ‘matte’ facies (as defined by [31,79,81]). Locally,
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vertical scarps 10–20 m high are present, such as in the eastern and northern shallow water
sectors. Along the northern coast, the seabed is steeper and dips down to over 50 m bsl
(see [79]). Conversely, along the southern sector of the island, the seabed slopes with
gradually decreasing gradient in the depth range of 10–50 m. As in Bagnoli, in this study
area the snippet data of the MBES was also processed, obtaining an acoustic mosaic at
2.5 m resolution (Figure 4) that was used in [35] for automatic image classification.
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2.2. Modeling and Mapping Approach

We used the granulometric distribution values derived from the 50 ground-truth
samples collected in Bagnoli to calibrate our model. In detail, the different percentages of
sediments belonging to each particle size class (from the coarse to the finest) were used
to calculate the mean value of the phi scale using the ‘gran.stats’ function of the ‘rysgran’
package [82]. Phi is a logarithmic parameter for grain size classification whose values range
from −9 (i.e., boulders) to 9 (i.e., clay) and is calculated as:

phi = −log2(µm)

The package ‘rysgran’ is based on the size scales adopted by [83,84] while the phi scale
was introduced by [85].

We used the values of phi as the dependent variable in our modeling approach using
backscatter and depth data as independent variables. In order to take into account the
effects of seafloor morphology, slope, aspect, terrain ruggedness index (i.e., TRI), the
topographic position index (i.e., TPI), and roughness were computed from the depth data
using the function ‘terrain’ from the package ‘raster’ [86].

The set of independent variables was checked for multicollinearity according to a
variance inflation factor (i.e., VIF) using the function ‘vifstep’ in the package ‘usdm’ [87].
Specifically, we dropped all variables with VIF ≥ 5 as a threshold indicator of multicollinear-
ity among predictors [88].

The remaining predictors were used in a linear regression model using phi as the
dependent variable. We used a backward model selection using function ‘drop1’ in package
‘stats’ [89], recursively dropping all non-significant predictors. The remaining predictors
were further sub-selected according to the Akaike information criterion (i.e., AIC) using
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the function ‘stepAIC’ in the package ‘MASS’ [90]. The AIC is routinely adopted in model
selection applications, as the optimal model can be identified according to the lowest
value of AIC [91]. Final models’ goodness-of-fit was evaluated calculating the adjusted
coefficient of determination (R2

adj.). Moreover, predictive performance of the best models
was assessed through a 10-fold cross-validation approach, which was repeated five times
using the function ‘train’ in the package ‘caret’ [92]. At each cross-validation run, we
calculated the values of the predictive coefficient of determination (R2

pred.) and root-
mean-square error (RMSE), then averaging the results. The residuals from the best model
according to the aforementioned criteria were inspected to assess possible violations of the
linear regression assumptions. We also took into consideration the possible presence of
spatial autocorrelation in the model residuals, which we tested using the function ‘correlog’
in the package ‘ncf’ [93], using 5 m increments for the uniformly distributed distance classes
and 1000 permutations to assess the level of significance.

The model was used to produce a 2.5 m resolution map for phi values over the Bagnoli
area and was also projected onto a test area (i.e., Lampedusa) where ground-truth data
were not available. The final maps were produced by projecting the best regression model
on both Bagnoli and Lampedusa areas, also filtering all those pixels reporting phi values >9
and <−9, which could result from minor anomalies in either the backscatter or the depth
data. In order to render a more homogenous final map, we computed mean values for each
pixel using a moving window approach by a 5 × 5 mean filter, using thefunction ‘focal’ in
the package ‘raster’ [86].

In both study areas, we evaluated whether the models were extrapolated beyond the
calibration range by means of multivariate environmental similarity surface (i.e., MESS),
using the function ‘mess’ in the package ‘dismo’ [94]. In detail, we highlighted in the final
output all those areas which had MESS ≤ −10, which can be considered areas of strict
extrapolation [95].

Finally, we performed a sensitivity analysis to establish how many ground-truth
samples would be needed in order to calibrate and/or validate the model outputs when
applied to other areas beside the ones we studied. In order to do so, we took random
subsamples from our original dataset, each with increasing sample size compared to
the original one (i.e., from 10% to 90% of our original 50 ground-truth data). For each
subsample, we recalibrated the model and compared the coefficients to the full model. Each
subsample was randomly repeated 50 times. All statistical analyses were performed using
R 4.1.2 [89].

3. Results
3.1. Ground-Truth Grain Size Classification from Bagnoli–Coroglio

The results from the grain size classification analyses are presented in supplementary
material Table S1. The majority of the samples could be generally classified as sand (76%),
ranging from very coarse sand (i.e., CS, 2%) to very fine sand (i.e., VFS, 14%). The remainder
of the samples (24%) could be classified as silt, ranging from coarse silt (i.e., CSi, 10%) to
fine silt (i.e., FSi, 6%). In terms of phi, the computed mean values showed an average of
2.67 ± 1.80 standard deviations. The whole distribution of phi values used for the model
calibration can be seen in Figure 5.

3.2. Model Calibration

After checking for multicollinearity among independent variables, we were left with a
set of five covariates, i.e., depth, backscatter, aspect, TPI, and roughness. Starting from a
full model, we recursively dropped all non-significant predictors until we were left with
only depth and backscatter as significant covariates. In addition, these two variables were
included in the best model after backward AIC selection. The final model achieved a high
goodness-of-fit, reporting a R2

adj.= 0.858, also showing excellent predictive performances
(i.e., R2

pred.= 0.865 and RMSE = 0.647, Table 1). The statistical analyses showed that both
depth and backscatter were excellent predictors for phi, albeit backscatter remarkably
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outperformed depth when the covariates were considered singularly (Table 1). The final
model showed no deviation from linear regression assumptions in the residuals. Spatial
autocorrelation was negligible, with a mean value of Moran’s I of −0.027 and only 10% of
633 distance classes results significant (p < 0.05).

Figure 5. Density plot of the mean phi values obtained from the Bagnoli ground-truth samples.
The plot is coloured according to a scale aimed at representing the different granulometric classes
corresponding to the phi values. The red lines represent the mean ± standard deviation (N = 50).

Table 1. Results from the linear regression using as covariates only depth, only backscatter and
depth + backscatter, respectively. The table reports the estimates for the intercept and the coefficients,
the confidence intervals (CI) and the p-value. At the bottom of the table, the values for Akaike
information criterion (AIC), adjusted coefficient of determination (R2

adj.), predictive coefficient of
determination (R2

pred.), and root mean squared error (RMSE) can be found.

Only Depth Only Backscatter Depth + Backscatter
Predictors Estimates CI p-Value Estimates CI p-Value Estimates CI p-Value

(Intercept) 1.324 0.853–1.795 <0.001 −2.355 −3.070–−1.641 <0.001 −1.829 −2.495–−1.163 <0.001
Depth −0.043 −0.053–−0.032 <0.001 −0.017 −0.024–−0.009 <0.001

Backscatter 0.049 0.042–0.055 <0.001 0.039 0.031–0.046 <0.001

AIC 164.1 121.8 108.2
R2

adj. 0.556 0.809 0.858
R2

pred. 0.593 0.848 0.865
RMSE 1.148 0.782 0.647

3.3. Final Maps for Bagnoli and Lampedusa

The final maps for Bagnoli and Lampedusa are shown in Figures 6 and 7, respectively.
For Bagnoli, only 0.33% of the total pixels in the image could be considered as strictly
extrapolated according to MESS analysis, while in Lampedusa the corresponding figure
was 1.28%. The mean value of phi for the overall predicted area of Bagnoli was 3.57 ± 1.91,
while for Lampedusa the value was 2.84 ± 1.17.
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The results from the sensitivity analysis can be seen in Figure 8. The results showed
that, even with a sample size as low as 40% of our original dataset, all model parameters
(i.e., intercept and coefficients for depth and backscatter) converged on the results of the
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full model, albeit with some variability resulting from the 50 random replicates with each
subsample. Thus, considering that the area of Bagnoli was 16 km2 and that we took
50 ground-truth samples, we could have reached similar results with only 20 ground-truth
samples. Consequently, 1.3 ground-truth samples per km2 would be a viable trade-off
for validating and/or calibrating our modeling approach in other areas. Accordingly, for
the area of Lampedusa, for instance, the results from our model could be validated by
24 ground-truth samples, as the overall surveyed area was approximately 18 km2.

Figure 8. Results from the sensitivity analysis. Each point represents the mean and the standard
deviation of 50 replications of random subsamples of the original dataset, each with increasing sample
size compared to the original one (i.e., from 10% to 90% of the original 50 ground-truth data). For
each subsample, the model was recalibrated and compared to the intercept and coefficients of the full
model.

4. Discussion
4.1. Bagnoli–Coroglio Calibration Area

In the Bagnoli–Coroglio area, the seafloor map showed good correspondence with
the sedimentological map preliminarily recognized by expert-based interpretation of the
backscatter mosaic published in [65]. The coarse-grained sediments were concentrated
in two sectors: the area between Pozzuoli and Bagnoli and the southern sector of the
Bagnoli–Coroglio offshore, including Nisida island and the area at its south. In particular,
the northern sector was characterized by relatively high acoustic reflection (Figure 2) that
corresponded to “gravelly coarse sand” in [65]. These sediments were mostly concentrated
in two areas, one below a slide deposit that contributes a supply of coarse material from
the coast, and the other corresponding to a sub-circular depression about 0.1 km2 wide
where coarse sand settled. Such depression was described in more detail by [8]. Figure 6
showed the same gravelly coarse sand distribution (blue area), both from north and south
sectors, and also showed coarse sand entrapped by bottom currents near the piers of the
disused industrial site of Bagnoli [8].

In the southern part of the first study area, offshore of the Coroglio tuffaceous cliff,
a series of morphologic depressions and ridges have favored a current-driven separation
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between the coarse deposits (depressions) from the fine-grained material (ridges), as shown
by [8]. These morphological structures are clearly visible in Figure 6, supporting the
outputs of the applied method. The central part of the study area, off the pier of the former
industrial site, was classified as fine sand/very fine sand in [65], based on both backscatter
values and seafloor sampling. Nevertheless, the acoustic mosaic showed some patches
of intermediate to high backscatter, likely due to the occurrence of coarser shallow water
deposits, which would be hard to discriminate visually by an expert. In this specific case,
the seafloor map differs from that of [65], because the modeling approach presented here
was able to recognize the heterogeneous distribution of medium sand to fine sand, with a
predominance of the latter. In contrast, expert-based classification, or even automatic image
classifications, might coerce aggregations or render sharp boundaries between the facies,
preventing the realization of a more realistic distribution between the granulometric classes.
Thus, even when close to reality, polygon classification can be limited in terms of resolution
and detail compared to the outputs produced in this study. The same can be said for silty
sediments, as this classification creates the possibility of distinguishing between coarse silt
to very fine silt, avoiding creating a single class of silt and clay, as was done in [65]. Silt and
clay were detected in the south-western distal part of the study area corresponding to the
Bagnoli Valley [77], a morphostructural depression connecting the Bagnoli foreshore with
the outer continental shelf of Pozzuoli Bay, which delivers coastal sediments towards deep
water areas. In [66], a flow analysis, based on seafloor morphology data, was carried out
to derive the stream paths towards the Valley, that showed a preferential direction of the
sediment transport that fits with what is shown in Figure 6.

Finally, the presence of bedrock in the southern sector of Nisida island was recognized
by experts from the morphology data published in [65]. In this sector, linear regression
classified this sub-outcropping structure as an alternation of fine sand and coarse sand.
Admittedly, as there were no grabs done in this sector and considering that the model
was calibrated on loose sediments, rocky outcrops or very large boulders could have
been misidentified.

Yet, the MESS sectors of the Bagnoli study area were only 0.33% of the total pixels
and, analysing the map, they corresponded mostly to backscatter noise or to coarser
sediments, which were underrepresented in the calibration data and might have led to
strict extrapolation in some minor parts of the map.

4.2. Lampedusa Island Test Area

The sediment distribution map obtained from the linear regression model for Lampe-
dusa, where no ground-truth was available, is in concordance with the classification carried
out in [35]. In the latter study, a preliminary benthoscape classification of the island was
carried out with the use of remote sensing object-based image analysis (RSOBIA), that
segmented and classified the acoustic mosaic obtained from snippet data processing [96].
The map in [35] was presented as preliminary because no grab sampling was available
and the seabed was mainly classified only by experts based on its acoustics facies pat-
tern (i.e., fine sediments exhibiting low backscatter, and coarse sediments corresponding
to high backscatter), and the results of RSOBIA segmentation. In general, the seafloor
map produced here by the model was characterized mostly by fine sand, representing
the predominant grain size. In detail, the southern sector of the island was mostly char-
acterized by a distribution of fine and very fine sand, with channels of medium coarse
sand. Posidonia oceanica meadows were identified with video-inspections and added in
benthoscape classification as overprint layers [35,79]. Well-developed meadows of this
plant cause a decrease in the backscatter values, shifting the classification toward fine
sands, as already shown in [31]. So, in the case of meadows or any other plant-dominated
seafloors, visual inspections or scuba diving as ground-truth information can outperform
the linear modeling approach. The sediment distribution of the southern flank showed
a classic depositional model of coastal environments, with the onshore coarse grain-size
(blue areas in Figure 7) and finer material offshore. Coarser sand was present along the
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coastline and in all north-western sectors of Lampedusa, i.e., from Capo Ponente to P. Muro
Vecchio. As shown by ROV images (see Video 1 in Figure 4 published in [35,79]), very
coarse heterogeneous materials (well-rounded pebbles and boulders) in poorly sorted
calcareous gravels were detected, forming a terraced surface at the foot of the submerged
cliffs. This formation was interpreted as a foot-cliff deposit generated by the wave-related
winnowing of talus, likely derived by progressive cliff failures [97]. As already showed
for the Bagnoli–Coroglio site, rocky outcrops can be misclassified by the linear regression
model, due to underrepresentation in the calibration ground-truth data.

Accordingly, the MESS areas were more present in sectors with higher reflectivity, as
for Bagnoli, because there were no calibration samples for this class. The same reasoning
can be followed for very fine sediments, such as clay without silt (e.g., Cala Creta in
Figures 4 and 7), which were also underrepresented in the calibration data from Bagnoli–
Coroglio, where the finest sediments were very fine silt grouped with clay. Admittedly, the
linear model predictions in the Lampedusa area need to be validated by grab samples that,
according to our sensitivity analysis, could be as few as 24 samples.

4.3. Comparisons with Other Approaches

Supervised methods for seafloor grain size and/or habitat classification based on
remote sensing data have been shown to provide accurate results, especially when paired
with robust ground-truth sampling [21,27,98]. Yet, several supervised approaches resulted
in comparatively low accuracy and high error rates when dealing with a morphologically
simple seabed characterized by a high sedimentary complexity [30]. Despite state-of-the-
art statistical approaches, such low map accuracy could be attributed to an inadequate
classification system, low discriminatory power of the available predictors, and the spatial
complexity of the survey site compared to the positioning accuracy of the grab samples [30].
Our approach can be seen as different and innovative compared to other studies, as it
used a quantitative model for the spatial distribution of sediment fractions, which did not
oversimplify the final output into a few categories. On the contrary, as the final model
outputs a map for phi values, it can be seen as an extremely detailed map that clearly shows
gradients and boundaries among sediments, allowing for more precise habitat mapping
or geological study of the seafloor in coastal environments. Such a detailed map can be
easily transformed into a simpler map of substrate types, as for instance those defined by
the European Nature Information System (EUNIS) hierarchical classification [99] or other
marine habitat classification schemes [61]

After cross-validation, our model showed excellent predictive performance (R2
pred. = 0.865).

Such a level of accuracy exceeds an 85% target accuracy that has usually been considered
ideal for thematic mapping based on remotely sensed data [100]. Such a level of accuracy
can be surpassed by other modeling approaches, such as fully connected conditional
random field [101], but this model was calibrated on a few substrate classes rather than a
continuous variable, such as phi.

Another typical classification model for seafloor data based on MBES is random
forest [27,102–104]. This type of model has been shown to offer accuracy as high as
83% [103]. Moreover, when applied to seafloor data, random forest is used as a classification
approach for few categories, such as those proposed by EUNIS, showing limitations and
underperformance when substrate complexity is present [30]. Admittedly, random forest
regression for continuous data is widely used in ecological research [105,106], yet, in
continental shelf research, random forest is mostly used as a supervised classification
approach, although there are recent examples where it has been employed for continuous
modeling [18,62,63].

Other statistical methods rely on the use of proprietary software compared to free
software, such as R or QGIS. Some approaches rely on object-based image analysis, for
example, RSOBIA, which is implemented in ArcGIS [30,35,96,107]. The segmentation
implemented in RSOBIA requires the user to define both the number and the minimum
size of the clusters, which are then classified by a k-means clustering approach. Another
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ArcGIS tool is Terrain Attribute Selection for Spatial Ecology [108], which derives six
variables from bathymetry that can be used along with backscatter data in a multiresolution
segmentation algorithm requiring expert judgment to define scale and input variables.
Both the aforementioned approaches in ArcGIS can offer good predictive performance,
but they require proprietary software, some degree of expert handling for fine tuning the
model and, finally, they both suffer from the same problems as random forest when dealing
with complex seafloors [30].

Other approaches to seafloor mapping have been applied as well, including both
expert-based and supervised classification. The authors of [109] focused on soft-sediment
physical features to delineate distinct acoustic facies that presumably represented different
lithological types of seabed sediments. The different facies were defined in ArcGIS accord-
ing to similar backscatter characteristics, which were later validated by sediment samples
analysed for particle size.

In [110], the applicability of supervised learning techniques for benthic habitat char-
acterization using angular backscatter response was demonstrated. The study involved
characterization of acoustic backscatter data from multibeam systems, using four different
supervised learning methods to generate benthic habitat maps.

In [5], the authors combined a suite of geomorphometric and textural analytical
techniques to map specific types of seafloor morphologies and compositions. The seabed
was classified into five elementary morphological zones, using morphometric derivatives,
bathymetric position index and geomorphometric mapping, to produce morphologic and
seabed composition maps of the predominant habitats. Finally, ref. [111] used ensemble
modeling to map seafloor sediment distributions and shifts with minimal ground-truth
data combined with hydroacoustic datasets in the Sylt outer reef.

4.4. Limits and Future Developments

Despite several, advantages, our modeling approach was unable to correctly identify
rocky outcrops and P. oceanica meadows. The model was also constrained by the calibration
data, which was underrepresented in both very fine and very coarse sediments. Moreover,
as our survey areas were both limited to shallow water, the model needs to be recalibrated
when waters are deeper than 110 m. In its current stage of development, our model is
best suited to all those shallow-water areas with loose sediments intermingled with a few
hard substrates, regardless of terrain, that can be either smooth or rough [43]. Future
developments of the model will be able to detect the presence of consolidated sediments
and function in deeper waters by expanding the calibration dataset.

5. Conclusions

The modeling approach presented in this research can be seen as an accurate method
for high resolution and continuous mapping of loose sediments in the continental shelf,
which can be used in several applications from habitat mapping to substrate shifting
when the analysis is repeated across time. The method relies on free software and can be
validated and/or recalibrated using 1.3 ground-truth samples per km2 of survey area. The
results from the Bagnoli–Coroglio area showed excellent accuracy and negligible areas of
extrapolation, while the map for Lampedusa was largely in concordance with expert-based
previous seafloor mapping [35,79], although there is a need to validate the results by grab
samples. Regardless of these limitations, our modeling approach is a flexible tool whose
main advantage is the rendering of a continuous map for sediment size that does not show
sharp boundaries or few sediment classes. These features can be pivotal in ecological,
geological and management applications in marine coastal ecosystems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14051268/s1, Table S1: Results from the granumoletric analyses
from the 50 grab samples in the Bagnoli-Coroglio calibration area. The results include the percentages
from all granulometric classes (according to Udden & Wentworth) and the corresponding phi values
(according to Krumbein).

https://www.mdpi.com/article/10.3390/rs14051268/s1
https://www.mdpi.com/article/10.3390/rs14051268/s1
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