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Abstract: Sea ice monitoring plays a vital role in secure navigation and offshore activities. Synthetic
aperture radar (SAR) has been widely used as an effective tool for sea ice remote sensing (e.g., ice type
classification, concentration and thickness retrieval) for decades because it can collect data by day and
night and in almost all weather conditions. The RADARSAT Constellation Mission (RCM) is a new
Canadian SAR mission providing several new services and data, with higher spatial coverage and
temporal resolution than previous Radarsat missions. As a very deep convolutional neural network,
Normalizer-Free ResNet (NFNet) was proposed by DeepMind in early 2021 and achieved a new
state-of-the-art accuracy on the ImageNet dataset. In this paper, the RCM data are utilized for sea ice
detection and classification using NFNet for the first time. HH, HV and the cross-polarization ratio
are extracted from the dual-polarized RCM data with a medium resolution (50 m) for an NFNet-F0
model. Experimental results from Eastern Arctic show that destriping in the HV channel is necessary
to improve the quality of sea ice classification. A two-level random forest (RF) classification model
is also applied as a conventional technique for comparisons with NFNet. The sea ice concentration
estimated based on the classification result from each region was validated with the corresponding
polygon of the Canadian weekly regional ice chart. The overall classification accuracy confirms
the superior capacity of the NFNet model over the RF model for sea ice monitoring and the sea ice
sensing capacity of RCM.

Keywords: sea ice; classification; SAR; RCM; NFNet; CNN

1. Introduction

Global warming has become a great concern as the summer Arctic sea ice extent
reached a historically unexpected minimum after 2007 [1]. Sea ice monitoring has be-
come increasingly important because changes in sea ice in the northern hemisphere are
speculated to strongly affect climate change. Moreover, sea ice floes cannot be ignored in
polar navigation and offshore activities. Sea ice monitoring is conducive to management
decisions to ensure the safety and efficiency of economic activities in the extreme Arctic
environment [2].

Sea ice monitoring can be categorized into ice detection and classification, concentra-
tion and thickness retrieval, ice drift retrieval, melt detection, etc. Sea ice detection is one of
the most critical tasks for sea ice mapping, which distinguishes sea ice from open water. Sea
ice can be classified into various types based on its age, salinity, porosity, surface roughness,
etc. Due to the large coverage, the extremely harsh environment in the polar regions and
the near real-time requirements of some applications, satellite images have become one
of the main sources for sea ice monitoring [2]. Various sensors can be used for sea ice
sensing, such as Global Navigation Satellite System-Reflectometry (GNSS-R) radar [3],
radiometers [4], scatterometers [5] and spectroradiometers [6]. However, the spatial resolu-
tions of current GNSS-R, radiometers and scatterometers are low [1,7]. The application of
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spectroradiometry is also limited by cloud. Accordingly, synthetic aperture radar (SAR) has
been widely used for sea ice classification because of its ability to penetrate clouds, smoke,
mist and darkness, which leads to an almost-all-weather, day-and-night imaging capability
with high spatial resolution [8]. Due to these advantages over other types of sensors, SARs
can be used for validating coarse resolution results from radiometers and scatterometers, as
well as achieving better descriptions of regional ice distributions [1]. The RADARSAT Con-
stellation Mission (RCM), a new generation of earth observation satellites of Canada, was
launched on 12 June 2019, consisting of three C-band SAR satellites. Unlike previous gener-
ations of RADARSAT missions, RCM not only has the traditional single-polarization (SP),
dual-polarization (DP) and full-polarization (FP) capabilities, but adopts a new polarization
method: hybrid compact polarization (HCP). Compact polarization is designed to achieve
the advantages of both dual-polarization and full polarization modes [9]. The HCP mode
provides more information than the DP mode (close to the FP mode), and its swath width
is larger than that of the FP mode. This advantage enables it to achieve high-resolution,
large-scale earth observation applications [10].

Because RCM was launched only recently, most studies on RCM are based on simu-
lation data using quad-polarized RADARSAT-2 images [2]. The applicability of different
satellite platforms (including Radarsat-2, Sentinel-1 and RCM) are analyzed in [11,12] for
landslide monitoring. The authors emphasized the RCM advantages of a shorter revisit
time and higher spatial resolution for the detection of small-sized slope movements, com-
pared with previous SAR satellites. In [13], a large number of Sentinel-1 and RCM images
were combined to generate the sea ice motion product across the Arctic, which provide
more sea ice vectors in summer with higher spatial coverage and temporal resolution
compared with that of previous sea ice motion products (e.g., National Snow and Ice Data
Center Polar Pathfinder and the Ocean and Sea Ice-Satellite Application Facility). In [14],
RCM compact polarization channels (CH, CV) were compared with the linear polarization
channels (HH, HV) of RADARSAT-2 and Sentinel-1 in terms of river ice classification.
In that study, ground range detected (GRD) compact polarization data are used, and gray-
level co-occurrence matrix (GLCM) texture features are extracted for river ice classification.
The superiority of the compact polarimetry mode over linear polarimetry is demonstrated
in [2,14]. A new ice concentration algorithm using dual-polarized RCM data with derived
ocean surface wind speed was developed in [15]. The root-mean-square error of this new
ice algorithm can reach 2.2%, and its R2 is 0.997. However, actual RCM data have not been
used for sea ice classification.

The surface scattering and volume scattering of various ice types by SAR sensors are
affected by ice surface roughness, salinity, porosity, etc. [1]. This leads to the feasibility
of machine-learning-based sea ice classification. Machine learning technology based on
large data sets can achieve automatic sea ice charting. The robust throughput of the trained
model makes it possible to realize near-real-time sea ice monitoring and facilitate analysis
by ice experts [16]. Conventional machine learning algorithms, such as support vector
machine (SVM) and random forest (RF), have been widely adopted since they are easy to
use and do not require much training data but can obtain a high accuracy. Usually, RF is
preferred among those conventional methods because it is based on ensemble techniques,
which collect weak learners to reduce variance while maintaining low bias. However,
conventional approaches may not work well for some new ice types, such as nilas [17], gray
ice [18] and gray-white ice [19]. The sliding bagging ensemble SVM, refined with first-order
logic, was presented in [18] for sea ice classification using dual-polarized RADARSAT-
2 data. Its demonstrated accuracy for gray ice was only 52.2%. A locality-preserving
fusion technique for multi-source images was developed in [20]; the sliding bagging SVM
trained using the fusion dataset from multi-spectral and SAR images can achieve an
overall accuracy of 94.11%. In [21], the authors classified melt pond, sea ice and water
using RF and decision trees (DT) and found that RF was superior to DT and HH, and
the spatial standard deviation, the average of the co-polarization phase differences and
the alpha angles were effective features for the RF model. In [22], an optimized DT that
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splits multi-class classification problems into binary problems at each branch showed an
improvement over the traditional all-at-once classification algorithm and its results were
comparable to those of the commonly used RF approach. Park et al. [23] applied RF with
GLCM parameters to Sentinel-1 data for the classification of open water, mixed first-year ice
and old ice and achieved an overall accuracy of 87%. Meanwhile, deep convolutional neural
networks (CNNs) have also been employed in sea ice monitoring applications, such as
classification [16] and concentration estimation [24]. CNNs can replace complicated feature
engineering procedures with simple end-to-end deep learning workflows by extracting
spectral and spatial information based on their multi-layered interconnected channels [25].
The technique based on deep neural network usually performs better than the traditional
machine learning technology under the same conditions [26,27], but it also requires a large
amount of training data and time. Although deep CNNs have the potential to provide
more accurate results for sea ice monitoring, it should be noted that deep CNNs are also
limited by the intricate tuning process, heavy computational burden, the high tendency of
overfitting and the empirical nature of model establishment [25]. For sea ice classification,
the availability of a large number of accurately labeled data is also a challenge [16]. In [28],
a state-of-the-art CNN (Visual Geometric Group–16 Layer (VGG-16) that can classify five
cover types (water, brash/pancake ice, young ice, level first-year ice and deformed ice)
with the highest overall accuracy of 99.89% is proposed. Unlike traditional sequential CNN
architectures (e.g., VGG), the residual neural network (ResNet) [29] is a network-in-network
architecture consisting of micro-architecture building blocks (also called residual blocks).
Residual blocks are realized by adding skip connections to avoid vanishing gradients and
mitigate the problem of degradation (accuracy saturation). As a result, extremely deep
networks can be effectively trained. The first residual network (ResNet-50) was introduced
by He et al. [29] in 2015. Its top-1 accuracy in ImageNet was 2.75% higher than that of
VGG-16 [30]. Normalizer-Free ResNet (NFNet) [31] is a new family of ResNet classifiers
released by the DeepMind company that achieved a new state-of-the-art accuracy on the
ImageNet dataset. Many deep CNNs rely heavily on batch normalization as a critical
component, whereas NFNets improve training speed by replacing batch normalization
with the adaptive gradient clipping (ADC) technique. In this paper, the feasibility of
NFNets for sea ice classification is investigated. This state-of-the-art technique (NFNet) is
also compared with the RF method in sea ice classification using RCM data.

This paper provides the first sea ice detection and classification results from real
dual-polarized RCM data. Destriping was used as an additional preprocessing step to
mitigate the thermal noise in the HV channel. HH, HV and the cross-polarization ratio
were extracted as the inputs for an NFNet-F0 model. Next, the performance of this model
was evaluated and compared with a two-level random forest (RF) classification model.
The remainder of the paper is organized as follows. Section 2 introduces the research
background about SAR sea ice classification. The RCM and ground truth data are described
in Section 3. The methodology used for RCM sea ice classification in this study is explained
in Section 4. Experiment results are presented and discussed in Sections 5 and 6, respectively.
Section 7 summarizes the classification processes and outlines suggestions for future
investigations.

2. Sea Ice Classification Background

The application of SAR sea ice monitoring began with the launch of the SEASAT
satellite in 1978, followed by Kosmos-1870 (1987) and Almaz-1 (1991) [2]. These early
satellites showed the potential of SAR for sea ice classification and sea ice concentration
estimations, but their low swath width limited their spatial coverage and their usage
in operational monitoring [2,32]. In 1995, the Canadian Space Agency (CSA) launched
RADARSAT-1, which overcame the shortages (limited resolution and coverage) of previous
SARs and provided satellite images with multiple SAR imaging modes. The highest
resolution of RADARSAT-1 can reach 8 m in fine mode. Therefore, it became the main
data source for national ice service centers in several northern countries [32]. However,
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RADARSAT-1 only provided a single polarization mode (HH). Because only one channel
is available, sea ice sensing studies using RADARSAT-1 data are mainly based on texture
analysis and region-based algorithms. Weighted gray-level co-occurring probabilities
(WGLCP) were compared with gray-level co-occurring probabilities (GLCP) in [33] for the
classification of ice and water. According to [34], water and sea ice types can be classified
based on iterative region growing using semantics (IRGS) for segmentation and the Markov
random field (MRF) method for region-based classification.

At the beginning of the 21st century, sea ice monitoring was further improved with the
development of multi-polarization radar technology [2]. Compared to single-polarization
images (HH or VV), the greater information content of PolSAR data (HH, VV, HV, and VH)
can enhance the accuracy of sea ice observations [35]. After the launch of ENVISAT in
2002, many multi-polarized radars of different bands were developed, such as the C-band
RADARSAT-2 (2007, CSA), the X-band TerraSAR-X and TanDEM-X (2007 and 2010, German
Aerospace Center), the L-band ALOS-2 (2014, Japan Aerospace Exploration Agency) and the
C-band Sentinel-1A/B (2014 and 2016, European Space Agency). Decomposition feature
analysis of RADARSAT-2 quad-polarized data was conducted in [36], where σ0

hh, σ0
vv,

the total power and surface scattering component, were analyzed with a wider range of
environmental conditions. As investigated in [37], sea ice classification performances were
compared among L-, C- and X- band SARs. It was discovered that the C-band is more
robust for sea ice classification in general, but the X-band and the L-band can distinguish
several specific sea ice types better. For example, L-bands provide better discrimination
between young ice and smooth first-year ice compared with the C-band since the correlation
coefficient of the L-band was observed to be a vital feature for the discrimination of young
ice and smooth first-year ice. In addition, sea ice observation using multi-frequency SARs
is also analyzed in [38,39]. In [38], L-band SAR was found to be able to identify ice ridges
more easily because longer wavelength data are less affected by microscale ice structures.
The work presented in [39] showed that X-band SAR can easily discriminate newly formed
sea ice from open water due to its lower penetration depth.

3. Study Area and Data Set
3.1. Study Area

This paper presents a case study of the Davis Strait. The investigation area was close to
Buffin Island in the Canadian Arctic. Under the effects of different water masses and ocean
currents, the sea ice in the Davis Strait displays strong seasonal variation that has a further
influence on local light, stratification, nutrient availability, and temperature [40]. Despite
the decrease in global sea ice in the past 25 years, the sea ice coverage in this area has
increased [40]. In general, sea ice appears at the Davis Strait in mid-October and its extent
reaches the maximum value in March [41]. From late July to early August, the ice thickness
and coverage rapidly decrease to an ice-free state [41]. At the acquisition times (21:21 (UTC)
4 January, 21:29 (UTC) 1 March and 22:11 (UTC) March 2) of the RCM images used in this
study, the mean air temperature was around −24 ◦C to −25 ◦C , and air temperature was
below 0 ◦C for several months. However, since this area is well known for its available
fisheries and rich oil and gas resources, the presence of sea ice poses a serious threat to
the local economy [40]. Therefore, near real-time sea ice detection and mapping is of great
significance to local economic activities.

3.2. Sea Ice Chart

In many countries, sea ice charts are provided by their national ice service centers (such
as Canada, the USA, Russia, etc.) as the main source of sea ice information. Sea ice charting
is based on geographic information system (GIS) technology, which requires all available
satellite data, as well as in situ visual observations and manual labels applied by ice experts.
The spatial resolution of the satellite data source used for the Canadian Ice Service (CIS)
regional ice chart ranges from a few tens of meters to a few kilometers [42]. Although the
CIS also provides daily ice charts, the daily data for the areas under investigation are not
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available. In this study, the temporal resolution of the digital ice chart (shapefile format)
obtained from CIS was one week. Thus, the sea ice distribution information may not be
precise, bringing significant challenges to the labeling strategy for training. Because the
temporal and spatial resolutions of the sea ice chart are different from those of RCM data,
the sea ice chart cannot be used for labeling each RCM pixel directly but for generating
manual labels via interpolation only for homogeneous areas with only ice or water. In this
way, an effect on the classification results may exist but should not be significant. Manual
selection of uniform areas can partially mitigate the error of the sea ice chart. On the sea ice
chart, each ice region is associated with one egg code, containing the information about
sea ice concentrations, stages of development (age) and the form (floe size) of ice. In this
paper, we focus on the stage of development and sea ice concentration. The abbreviations
for each type of ice are shown in Table 1. For this study, the sea ice types were mainly
first-year ice, gray white ice and gray ice. Only few regions contained old ice (OI), so old
ice was not considered separately but was combined with first-year ice (FYI) and classified
as OI/FYI. Gray white ice, gray ice and new ice were combined under the category of
new ice (NI) because they are reported in the same sea ice chart polygons. The sea ice
concentration code represents the percentage of ice coverage of an area in tenths. Note that
the region with a concentration less than 10% is labeled as ice-free, open water and bergy
water. A concentration code of “10” indicates consolidated ice. In this paper, two (4 January
and 1 March ice charts) weekly regional ice charts in shapefiles from the Canadian Ice
Service were used as reference for labeling. A shapefile of a sea ice chart is a georeferenced
digital chart consisting of polygons, each of which contains an attribute that describes its
sea ice information in detail.

Table 1. Sea ice types and the corresponding stage of development (age) egg codes [42].

Description Abbreviation Thickness Code

New ice NI <10 cm 1

Gray ice GI 10–15 cm 4

Gray-white ice GWI 15–30 cm 5

First-year ice FYI ≥30 cm 6

Thin first-year ice TFYI 30–70 cm 7

Medium first-year ice MFYI 70–120 cm 1

Thick first-year ice TKFYI >120 cm 4

Old ice OI - 7

3.3. RCM Data and Sea State Information

Three dual-polarized images, acquired on 4 January and 1 and 2 March 2021, were
used and these are shown in Figure 1a,c. The information on the RCM images is sum-
marized in Table 2. Sea ice classification can be affected by sea state conditions [37,43].
ERA5 [44] can provide global hourly ocean wave estimates based on reanalysis that com-
bines physical models with observations from ground sensors and satellites, such as ERS-1,
ERS-2 and Envisat. The stars in Figure 1a,c display the locations where the sea state infor-
mation from ERA5 is used. At the acquisition time of the 1 March image around the Davis
Strait, the significant wave height was 1.5 m, the period was 5.1 s and the direction was
173.3°. On 2 March, the significant wave height was 2.1 m, the period was 6.7 s and the
direction was 176.6°. The yellow star on 4 January is close to the NI testing samples, where
the significant wave height was 1.7 m, the period was 5.3 s and the direction was 241.3°.
The red star in Figure 1c is located near the water testing samples, where the significant
wave height was 1.5 m, the period was 5.7 s and the direction was 219.5°. According to
the World Meteorological Organization (WMO) code [45], the sea states at the acquisition
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times of the three RCM images are moderate. Therefore, the training set and testing set
were collected under similar sea-state conditions.

Table 2. Characteristics of RCM imagery used in this study.

Attributes 1st RCM Image 2nd RCM Image 3rd RCM Image

Time 2021/3/1 2021/3/2 2021/1/4

Satellite RCM-3 RCM-2 RCM-1

Beam Mode Medium Resolution 50 m

Pixel Spacing 20 m

Polarizations HH HV

Incidence Angle 26.85°–50.90° 34.07°–55.08° 26.87°–50.96°

Spatial Coverage 384.88 km × 362.46 km 570.64 km × 363.94 km 564.06 km × 363.3 km

Latitude 64.57 N–68.55 N 67.87 N–73.47 N 63.31 N–68.9 N

Longitude 55.19 W–64.98 W 64.14 W–76.84 W 54.77 W–65.22 W

3.4. Training and Validation

In order to obtain reliable sea ice samples from the RCM data based on the digital
sea ice chart to train a machine-learning-based classifier and evaluate its performance,
a reasonable labeling strategy is required. Labeling is divided into two steps: automatic
labeling and manual labeling. For the georeferenced RCM image, the longitude and latitude
of each pixel are known, so the georeferenced coordinates are firstly converted into the
Lambert Conic Conformal—Two Standard Parallels (2SP) projection format to match the
projection mode of the digital sea ice chart. The sea ice chart polygon to which each pixel
belongs can be determined. By reading the attribute of the corresponding polygon from
the digital sea ice chart, each pixel’s egg code can be acquired. In this way, the initial
automatic labeling can be realized. However, the sea ice chart cannot indicate specific sea
ice information for each pixel, but rather for a polygon. In a polygon with a low sea ice
concentration, the ice and water distribution is not specified. If the machine learning model
is trained directly according to the automatically labeled pixels, a large number of pixels
corresponding to water will be misclassified as ice. Therefore, manual labeling is required
to generate more accurate training and testing samples.

In this study, only homogeneous areas completely covered by sea ice or water are
selected for manual labeling. Next, inside these regions, only those parts that also look like
ice in the RCM images were finally selected as training samples. Similar steps but with
a concentration lower than 10% were used for the selection of water samples. Here, only
three classification types are considered. Ice with a stage of development code of new ice
to gray-white ice is labeled as NI, that with the code of first-year ice to old ice is labeled
as old ice and first-year ice (OI/FYI, see Table 1). Considering that the polygons used for
selecting the NI samples (illustrated in Figure 1a,c with blue borders) contain some other
cover types, only the areas displayed as clearly bright in the pseudo-color images were
used for the selection of the NI samples. The green and red dots indicate the locations for
selecting the training and testing samples, respectively. These locations were chosen since
each of them belongs to a large homogeneous area. Ice-free, open water and bergy water
are labeled as water. Bergy water and open water both represent areas where the sea ice
concentration is less than 10%. For this data set, the ice in bergy water was mostly glacier
ice. Ten thousand training samples were selected from the 1 March image for each class.
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(a) Locations of the 1 and 2 March images. (b) Sea ice chart on 1 March.

(c) Location of the 4 January image. (d) Sea ice chart on 4 January.

Figure 1. (a) The 1 and 2 March RCM images laid over sea ice charts. Light green represents ice, light
blue represents water and pink represents land. The yellow star represents the location with sea-state
information. The 1 March image was used for selecting training samples, and the first testing set
samples of NI and water. The 2 March imagewasis used for selecting the first testing set samples
of OI/FYI. Green dots indicate the locations for selecting the training samples. Red dots indicate
the locations for choosing the testing samples. (b) Regional sea ice chart in the Eastern Arctic for
the week of 1 March 2021. Red rectangles indicate the coverages of the 1 and 2 March RCM images.
(c) The 4 January RCM image laid over a sea ice chart (color codes are same as those in (a)). The stars
are the locations with sea-state information near the testing samples. The 4 January image was used
for selecting the second testing set samples. Red dots also indicate the locations where the testing
samples were collected. (d) Regional sea ice chart in the Eastern Arctic for the week of 4 January 2021.
The red rectangle illustrates the coverage of the 4 January RCM image.

In this study, two testing sets were adopted. For the first testing set, ten-thousand
OI/FYI samples were obtained from the 2 March image, whereas ten-thousand NI and
ten-thousand water testing samples were obtained from the 1 March image and 10 km
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away from the training samples, since the 2 March one rarely contained these two types.
The region for selecting new-ice testing samples is highlighted with a blue border (see
Figure 1a). The first testing set was from 1 March and 2 March, and both days shared the
same sea ice chart. Little variation in sea ice condition was expected between these two
days since the time difference was only one day. To further evaluate the generalization
ability of the two classifiers through testing samples from different times and locations,
the samples for the second testing set were only selected from the 4 January image and far
away from the training samples in the 1 March image. For the second testing set, the OI/FYI
and water testing samples were selected from the south portion of the 4 January image
and more than 100 km away from the corresponding training samples. The NI samples
of the second testing set were from the polygon outlined with a blue line in Figure 1c.
Although some other regions in the 4 January image also contained NI, the highlighted
area in Figure 1c was the farthest (more than 172 km) from the training samples. Because
the NI samples of the training set only came from one polygon of the sea ice chart and the
NI samples of the training set were different from that of the testing set in terms of both
time and location, it could have been difficult for the classifiers to distinguish NI from other
cover types. From another perspective, the NI classification results can also be utilized to
compare the two models’ generalization ability.

The confusion matrix, kappa coefficient and overall accuracy were used to evaluate
the classification performance based on those testing samples. Then, the total sea ice
concentration statistics and the distribution percentages of different sea ice types in different
areas were calculated and compared with the egg codes from the digital sea ice charts. The
total concentration and distribution percentage can be determined by dividing the number
of pixels of the corresponding ice type by the total number of pixels excluding land in a
region. If an area contains land, the land is labeled via a land mask image. These land pixels
are not involved in further analysis, including concentration and distribution calculations.

4. Methodology
4.1. Preprocessing

SAR data need to be preprocessed to enhance the data quality and meet different
application requirements, for example, mitigating the noise from reflection and geometric
distortion caused by terrain changes. Figure 2 displays the preprocessing steps for dual-
polarized RCM images. The Sentinel Application Platform (SNAP) [46], developed by
the European Space Agency (ESA), contains various free open source toolboxes for earth
observation missions. In this paper, SNAP was employed to implement most preprocessing
steps except destriping.

Figure 2. RCM preprocessing steps.

First, calibration was accomplished by converting two digital channels (HH, HV) of
the RCM data into the backscattering coefficient σ0 in decibels, which indicates the target
backscatter properties, according to [47]:

σ0 =
D2 + B

A
(1)

σ0(dB) = 10 log10(σ
0) (2)

where B is the offset and A is the range dependent gain value that can be found in the RCM
metadata file, D is the digital value for each pixel from the RCM tiff file.

For speckle filtering, the improved Lee sigma filter with a square window size of 7 by
7 was adopted [48]. This filter was modified from the Lee sigma filter by reducing the bias
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caused by asymmetric Rayleigh distribution, unfiltered black pixels and the smearing of
strong targets [48]. In this study, a window with a side length of 7 was selected because it
can achieve effective speckle filtering while maintaining more texture information [48].

Thermal noise is an additive background energy, and it varies along both the range
and azimuth axes and is exhibited as alternating extraordinarily bright or dark stripes
in SAR images [49]. In addition to conventional SAR preprocessing steps, destriping is
implemented as an extra step between speckle filtering and geocoding since thermal noise
can significantly affect pixel-based sea ice classification. Note that the thermal noise in the
HV channel is more evident than the HH channel in a linear polarized SAR image. Thus,
destriping is only applied to the RCM HV channel here. Destriping is applied to each pixel
of the RCM HV channel through subtracting an intensity offset and then dividing by a gain
factor [50]. Figure 3a,b illustrate the images before and after applying destriping. As can
be seen, the stripes of the HV channel are partially successfully removed after destriping.
As shown in Figure 3c, ten-thousand samples for each class are used for training in this
example. The blue pixels in the large green region are thermal noise and they are classified
as water if destriping is not applied, but are classified correctly in Figure 3d.
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Figure 3. Destriping examples. Image acquired on 2 March 2021.

Geocoding is implemented via range doppler terrain correction, which uses available
orbit state vector information, the radar timing annotations, the slant-to-ground range
conversion parameters in the metadata file with the reference Digital Elevation Model
(DEM) data to derive the precise geolocation information [51]. The most commonly used
DEM is SRTM, which only provides high-precision elevation data below 60 ◦N. The study
area is over 60 ◦N, so Copernicus DEM GLO-30 was selected for geocoding because it
provides global elevation data with a 30 m resolution. To realize automatic labeling as
described in the last section, Lambert Conformal Conic 2SP was used for map projection, of
which the projection parameters are consistent with the digital sea ice chart. Finally, land
regions were masked out according to the DEM in order to avoid false labeling.
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The σ0 value changes with the incidence angle for ice type, season, and radar fre-
quency [23,52,53]. Most papers that consider incidence angle variability employ universal
linear correction, which is based on an empirical linear relationship between mean sea ice
backscattering and incidence angle value. Such a correction usually requires the sea ice
type information to be known in advance. However, the ice types were known not for all
the pixels in the preprocessing step. Thus, the incidence angle variability was ignored in
this study.

4.2. Normalizer-Free ResNet
4.2.1. Normalizer-Free ResNet Architecture

The NFNets were realized based on the SE-ResNeXt-D model with Gaussian error
linear unit (GELU) activations here, and its structure is displayed in Figure 4. GELU
activation layers were omitted between convolutional layers. The model starts with a
stem, a set of plain convolutional layers without skip connections before the residual
blocks. The stem comprises a 3 × 3 stride 2 convolution with 16 channels, two 3 × 3 stride 1
convolutions with 32 and 64 channels and a 3 × 3 stride 2 convolution with 128 channels.
After the stem, the numbers of blocks for four “residual” stages are 1, 2, 6 and 3, respectively.
In order to train deep ResNets without normalization, NFNet uses two scalers (α and β,
see Figure 5) to suppress the scale of the activations. The residual stages begin with a
transition block, followed by standard non-transition blocks. The difference between
transition and non-transition blocks is that transition blocks downsample with a 2 × 2
average pooling layer on the skip path and change the output channel count via a 1 × 1
shortcut convolutional layer. After these residual blocks, a 1 × 1 expansion convolutional
layer is applied to double the channel count; then, global average pooling is adopted.
The final layer is a fully connected classifier layer. The original fully connected layer
outputs a 1000-way class vector. In our study, we replace the final layer with a layer that
outputs a three-way class vector to match the sea ice types. At last, the fully connected layer
outputs are softmaxed in order to obtain normalized class probabilities. All convolutions
employ scaled weight standardization, whereas the squeeze-and-excitation layers and fully
connected layers do not adopt it. The configuration of each layer is specified in Table 3.

Table 3. The configuration of the NFNet-F0 layers.

Stage NFNet-F0 Number of Blocks

Stem

conv, 3 × 3, 16
conv, 3 × 3, 32
conv, 3 × 3, 64

conv, 3 × 3, 128

×1

Residual Blocks 1

conv, 1 × 1, 128
conv, 3 × 3, 128
conv, 3 × 3, 128
conv, 1 × 1, 256

SE

×1

Residual Blocks 2

conv, 1 × 1, 256
conv, 3 × 3, 256
conv, 3 × 3, 256
conv, 1 × 1, 512

SE

×2

Residual Blocks 3

conv, 1 × 1, 768
conv, 3 × 3, 768
conv, 3 × 3, 768
conv, 1 × 1, 1536

SE

×6
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Table 3. Cont.

Stage NFNet-F0 Number of Blocks

Residual Blocks 4

conv, 1 × 1, 768
conv, 3 × 3, 768
conv, 3 × 3, 768
conv, 1 × 1, 1536

SE

×3

Fully Connected Average pool, fully connected, softmax

Figure 4. Schematic diagram of the NFNet-F0 model (compressed view).

Figure 5. NFNet residual blocks (transition and non-transition).

4.2.2. Adaptive Gradient Clipping

Batch normalization (BN) is widely used in deep learning to rearrange the data
distribution, making the activation function more sensitive to training data. However, BN
also has some disadvantages. First, it is an expensive computational operation, which incurs
memory overhead and increases the time of gradient evaluation [31]. Second, it introduces
inconsistencies between the behaviors of the model during training and at inference time
due to the change in the data distribution, resulting in additional hidden hyper-parameters
that have to be tuned [31]. Third, it is difficult to replicate batch-normalized networks
precisely on different hardware. Different hardware may be used to train different batches
of data at the same stage since some GPUs with low RAM cannot be used to train a model
with a very high batch size [31].

Adaptive gradient clipping (AGC) is applied in the Normalizer-Free ResNet (NFNet)
to train ResNets without batch normalization. In the AGC algorithm, the ith row of the
gradient of the l-th layer Gl

i is clipped as [31]:
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Gl
i =

λ
||W l

i ||
∗
F

||Gl
i ||F

Gl
i i f

||Gl
i ||F

||W l
i ||
∗
F
> λ,

Gl
i otherwise.

(3)

where λ is the clipping threshold, and ||W l
i ||
∗
F = max(||W l

i ||F, ε), with default ε = 10−3;
|| · ||F denotes the Frobenius norm.

4.2.3. Preprocessing of the Inputs

HH, HV and the cross-polarization ratio were extracted from the RCM images as
inputs. In this study, the cross-polarization ratio was defined as σ0

HV/σ0
HH and was used

as an input channel for the NFNet classification, since it was found to be able to improve
the discrimination between open water and ice types [2]. The patch size was set to 7 × 7 to
compare with the RF method (the window size of GLCM features for RF is 7 × 7). Since the
inputs fed into the NFNet are supposed to be fixed in size, all the sampled sub-regions were
first resized using bilinear interpolation. In this study, NFNet-F0 was adopted here and its
input size for training was 192 × 192 × 3, and 256 × 256 × 3 for testing. Then, the resized
inputs were normalized using mean = [0.485, 0.456, 0.406], and std = [0.229, 0.224, 0.225]
for three input channels, respectively [31].

4.2.4. Training Strategy

The training strategy of the NFNet-F0 was basically the same as that in [31]. Softmax
cross-entropy loss was used with label smoothing of 0.1. Stochastic gradient descent was
applied with Nesterov’s momentum coefficient of 0.9 and a weight decay coefficient of
0.00002. The learning rate warmed up from 0 to its maximal value of 0.05 over the first
five epochs (iterations). After the warmup, the learning rate was cosine-annealed to zero.
AGC was set with λ = 0.01 for every parameter except the fully connected layer. An
exponential moving average was implemented with a decay rate of 0.99999 and followed a
warmup schedule where the decay was equal to min(0.99999, 1 + t/10 + t), where t was
the number of iterations. The batch size was set as 128. For the training process, 70%
of samples were used to train the model, and 30% of samples were used to evaluate the
model’s generalization ability. Three hundred and sixty epochs were executed to train the
model. Figure 6 shows the validation accuracy changes with epochs during the training
process. After about 130 epochs, the validation accuracy of the model tended to be stable.
The model with the best validation accuracy was obtained for subsequent classifications.
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Figure 6. Epochs versus validation accuracy.
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4.3. Random Forest

Various machine learning algorithms have been applied for sea ice sensing in the past
decade, such as the support vector machine (SVM) [54], convolutional neural network
(CNN) [55], and long short-term memory (LSTM) [56] methods. In this study, random
forest (RF) was adopted as the basic classifier to compare with NFNet. The RF method
was the same as that of our previous work on sea ice detection using RCM dual-polarized
data [57]. RF is an ensemble machine-learning technique that creates a group of decision
trees (DTs) as weak learners [58]. The majority of votes decide the classification result from
these decision trees. DTs are trained by means of a bagging strategy that generates multiple
bootstrapped data sets from the original training data. Because of the use of bagging and
ensemble strategies, the RF classifier is characterized by low variance and low bias, which
means it is robust and less sensitive to the quality of the training data [58]. Two levels of
RF classification were applied in this study. Ice and water were classified for the 1st level,
then the identified ice pixels were classified as NI or OI/FYI at the 2nd level.

HH, HV, the cross-polarization ratio and the gray-level co-occurrence matrix (GLCM)
features of the RCM dual-polarized GRD images were used for sea ice detection and
classification. GLCM represents the frequency that a pixel pair in a specific direction
appears in a grayscale image. First, the grayscale image was normalized to n levels. Then,
the number of times every possible pair (for example, 0,1) appeared in a particular direction
was counted and filled into the corresponding matrix for this direction. For example, mij
in a horizontal GLCM indicates that the pair (i, j) in the horizontal direction appears m
times, and m is located at the ith row and jth column in the matrix. After that, the mean,
variance, correlation, homogeneity, contrast, dissimilarity, entropy, angular second moment
and maximum probability can be calculated according to the GLCM matrix. These features
can be used as texture features for further analysis. According to [59], 64 levels and 4 (0◦,
45◦, 90◦, 135◦) orientations were the recommended GLCM parameters for sea ice detection
in SAR images. For this study, a displacement of 1 and window of size 7× 7 were selected.
Such a window size was selected in order to be consistent with the speckle-filtering window.
The authors of [60] investigated the nine GLCM features and found that mean and variance
were effective for both HH and HV channels. In this study, a mean displacement and mean
orientation (MDMO) strategy for GLCM was applied. In other words, the average values of
the GLCM mean and variance in four orientations of one channel were extracted separately.
Finally, four features (the GLCM mean of HH, GLCM variance of HH, GLCM mean of HV
and GLCM variance of HV) were obtained.

Ten-thousand samples from 1 March were labeled for each class. The number of trees,
maximum tree depth, maximum features, minimum samples-split and minimum samples-
leaf were tuned based on five-fold cross-validation. After cross-validation, the parameters
for the two-level RF model were set as shown in Table 4.

Table 4. Two-level RF classification parameters.

Parameters 1st-Level RF 2nd-Level RF

Number of trees 500 500

Maximum tree depth 15 8

Maximum features 6 5

Minimum samples-split 50 50

Minimum samples-leaf 10 10

5. Experiment Result

Figures 7–9 illustrate the analysis results for 1 March, March 2 and 4 January, respec-
tively. The green rectangles in Figure 7a were used for selecting the training samples for
OI/FYI. The red and white rectangles indicate the areas used for selecting the training
and testing samples of NI and water, respectively, and their testing samples were located
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far away from corresponding training samples, as mentioned in Section 3.4. The green
rectangles presented in Figure 8a were used for extracting the OI/FYI samples for the first
testing set. Ten-thousand samples for each class of the second testing set were obtained
from the rectangles displayed in Figure 9a. Compared to the training samples, the corre-
sponding second testing samples were taken from a different time (4 January) and different
regions. All the testing samples for the two techniques were the same. The RF method’s
overall accuracy and the kappa coefficient of the first testing set were 87.42% and 0.8113,
respectively. For the NFNet classification, the first testing set’s overall accuracy was 99.78%,
and the corresponding kappa coefficient was 0.9967. As for the second testing set, the RF’s
overall accuracy and kappa coefficient were 78.73% and 0.6895, whereas NFNet’s overall
accuracy and kappa coefficient were 98.18% and 0.9727. Although different data sets and
cover types were used, the overall accuracies of RF (87.42% and 78.73%) and NFNet (99.78%
and 98.18%) in this study were close to that of RF (87%) in [23] and VGG-16 (99.89%) in [28].
The corresponding confusion matrices are displayed in Figure 10. For the first testing set
(see Figure 10a,b), no ice samples were misclassified by the NFNet as water. For the RF
model, the classification accuracy for water was only 87.96%, which means that more ice
samples were misclassified as water. Moreover, the recall of OI/FYI was 73.09%. For the
two-level RF model, OI/FYI was classified at the second level, distinguishing OI/FYI and
NI from ice samples. The poor recall for OI/FYI indicates that many OI/FYI samples were
misclassified as NI. Figure 10c,d illustrate the confusion matrices of the two models for
the second testing set. It can be seen that the accuracy of the NFNet for NI only dropped
slightly. The 100% accuracy for water displayed by the NFNet may be because these water
samples were very far from the main ice area. Only 41.35% of the NI samples from the
second testing were correctly classified for the RF method, and more than half of the NI
samples were misclassified as OI/FYI.
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(d) NFNet classification result.

Figure 7. (a) Image acquired on 1 March 2021. The green rectangles display the locations of the
training samples for OI/FYI. The red and white rectangles indicate the areas of the training and
testing samples for NI and water, respectively. (b) Sea ice chart. (c) RF classification result. (d) NFNet
classification result.
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Figure 8. (a) Image acquired on 2 March 2021. The green rectangles display the locations of the testing
samples for OI/FYI. (b) Sea ice chart. (c) RF classification result. (d) NFNet classification result.
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(c) RF classification result.
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Figure 9. (a) Image acquired on 4 January 2021. The green, red and white rectangles indicate the
areas of the testing samples of OI/FYI, NI and water, respectively. The testing samples were at least
100 kilometers away from the 1 March training samples. (b) Sea ice chart. The area without sea ice
chart data is indicated in gray. (c) RF classification result. (d) NFNet classification result.
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Figure 10. Confusion matrices of the RF and NFNet models.

Figure 11 illustrates the t-SNE images of the second last layer of the NFNet, which
illustrates the ability of the model to distinguish between sea ice and water. Thirty-thousand
testing samples were applied as inputs to display each t-SNE diagram. The features from
the NFNet were perfectly clustered. However, the feature clusters of OI/FYI and NI showed
some degree of confusion.

OI/FYI
NI
Water

(a)

OI/FYI
NI
Water

(b)

Figure 11. 2-D feature visualizations of the sea ice classes from the two testing sets, using the t-SNE
algorithm for the second last layer of the NFNet. (a) The t-SNE diagram of the first testing set. (b) The
t-SNE diagram of the second testing set.

Tables 5–7 show comparisons of the sea ice chart data, the RF and NFNet results.
In these tables, the “area ratio” represents the ratio of the area of a polygon (which may be
incomplete) in an RCM image to that of the corresponding complete polygon in the sea ice
chart. A higher area ratio for a polygon means that the data for this area shown in the RCM
image are more representative than those of the complete polygon.
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Table 5. Comparison of the estimated concentration for 1 March.

OI/FYI NI
Region Area Ratio Results

OI MFYI TFYI GWI GI
Total Concentration

Chart 0 0 60% 30% 10% 90%+

RF 67.2% 16% 83.2%A1 90.2%
NFNet 77.2% 15.5% 92.7%

Chart 0 90% 0 0 0 90%+

RF 69.9% 9.7% 79.6%B1 50.2%
NFNet 88.7% 6.1% 94.8%

Chart 20% 80% 0 0 0 90%+

RF 63.2% 9.8% 73%C1 25.1%
NFNet 86.5% 4% 90.5%

Chart 0 90%+ 0 0 0 90%+

RF 54.1% 6.9% 61%D1 26.4%
NFNet 81.7% 3.6% 85.3%

Chart 0 60% 40% 0 0 90%+

RF 60.4% 26.8% 87.2%E1 41%
NFNet 72.6% 25.2% 97.8%

Chart 0 0 20% 30% 30% 90%

RF 38.1% 32.2% 70.3%F1 49%
NFNet 51.8% 33.7% 85.5%

Chart 0 0 0 0 0 <10%

RF 29% 7.3% 36.3%G1 0.1%
NFNet 33.6% 6.8% 40.4%

Chart 0 100% 0 0 0 100%

RF 47.3% 6.2% 53.5%H1 35.3%
NFNet 52.4% 3.3% 55.7%

Chart 0 30% 70% 0 0 90%+

RF 54.1% 5.1% 59.2%I1 10%
NFNet 79.1% 1.8% 80.9%

Figure 7 demonstrates the classification results of the full image from 1 March. As men-
tioned earlier, the training samples for the two-level RF classification model and the NFNet
model were selected from this image. Figure 7d,e depict the RF and NFNet classification
results. Although only samples from region G1 were labeled as water, both classification
results show that all the dark blue regions in the pseudo-color images were identified as
water. In general, more regions were classified as water by RF than NFNet. Both classifiers
detected NI at approximately the same locations. Although more pixels were classified
as NI by the RF model, except in region F1, for which the NI concentrations estimated
using the two models were very close, with a difference of only 0.5% (see Table 5). In the
digital sea ice chart, no NI was reported in regions B1, C1, D1, G1, H1 or I1. However, both
methods detected less than 10% NI in these regions. According to the notation principles
of sea ice chart [42], any ice type with a concentration less than 10% would not be reported;
therefore, the NI estimation results of these regions are reasonable. Meanwhile, the NI
concentrations of regions A1, E1 and F1 derived using the two models were higher than
10%, but the sea ice chart reports very high NI concentrations in regions A1 (40%) and
F1 (60%) and no NI in region E1. Because the training samples of NI were only selected
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from the subarea with a uniform ice distribution in region F1, but NI includes many types
(rind, nilas, gray ice, gray-white ice, etc.) and forms (pancake, ice cake, ice floe, etc.) that
may show different scattering characteristics [42], the training data may not represent
all the types of NI in the regions, which leads to the estimation difference in these areas.
Although the sea ice chart reports no NI in E1, both RF and NFNet detected NI at similar
locations, and their concentration values were also very close. The area ratio of E1 was
only 41%, indicated that perhaps there was very little NI in the portion that belonged to the
same polygon E1 but was not covered by the RCM image. Moreover, considering that E1 is
adjacent to F1, it is reasonable that NI exists in E1. Thus, the results of NFNet and RF may
be more reliable than the weekly sea ice chart for region E1. As for the total concentration,
the results of RF and NFNet were in agreement with the sea ice chart data for most of
the regions, with the former showing a better agreement. In particular, the RF-estimated
total ice concentrations of D1 and I1 were 61% and 59.2%, respectively, which were not
consistent with the sea ice chart (90%+ for both regions, see Table 5. On the contrary,
NFNet’s results were 85.3% and 80.9% for these two regions. Considering that no training
data came from D1 and I1, this difference proves that the generalization ability of NFNet
was better than that of RF. In addition, the sea ice concentrations of G1 estimated by both
classifiers were higher than 10%, although the sea ice chart displays a concentration less
than 10%. However, the area ratio of G1 was only 0.1%, which means that only the edge
of the polygon G1 was covered by the RCM image from 1 March and the value is very
unrepresentative. Therefore, the deviation of the two classifiers in G1 is understandable. It
can also be observed that the classification results for the regions near the coast are similar
for both classifiers. Based on the above analysis, it can be inferred that the NFNet method
can produce more reasonable sea ice estimation results than the RF method.

The classification results from the image acquired on March 2 are displayed in
Figures 8d,e. It should be highlighted that no samples from the March 2 image were used
for training the classification models. Similarly to the 1 March image results, both models
provided good classification results in general, and more water regions were identified
by the RF model than the NFNet. The NI percentages in both results were also very low,
which was in agreement with the digital sea ice chart. The total sea ice concentration
estimation results of the NFNet obtained from A2, B2, C2, D2, E2 and G2 were consistent
with that of the sea ice chart, except for F2 (see Table 6). Considering that F2 had the
lowest area ratio (4.4%) in the March 2 image, only part of this polygon was analyzed
and the results may not represent the sea ice condition of the majority of the polygon, so
this deviation is reasonable. It can be seen in Figures 7 and 8 that H1, I2, J2 and K2 are
next to the coast. The sea ice chart reported that those regions were occupied by fast ice,
which was “fastened” to the coastline and can extend from a few meters or several hundred
kilometers from the coast [42]. For fast ice regions, there were some gaps between the
estimation results and the sea ice chart data. Although J2’s area ratio was close to 100% and
the corresponding sea ice chart data indicated that this area was covered by consolidated
ice (100% concentration), the pseudo-color image Figure 8a exhibits many dark blue strips
(i.e., water) in this area. Therefore, at least on March 2, the sea ice concentration in J2 should
not be 100%. Furthermore, the time resolution of the sea ice chart adopted here was one
week; therefore, the estimations of NFNet and RF are more reasonable. The difference
between manually drawn ice charts and automatic ice charts is discussed in [61]. Manually
drawn ice charts are affected by the education and experience of the ice analysts. Even
using the same data source, different ice experts may produce different sea ice charts.
Moreover, manually drawn ice charts show rough boundaries and relatively poor detail,
whereas automatic ice charts can help to interpret image information more rigorously and
distinguish more segments [61]. In the traditional manual production of weekly regional
ice charts, their main data sources are satellite images, as well as corresponding daily
ice analysis charts [42]. The ice charts are manually drawn directly by ice experts using
geographic information systems (GIS) software [42]. However, it is time-consuming for ice
experts to analyze many satellite images, and pixel-level classification is impossible [61].
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In contrast, once the machine-learning-based classifiers are trained properly using a data
set with a sufficient amount and diversity, near real-time classified results can be generated,
and pixel-level classification can be achieved. In this study, the classified results can also
be used to estimate the concentration in a region with a specific value rather than a rough
concentration code.

Table 6. Comparison of the estimated concentration for March 2.

Region Area Ratio Results
OI/FYI

NI Total Concentration
OI TKFYI MFYI TFYI

A2 79%

Chart 0 0 30% 70% 0 90%+

RF 83.1% 3.1% 86.2%

NFNet 87.3% 0.3% 87.6%

B2 19.3%

Chart 0 0 90%+ 0 0 90%+

RF 72.9% 4.8% 77.7%

NFNet 90.5% 0.2% 90.7%

C2 77.2%

Chart 20% 40% 40% 0 0 90%+

RF 84.8% 2.2% 87%

NFNet 94.7% 1.5% 96.2%

D2 29%

Chart 0 0 90%+ 0 0 90%+

RF 81.1% 0.6% 81.7%

NFNet 89.2% 0.2% 89.4%

E2 46.6%

Chart 0 50% 50% 0 0 90%+

RF 77.1% 0.4% 77.5%

NFNet 87.2% 0.3% 87.5%

F2 4.4%

Chart 0 30% 70% 0 0 90%+

RF 52.3% 0.2% 52.5%

NFNet 46% 0.5% 46.5%

G2 88.6%

Chart 0 50% 50% 0 0 90%+

RF 75.8% 2.4% 78.2%

NFNet 87.2% 0.4% 87.6%

H2 7.1%

Chart 20% 0 80% 0 0 90%+

RF 74.5% 6.3% 80.8%

NFNet 95% 1.2% 96.2%

I2 42.9%

Chart 0 0 100% 0 0 100%

RF 30.5% 2.1% 32.6%

NFNet 40.4% 3.2% 43.6%

J2 99.6%

Chart 0 100% 0 0 0 100%

RF 70.9% 0.9% 71.8%

NFNet 74.8% <0.1% 74.8%

K2 11.7%

Chart 0 100% 0% 0 0 100%

RF 26.5% 0.7% 27.2%

NFNet 36.9% 2.3% 39.2%
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Table 7. Comparison of the estimated concentration for 4 January.

OI/FYI NI
Region Area Ratio Results TFYI GWI GI NI

Total Concentration

Chart 0 0 0 0 <10%

RF 21.6% 1.7% 23.3%A3 30.8%
NFNet 16% 2.6% 18.6%

Chart 0 30% 30% 20% 80%

RF 68.3% 19.2% 87.5%B3 86.5%
NFNet 50.8% 46.2% 97%

Chart 70% 30% 0 0 90%+

RF 69.5% 24% 93.5%C3 66.2%
NFNet 33% 63.6% 96.6%

Chart 0 50% 20% 20% 90%

RF 69.3% 24.6% 93.9%D3 100%
NFNet 27.5% 66.9% 94.4%

Chart 20% 70% 10% 0 90%+

RF 87.4% 9.2% 96.6%E3 87.8%
NFNet 45.8% 53.5% 99.3%

Chart 0 30% 10% 10% 50%

RF 82.3% 8.3% 90.6%F3 67.5%
NFNet 69.5% 15.3% 84.8%

Chart 70% 30% 0 0 90%+

RF 89% 3% 92%G3 92.3%
NFNet 78.6% 17.5% 96.1%

Chart 90%+ 0 0 0 90%+

RF 93% 0.9% 93.9%H3 27%
NFNet 93.8% 5.2% 99%

Chart 90%+ 0 0 0 90%+

RF 93.9% 0.6% 94.5%I3 66.2%
NFNet 97.9% 1% 98.9%

Chart 80% 20% 0 0 90%+

RF 66.2% 31.4% 97.6%J3 22.4%
NFNet 30.3% 69.5% 99.8%

Chart 100% 0 0 0 100%

RF 75.9% 6.1% 82%K3 40.1%
NFNet 65.4% 7.3% 72.7%

In order to demonstrate the robustness of the method in terms of location and time,
another image (see Figure 9a) that was collected from different areas and times (4 January)
was used. The classification results from this image are displayed in Figure 9d,e. Both
models provided good classification results for OI/FYI and water. However, the RF model
identified fewer NI regions than the NFNet. The NI percentages in both results were lower
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than those of the sea ice chart (see results of B3, D3, E3, F3 and G3, which are highlighted
in bold in Table 7), but the NI concentrations estimated by NFNet were closer to those
of the sea ice chart. In other words, NFNet provides better generalization ability for NI
than the RF method. For C3 and J3, the NI concentration obtained by RF was close to the
corresponding reports of the sea ice chart, whereas the NI concentration determined by
RF was much higher. Considering the relatively poor performance of the RF classifier for
these regions and the fact that the pseudo-color image (Figure 9a) also shows that C3 and
J3 regions are uniformly bright white (i.e., covered by new ice), the NI classification by
NFNet should be more reliable. The total concentration differences of A3 and K3 are also
due to the presence of landfast ice and glacier ice, as discussed above. For F3, the total
concentrations estimated by the two classifiers were both significantly higher than the sea
ice chart results. The pseudo-color image (Figure 9a) shows that only a tiny proportion of
F3 is blue (i.e., covered by water), so the total concentration of F3 should be higher than
50%, at least for 4 January.

6. Discussion

According to the experimental results, the high accuracy and kappa coefficient show
the superior capacity of the NFNet model over the RF model. Confusion matrices indicate
that the RF model underestimated the total concentration and significantly underestimated
the NI concentration due to the time difference. The challenge of classifying the new
ice types is also demonstrated in previous works [17,19,23]. However, the NFNet model
showed more generalization ability for classifying NI than the RF model. Although our
training dataset was unbalanced and limited, considering the classification performance of
the deep CNN after obtaining enough diverse data, the NFNet also shows the potential
to classify NI more accurately than conventional machine learning techniques. The t-SNE
diagram generated using the second testing set shows that more samples of NI were
interlaced with the OI/FYI samples, which means that the NI classification accuracy of the
NFNet may differ slightly due to the difference in the time and location of the samples.
For the classification results of the whole images, both models showed an appropriate
ability to distinguish between water and ice. By comparing the sea ice concentrations
calculated based on the classification results with the concentrations obtained from sea ice
charts, the NFNet results were not only better than those of RF but were also more accurate
than the sea ice charts.

7. Conclusions

This paper presents the first case study of a sea ice classification application using
actual RCM dual-polarized data with a state-of-the-art technique (NFNet). Destriping was
considered to mitigate the thermal noise in the HV channel in addition to conventional SAR
preprocessing steps. HH, HV and the cross polarization ratio were extracted from three
RCM images, collected from the Eastern Arctic for the NFNet sea ice classifier. The classi-
fication results were validated using digital sea ice charts and testing samples that were
different from the training samples in both space and time. A two-level RF classifier was
applied as a conventional machine learning method in comparison with the NFNet method.
The experimental results showed that a high accuracy of sea ice classification was achieved
using dual-polarized RCM data. Good classification results proved the superiority of
NFNet-based sea ice classification over the conventional RF technique. Due to the learning
algorithm difference between NFNet and RF, the former achieved higher overall sea ice
classification accuracies (99.78% and 98.18% for two testing sets) compared to RF (87.42%
and 78.73%), indicating the superiority of NFNet over the conventional RF technique based
on the RCM data used here. Whether or not the same conclusion can be drawn from other
SAR data requires further testing. In this paper, the ERA5 sea-state information showed that
the training set and the testing set were collected under similar sea-state conditions, so the
effect of sea state was not comprehensively analyzed due to limited data, but this remains
as a future task. It should be noted that other factors that affect the classification quality,
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such as wind speed, season, incident angle and patch size for the NFNet model, were not
considered. In the future, the internal and external factors affecting sea ice classifications
will be investigated. Moreover, actual HCP data will be used for sea ice classifications and
compared with the performance of RCM dual-polarization mode.
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