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Abstract: Object detection in remote-sensing images (RSIs) is always a vibrant research topic in the
remote-sensing community. Recently, deep-convolutional-neural-network (CNN)-based methods,
including region-CNN-based and You-Only-Look-Once-based methods, have become the de-facto
standard for RSI object detection. CNNs are good at local feature extraction but they have limitations
in capturing global features. However, the attention-based transformer can obtain the relationships
of RSI at a long distance. Therefore, the Transformer for Remote-Sensing Object detection (TRD)
is investigated in this study. Specifically, the proposed TRD is a combination of a CNN and a
multiple-layer Transformer with encoders and decoders. To detect objects from RSIs, a modified
Transformer is designed to aggregate features of global spatial positions on multiple scales and
model the interactions between pairwise instances. Then, due to the fact that the source data set
(e.g., ImageNet) and the target data set (i.e., RSI data set) are quite different, to reduce the difference
between the data sets, the TRD with the transferring CNN (T-TRD) based on the attention mechanism
is proposed to adjust the pre-trained model for better RSI object detection. Because the training of the
Transformer always needs abundant, well-annotated training samples, and the number of training
samples for RSI object detection is usually limited, in order to avoid overfitting, data augmentation is
combined with a Transformer to improve the detection performance of RSI. The proposed T-TRD with
data augmentation (T-TRD-DA) is tested on the two widely-used data sets (i.e., NWPU VHR-10 and
DIOR) and the experimental results reveal that the proposed models provide competitive results (i.e.,
centuple mean average precision of 87.9 and 66.8 with at most 5.9 and 2.4 higher than the comparison
methods on the NWPU VHR-10 and the DIOR data sets, respectively) compared to the competitive
benchmark methods, which shows that the Transformer-based method opens a new window for RSI
object detection.

Keywords: convolutional neural network (CNN); object detection; remote-sensing images; transfer
learning; Transformer

1. Introduction

Object detection in remote-sensing images (RSIs) is used to answer one of the most
basic questions in the remote-sensing (RS) community: What and where are the objects
(such as a ship, vehicle, or aircraft) in the RSIs? In general, the objective of object detection
is to build models to localize and recognize different ground objects of interest in high-
resolution RSIs [1]. Due to the fact that object detection is a fundamental task for the
interpretation of high-resolution RSIs, a great number of methods have been proposed to
handle the issue of RSI object detection in the last decade [2].

The traditional RSI object-detection methods focus on constructing effective features
for objects of interest and training a classifier from a set of annotated RSIs. They usually
acquire object regions with sliding windows and then try to recognize each region. The
varieties of feature-extracting methods, e.g., bag-of-words (BOW) [3], scale-invariant feature
transform [4], and their extensions, have been explored for representing objects. Then, the
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feature fusion and dimension processing were conducted in order to further improve the
representation capability of multiple features. At last, efficient and well-designed classifiers
were trained to recognize objects. For example, Sun et al. [5] proposed an RSI detection
framework based on spatial sparse coding bag-of-words (SSCBOW), which adopted a
rotation-invariant spatial-mapping strategy and sparse coding to decrease reconstruction
error. Cheng et al. [6] explored a partially model-based RSI object-detection method based
on the collection of part detectors (COPD), which used linear support-vector machines
(SVMs) as partial models for detecting objects or recurring patterns. These methods could
be adapted to more complicated tasks, but the hand-crafted feature-extracting approaches
significantly restricted the detection performance.

As the detection performance of methods based on hand-crafted features and ineffi-
cient region-proposal strategies became saturated, it was hard to make substantial progress
on object-detection until the emergence of deep convolutional neural networks (CNNs) [7].
Relying on the ability of CNNs to extract high-level and robust features, Girshick et al. [8,9]
proposed region-CNN (R-CNN) and Fast R-CNN, which achieved an attractive detection
performance. These methods used CNN to classify and locate objects from a specified
amount of generated region proposals (bounding-box candidates). Subsequently, numer-
ous researchers explored RSI object-detection methods based on the R-CNN framework.
Cheng et al. [10] inserted a fully connected layer into the tail of the backbone network of
the R-CNN framework and restrained the inserted layer with a regularization constraint
to minimize the rotation variation. Thus, a rotation-invariant CNN (RICNN) was con-
structed. Afterward, a fisher discrimination regularized layer was appended to construct
an enhanced RICNN, i.e., the RIFD-CNN [11]. Inspired by the idea of the region-proposal
network (RPN) in the Faster R-CNN [12], Li et al. [13] presented multi-angle anchors for
establishing a rotation-insensitive RPN, and a double-channel network was used for con-
textual feature fusion. The utilization of the RPN enormously reduced the time for region
proposal and achieved a near-real-time speed. Additionally, to enhance the detection per-
formance for small objects in RSIs, some researchers began to develop RSI object-detection
methods based on multi-scale feature operations. Inspired by the feature-pyramid network
(FPN) [14], Zhang et al. [15] presented a double multi-scale FPN framework and studied
several multi-scale training and inference strategies. Deng et al. [16] and Guo et al. [17]
focused on multi-scale object-proposal networks that generated candidate regions with
features of different intermediary layers, and the multi-scale object-detection networks
made predictions on the obtained regions. The R-CNN-based RSI object-detection methods
made great progress on detection performance, but they still suffered from insufficient
inference speeds caused by redundant computations.

Methods based on the framework of the R-CNN always obtained region proposals
first and then predicted categories and refined their coordinates; therefore, they were
called two-stage RSI object-detection algorithms. In contrast, many researchers focused
on exploring methods that complete the whole detection in only one step, which were
called one-stage RSI object-detection algorithms [2]. Plenty of these methods were based
on one of the most representative studies in the field of object detection, the You Only
Look Once (YOLO) [18], which is an extremely fast object-detection paradigm. The YOLO
discarded the process of seeking region proposals and directly predicted both bounding-box
coordinates and categories, which dramatically accelerated the inference process [18–20].
Pham et al. [21] proposed YOLO-fine, which conducted finer regression in order to enhance
the capacity of recognizing small objects and tackled the problems of domain adaptation
by investigating its robustness to various backgrounds. Alganci et al. [22] provided a
comparison among YOLO-v3 and other CNN-based detectors for RSI and evaluated that the
YOLO provided the most balanced trade-off between detection accuracy and computation
efficiency. Additionally, a few studies shared similar ideas with the single-shot multibox
detector [23]. Zhuang et al. [24] applied a single-shot framework, which focused on multi-
scale feature fusion and improved performance for detecting small objects. In general,
the one-stage-RSI detection methods were more appropriate for real-time object-detection
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tasks. However, it seems that CNN-based methods, whether one-stage or two-stage, have
reached the bottleneck of progress.

Recently, the attention-based Transformer presented by Vaswani et al. [25] has be-
come the standard model for machine translation. Numerous studies have demonstrated
that the Transformer might also be efficient at image-processing tasks, and they have
achieved breakthroughs. The Transformer was able to obtain the relationship in RSIs at a
long distance [26–28], which tackled the difficulty of CNN-based methods for capturing
global features. Therefore, there have been a number of successful studies focusing on
Transformer-based models in the RS community. Inspired by the Vision Transformer [26],
He et al. [29] proposed a Transformer-based hyperspectral image-classification method.
They introduced the spatial-spectral Transformer, using a CNN to extract spatial features
of hyperspectral images and a densely connected Transformer to learn the spectra relation-
ships. Hong et al. [30] presented a flexible backbone network for hyperspectral images
named SpectralFormer, which exploited the spectral-wise sequence attributes of hyper-
spectral images in order to sequentially feed them into the Transformer. Zhang et al. [31]
proposed a Transformer-based method for a remote-sensing scene-classification method,
which designed a new bottleneck based on multi-head self-attention (MHSA) for image
embedding, and cascaded encoder blocks to enhance accuracy. They all achieved state-
of-the-art performance, which shows the potential of the Transformer for various tasks
in RSI processing. However, for RSI object detection, the amount of studies working
on the basis of the Transformer is still insufficient. Zheng et al. [32] proposed an adap-
tive, dynamically refined one-stage detector based on the feature-pyramid Transformer,
which embedded a Transformer in the FPN in order to enhance its feature-fusion capacity.
Xu et al. [33] proposed a local-perception backbone based on the Swin Transformer for RSI
object detection and instance segmentation, and they investigated the performance of their
backbone on different detection frameworks. In their studies, the Transformer worked as a
feature-interaction module, i.e., backbone or feature-fusion component, which is adaptable
to various detection frameworks. Above all, since the Transformer has enormous potential
to promote a unification of the architecture of various tasks in artificial intelligence, it is
essential to further explore Transformer-based RSI object detectors.

In this paper, we investigate a neoteric Transformer-based remote-sensing object-
detection (TRD) framework. The proposed TRD is inspired by the detection Transformer [28],
which takes features obtained from a CNN backbone as the input and directly outputs a set
of detected objects. The existing Transformer-based RSIs object detectors [32,33] are still
highly dependent on the existing detection frameworks composed of various surrogate-task
components, such as duplicated prediction elimination, etc. The proposed TRD abandons
the conventional complicated structure in favor of an independent and more end-to-end
framework. Additionally, the CNN backbone in the TRD is trained with transfer learning.
To reduce the diversity of the source domain and target domain, the T-TRD is proposed,
which adjusts the pre-trained CNN with the attention mechanism for a better transfer.
Moreover, since the quantity of reliable training samples for RSI object detection is usually
insufficient for training a Transformer-based model, the T-TRD-DA explores data augmen-
tation composed of sample expansion and multiple-sample fusion to enrich the training
samples and prevent overfitting. We hope that our research will inspire the development
of RSI object-detection components based on the Transformer.

In summary, the following are the main contributions of this study.
(1) An end-to-end Transformer-based RSI object-detection framework, TRD, is pro-

posed, in which the Transformer is remolded in order to efficiently integrate features
of global spatial positions and capture relationships of feature embeddings and objects
instances. Additionally, the deformable attention module is introduced as an essential
component of the proposed TRD, which only attends to a sparse set of sampling features
and mitigates the problem of high computational complexity. Hence, the TRD can process
RSIs on multiple scales and recognize objects of interest from RSIs.
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(2) The pre-trained CNN is used as the backbone for feature extraction. Furthermore,
in order to mitigate the difference between the two data sets (i.e., ImageNet and RSI data
set), the attention mechanism is used in the T-TRD to reweight the features, which further
improves the RSI detection performance. Therefore, the pre-trained backbone is better
transferred and obtains discriminant pyramidal features.

(3) Data augmentations, including sample expansion and multiple-sample fusion, are
used to enrich the diversity of orientations, scales, and backgrounds of training samples. In
the proposed T-TRD-DA, the impact of using insufficient training samples for Transformer-
based RSI object detection is alleviated.

2. The Proposed Transformer-Based RSI Object-Detection Framework

Figure 1 shows the overview architecture of the proposed Transformer-based RSI
object-detection framework. First, a CNN backbone with attention-based transferring
learning is used for extracting multi-scale feature maps of the RSIs. The feature maps from
the shallower layers have higher resolutions, which benefits the detection of small-object
instances, while the high-level features have wide receptive fields and they are appropriate
for large-object detection and global spatial-information fusion. The features of all levels
are embedded together in a sequence. The sequence of embedded features undergoes
the encoder and decoder of the Transformer-based detection head and is transferred to
a set of predictions with categories and locations. As the figure shows, the point in the
input embeddings from the high-level feature map tends to recognize a small instance,
while that from the low-level map is inclined to recognize a large instance. The detailed
introduction of the proposed Transformer-based RSI object-detection framework is started
with the framework of the proposed TRD and the effective deformable attention module
in its Transformer. Subsequently, the attention-based transferring backbone and the data
augmentation are introduced in detail.
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Figure 1. The overview architecture of the proposed Transformer-based RSI object-detection framework.

2.1. The Framework of the Proposed TRD

Figure 2 shows the framework of the proposed TRD. A CNN backbone is first used
to extract pyramidal multi-scale feature maps from an RSI. They are then embedded with
the 2D positional encoding and converted to a sequence that can be inputted into the
Transformer. The Transformer is remolded in order to process the sequence of image
embeddings and make predictions of detected object instances.

The feature pyramid of the proposed TRD can be obtained by a well-designed CNN,
and in this study, the detection backbone based on ResNet [34] is adopted. The con-
volutional backbone takes an RSI I ∈ R3×H0×W0 of an arbitrary size H0 ×W0 as the
input and generates hierarchical feature maps. Specifically, the ResNet generate hier-
archical maps from the outputs of the last three stages, which are denoted as {f1, f2, f3}, and
fl ∈ RCl×Hl×Wl . Those of the other stages are not included due to their restricted receptive
field and additional computational complexities. Then, the feature map at each level under-
goes 1× 1 convolutions, mapping their channels Cl to a smaller, uniform dimension d.
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Hence, a three-level feature pyramid is obtained, which is denoted as {x1, x2, x3} and
xl ∈ Rd×Hl×Wl . Additionally, a lower-resolution feature map x4 is acquired by a 3× 3
convolution on x3.

The feature pyramid is further processed to be fed into the Transformer. The MHSA in
Transformer aggregates the elements of the input and does not discriminate their positions;
hence, the Transformer has permutation invariance. To alleviate this problem, we need
to embed spatial information in the feature maps. Therefore, after the L-level feature
pyramid {xl}L

l=1 is extracted from the convolutional backbone, the 2D position encodings
are supplemented at each level. Specifically, the sine and cosine positional encoding of the
original Transformer is extended to column and row positional encodings, respectively.
They are both acquired by encoding on the dimension of the row or column and half of
the d channels, and then duplicated to the other spatial dimension. The final positional
encodings are concatenated with them.

The Transformer expects a sequence consisting of elements of equal dimensions as
inputs. Therefore, the multi-scale position-encoded feature maps {xl}L

l=1 are flattened in
the spatial dimensions, developing them into L sequences of Hl ×Wl length. The input
sequence is obtained by concatenating the sequences from L levels, which consists of
∑L

l=1 Hl ×Wl tokens with d dimensionalities. Each pixel in the feature pyramid is treated
as an element of the sequence. The Transformer then models the interaction of the feature
points and recognizes concerned object instances from the sequence.

The original Transformer adopted an encoder–decoder structure using stacked self-
attention layers and point-wise fully connected layers, and the decoder was auto-regressive,
generating an element at a time and appending the element to the input sequence for the
next generation [25]. In a different manner, the Transformer here changes the MHSA layers
of the encoder to the deformable attention layers, which are more attractive for modeling
the relationship between feature points due to the lack of computational and memory
complexities. Besides, the decoder adopts a non-autoregressive structure, which parallelly
decodes the elements. The details are as follows:

The encoder takes the sequence of the feature embeddings as the input and outputs a
sequence of spatial-aware elements. The encoder consists of N cascaded encoder layers.
In each encoder layer, the sequence undergoes a deformable multi-head attention layer
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and a feed-forward layer, both of which are accompanied by a layer normalization and a
residual computation, and the encoder layer outputs an equilong sequence of isometric
elements. The deformable attention layers aggregate the features at positions in an adaptive
field, obtaining feature maps with a distant relationship. The feature points can be used
to compose the input sequence of the decoder. To reduce computational complexities, the
feature points are fed into a scoring network, specifically, a three-layer FFN with a softmax
layer, which can be realized as a binary classifier of the foreground and background. The
Np highest scored points constitute a fixed-length sequence, which is fed into the decoder.
The encoder endows the multi-scale feature maps with global spatial information and then
selects a quantity-fixed set of spatial-aware feature points, which are more easily used for
detecting object instances.

The decoder takes the sequence of essential feature points as the input and outputs
a sequence of object-aware elements in parallel. The decoder also contains M cascaded
decoder layers, consisting of an MHSA layer, an encoder–decoder attention layer, and
a feed-forward layer, followed by three-layer normalization and residual computations
behind them, respectively. The MHSA layers capture interactions between pairwise feature
points, which has benefits for constraints related to object instances, such as preventing
duplicate predictions. Each encoder–decoder attention layer takes the elements from the
previous layer in the decoder as queries and those from the output of the last encoder layer
as memory keys and values. It enables the feature points to attend to feature contexts at
different scale levels and global spatial positions. The output embeddings of each decoder
layer are fed into a layer normalization and the prediction heads, which share a common
set of parameters for different layers.

The prediction heads further decode the output embeddings from the decoder into
object categories and bounding-box coordinates. Similar to most modern end-to-end object-
detection architectures, the prediction head is divided into two branches for classification
and regression. In the classification branch, a linear projection with a softmax function
is used to predict the category of each embedding. A special ‘background’ category is
appended to the classes, meaning that no concerned object is detected from the query. In
the regression branch, a three-layer fully connected network with the ReLU function is
utilized for producing the normalized coordinates of the bounding boxes. In total, the heads
generate an Np set of predictions, and each set consists of a class and the corresponding
box position. The final prediction results are obtained by removing the ‘background’.

The proposed TRD takes full advantage of the relationship-capturing capacity of the
Transformer and rebuilds the original structure and embedding scheme. It explores a
Transformer-based paradigm for RSI object detection.

2.2. The Deformable Attention Module

To enhance the detection performance of small-object instances, the idea of utilizing
multi-scale feature maps is explored, in which the low-level and high-resolution feature
maps are conducive to recognizing small objects. However, the high-resolution feature
maps result in high computational and memory complexities for the conventional MHSA-
based Transformer, because the MHSA layers measure the compatibility of each pair of
reference points. In contrast, the deformable attention module only pays attention to a
fixed-quantity set of essential sampling points at several adaptive positions around the
reference point, which enormously decreases the computational and memory complexities.
Thus, the Transformer can be effectively extended to the aggregation of multi-scale features
of RSIs.

Figure 3 shows the diagram of the deformable attention module. The module generates
a specific quantity of sampling offsets and attention weights for each element in each scale
level. The features at the sampling positions of maps in different levels are aggregated to a
spatial- and scale-aware element.
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The input sequence of the embedded feature elements is denoted as x. In each level,
the normalized location of the q-th feature element is denoted as p̂q ∈ [0, 1]2, which can

be re-scaled to the practical coordinates at the l-th level with a mapping function φl

(
p̂q

)
.

For each element, which is represented as x
(

φl

(
p̂q

))
, a 3LK-channel linear projection is

used to obtain LK sets of sampling offsets ∆plkq ∈ R2 and attention weights alkq ∈ [0, 1],

which is normalized by ∑L
l=1 ∑K

k=1 alkq = 1. Then, the features of the LK sampling points

x
(

φl

(
p̂q

)
+ ∆plkq

)
are calculated from the input feature maps by applying bilinear interpo-

lation. They are aggregated by multiplying the attention weights alkq, generating a spatial-
and scale-aware element. Therefore, the output sequence of the deformable attention
module is calculated with (1).

F (x) = ∑L
l=1 ∑K

k=1 Alk·Wvx(pl + ∆plk) (1)

where l indexes the L feature levels, and k indexes the K sampled points for keys and
values, respectively. The pl is the sequence of the practical coordinates {φl(p̂0), φl(p̂1), · · · },
and the ∆plk indicates the sequence of the k-th sampling offsets {∆plk0, ∆plk0, · · · }. The Alk
is composed of normalized attention weights alkq.

The deformable attention mechanism resolves the problem of processing spatial fea-
tures with self-attention computations. It is extremely appropriate for Transformers in
computer-vision tasks and it is adopted in the proposed TRD detector.

2.3. The Attention-Based Transferring Backbone

In general, deep CNN can obtain discriminative features of RSIs for object detection.
However, due to the fact that RSI object-detection tasks usually have limited training
samples and deep models always contain numerous parameters, deep-learning-based RSI
object-detection methods usually face the problem of overfitting.

To address the overfitting issue, transfer learning is used in this study. In the proposed
T-TRD detector, a pre-trained CNN model is used as the backbone for RSI feature extraction,
and then the Transformer-based detection head is used to complete the object-detection
task. In CNNs, the first few convolution operations extract low-level and mid-level features
such as blobs, corners, and edges, which are common features for image processing [35].

In RSI object detection, the proper re-usage of low-level and mid-level representations
will significantly improve the detection performance. However, due to the fact that the
spatial resolution and imaging environment between ImageNet and RSI are quite different,
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the attention mechanism is used in this study to adjust the pre-trained model for better RSI
object detection.

In the original attention mechanism, more attention is paid to the important regions
in an image and the selected regions are assigned by different weights. Such an attention
mechanism has been proved to be effective in text entailment and sentence representa-
tions [36,37].

Motivated by the attention mechanism, we re-weight the feature maps to reduce the
difference in the two data sets (i.e., RSI and ImageNet). Specifically, the feature maps in
the pre-trained model are re-weighted and then transferred to the backbone in RSI object
detection. When attention scores of different feature maps are higher, the transferring
features are more important for the following feature extractions. Figure 4 shows the
framework of the proposed attention-based transferring backbone. As is shown, the model
pre-trained on the source-domain-images data set is transferred to the backbone of the
T-TRD. The attention weights are obtained with global average pooling and non-linear
projection. At last, the feature maps are re-weighted according to the attention weights.
The detailed steps are defined below.
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At first, feature maps in one convolutional layer are operated to channel-wise statistics
by using the global average pooling layer. Specifically, the spatial dimension H′ ×W ′ of
each feature map is calculated by the following formula:

v =
1

H′ ×W ′ ∑
H′

q=1 ∑W ′

s=1 u(q, s) (2)

where u refers to the input feature map and v indicates the aggregated information of a
whole feature map.

Next, to capture the relationships of feature maps with different importances, a neural
network that consists of two fully connected (FC) layers and a ReLU operation are utilized.
To limit model complexity, the first FC layer maps the total number of feature maps to a
fixed value (i.e., 128), followed by a non-linearity ReLU operation. In addition, the second
FC layer restores the number of feature maps to its initial dimension. By learning the
parameters in this neural network through backpropagation, the interaction reflected the
importance between different feature maps can be obtained.
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Finally, the attention values of different feature maps are outputted by the sigmoid
function, which restricts the values from zero to one. Each feature map multiplies the
obtained attention values to distinguish the degree importance of different feature maps.

The above steps are used in the proposed attention-based transferring backbone. The
transferring features from ImageNet to RSI re-weighted by the attention values could boost
the feature discriminability, thereby reducing the difference between the two data sets by
learning more important transferring features and weakening less important features.

2.4. Data Augmentation for RSI Object Detection

As is reported, the Transformer-based vision models are more likely to overfit than
the CNN with equivalent computational complexity on limited data sets [26]. However,
the quantities of training samples in RSI data sets for object detection are usually deficient.
Additionally, objects in an RSI sample are usually sparsely distributed, which is an ineffi-
cient method of training the proposed Transformer-based detection models. Hence, a data-
augmentation method, which is composed of sample expansion and multiple-sample fusion,
is merged into the training strategy of the T-TRD to improve the detection performance.

Let X = {x1, x2, · · · , xN} be the training samples. We define a set of four right-angle
rotation transformations TR = {tR0, tR1, tR2, tR3} and another set of two horizontal flip
transformations TF = {tF0, tF1}. Both sets are applied to all the training samples, generating
a ×8 extended samples set TFTRX = {tF0tR0x1, tF1tR0x1, tF0tR1x1, · · · , tF1tR3xN}.

For each sample in the extended set, we randomly choose three samples from the set
and blend the four samples into a larger fixed-size sample. The samples are concatenated at
the top-left, top-right, bottom-left, and bottom-right of an intersection point. Afterward, a
blank canvas of the fusion image size is generated by gray padding. Then, the normalized
coordinates of the intersection point are randomly generated, with a restricted range of
0.25 to 0.75. The concatenated sample is pasted on the canvas by aligning the intersection
points. The composite images and boxes outside of the border of the canvas are cropped.
Figure 5 shows several examples of composite RSI samples. At last, random scale and crop
augmentation are applied to the composite samples.
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With the data augmentation, the problem of insufficient training samples is mitigated.
The proposed T-TRD-DA trains a Transformer-based detection model on an enhanced
training data set with more diversity of scale, orientation, background, etc., which prevents
the proposed deep model from overfitting.

3. Data Sets and Experimental Settings
3.1. Data Description

The proposed TRD, T-TRD and T-TRD-DA are evaluated on the NWPU VHR-10 [6]
and DIOR [2] data sets, which are both widely-used public data sets for multi-class object
detection in RSIs.

The NWPU VHR-10 data set contains 800 very-high-resolution RSIs collected from
Google Earth and the Vaihingen data set [38]. There is an annotated ‘positive image set’
and a ‘negative image set’. The 150 images in the ‘negative image set’ contain no object
in the concerned categories, which are used for exploring semi-supervised and weakly-
supervised algorithms. The 650 images in the ‘positive image set’ were annotated with
10 categories of objects, which are used in the experiment and divided into a training set
with 130 images, a validation set with 130 images, and a testing set with 390 images.

The DIOR data set is one of the most challenging large-scale benchmark data sets for
RSI object detection. There are 23,463 images acquired from Google Earth, and 20 categories
of 192,472 objects annotated in the DIOR data set. Compared with other data sets, the
images and object instances of the data set have higher intra-class variation and inter-
class similarity. Therefore, the DIOR data set is considered appropriate for the training
and evaluation of RSI object detectors, especially deep-learning-based detectors. In the
experiments, the quantities of the training set, the validation set, and the testing set are
5862, 5863, and 11,738, respectively, according to the official setting in [2].

3.2. Evaluation Metrics

In the experiments, the average precision (AP) for each category and mean average
precision (mAP) are utilized to evaluate the proposed detectors. In general, the AP for
the c-th category APc is calculated from recall values (R) and the corresponding precision
values (Pc(R)) are calculated with formula (3), which is also the area under the precision–
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recall curve of the category, and the mAP is calculated by averaging the APc over the C
categories with formula (4).

APc =
∫ 1

0
Pc(R)dR (3)

mAP =
1
C ∑C

c=1 APc (4)

For a specific category, to obtain the precision–recall curve, we need to calculate pair-
wise Precision values with formula (5) and Recall values with formula (6). Specifically,
assume that there is a total of K bounding boxes classified into the category. Each prediction
result includes coordinates and the classification confidence of a bounding box. The
bounding box is true positive (TP) if the IOU between the ground-truth (GT) box and
itself is larger than the threshold γ; otherwise, it is considered to be false positive (FP).
In addition, if there is more than one TP bounding box corresponding to a GT box, the
box with the largest IOU is reserved as TP, and the others are considered to be FP. If a
GT box has no corresponding TP, then the GT box is considered false negative (FN). In
formulas (5) and (6), the TP, FP, FN represent quantities of TP, FP, FN boxes; therefore, the
Precision and Recall are dimensionless and TP + FN is equal to the number of GT boxes
Num(GT). In practice, the bounding boxes are sorted according to their confidence, and
the Precision and Recall values are calculated with the first k bounding boxes each time.
The precision–recall curve is obtained by taking k from 1 to K. In the experiment, the IOU
threshold γ is set to 0.5 according to the benchmarks of object detection in RSIs.

Precision =
TP

TP + FP
=

TP
K

(5)

Recall =
TP

TP + FN
=

TP
Num(GT)

(6)

The Precision can be considered as the percentage of correct predictions out of all
predictions, and the Recall can be the proportion of GT boxes that can be detected among
all GT boxes. The precision–recall curve can reflect the relationship between Precision and
Recall. A better detector should have both higher Precision and Recall, therefore its mAP
should also be higher.

3.3. Baseline Methods

In the experiments, nine baseline methods, which are diffusely used as comparison
benchmarks for object detection in RSIs, are adopted to evaluate the proposed detectors.
To be specific, on the NWPU VHR-10 data set, the baseline methods include the tradi-
tional methods such as SSCBOW [5], and COPD [6], and deep-learning-based methods
such as RICNN [10], R-P-Faster R-CNN [39], YOLO v3 [20], Deformable R-FCN [40],
Faster RCNN [12], and Faster RCNN with FPN [17]. As for the DIOR data set, region-
proposal-based methods including RICNN, Faster RCNN, Faster RCNN with FPN, and
Mask RCNN [41] with FPN and the anchor-based method YOLO v3 are selected for a
comprehensive comparison.

3.4. Implementation Details

ResNet [34] is recognized as one of the most effective backbone networks in the object-
detection community. The residual operation of ResNet solves the degradation problem in
deep networks; therefore, it can achieve a larger network and extract high-level semantic
features. We adopt the ImageNet pre-trained ResNet-50 according to the choices of most
baseline methods. To distinguish the feature maps of different scales, in addition to the 2D
positional encoding, learnable scale-level encodings are also embedded in the multi-scale
feature maps.

The encoder and decoder of the transformer both have six attention modules, and
each module consists of eight attention heads. The dimension d of the input embeddings is
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set to 256. The number of sampled keys for each deformable attention calculation K is set
to 4. On the NWPU VHR-10 data set, the number of selected feature points Np is set to 300.
However, on the DIOR data set, the number is set to 600, because images may have more
than 300 object instances in the DIOR data set.

The detectors are trained with the AdamW optimizer, setting the weight decay to
1× 10−4. The initial learning rate of the Transformer is set to 1× 10−4, while that of the
other learnable parameters is set to 1× 10−5. The combined loss function in [28] is used
for optimization, except that the section for classification is modified to the Focal Loss [42].
Other strategies of training and parameter initialization also follow [28].

The proposed methods are implemented using MMDetection [43], which is an open-
source object-detection framework presented by Open MMLab. The experiments are
executed on a scientific computing workstation with Intel Xeon Silver CPUs and dual Tesla
V100 MAX-Q GPUs with a total of 32 GB memory.

4. Experimental Results and Discussion

The proposed Transformer-based detectors are trained on the two data sets. Both qual-
itative inference results and quantitative evaluation results are provided and analyzed. For
the qualitative inference results in Figures 6–8, the regions surrounded by blue bounding
boxes indicate ground truth, and the detection results are marked with red bounding boxes.
Additionally, the categories and confidence values of each detected box are given. In the
quantitative evaluation results, the APs and mAPs magnified by 100 of the detectors are
reported, and the precision–recall curve of each category is given. Additionally, the results
of the ablation experiment are appended to provide the effectiveness of the modules in the
proposed methods. For the quantitative evaluation results in Tables 1–5, the bold numbers
represent the best performance compared to the other methods. At last, comparisons of
the computational complexities and inference speeds between the proposed methods and
baseline methods are exhibited.
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Table 1. Comparison results of the proposed methods and baseline methods on the NWPU VHR-10
data set.

Method
AP (×100) for Each Category mAP

(×100)Plane Ship ST BD TC BC GTF Harbor Bridge Vehicle

SSCBOW [5] 50.6 50.8 33.4 43.5 00.3 15.0 10.1 58.3 12.5 33.6 30.8
COPD [6] 62.3 68.9 63.7 83.3 32.1 36.3 85.3 55.3 14.8 44.0 54.6

RICNN [10] 88.4 77.3 85.3 88.1 40.8 58.5 85.7 68.6 61.5 71.1 72.6
R-P-Faster R-CNN [39] 90.4 75.0 44.4 89.9 79.0 77.6 87.7 79.1 68.2 73.2 76.5

Yolo v3 [20] 90.6 63.1 70.9 94.8 83.8 68.6 92.1 76.2 58.1 65.7 76.4
Deformable R-FCN [40] 87.3 81.4 63.6 90.4 81.6 74.1 90.3 75.3 71.4 75.5 79.1

Faster RCNN [12] 92.0 76.0 54.1 95.4 75.6 71.3 90.1 76.0 69.0 63.8 76.3
Faster RCNN with FPN [17] 93.9 72.3 68.2 95.7 91.9 75.6 88.5 86.4 66.8 80.9 82.0

TRD 99.4 78.2 84.4 94.2 82.0 83.9 98.9 78.4 56.9 72.2 82.9
T-TRD-DA 99.0 81.0 79.6 98.1 89.2 88.3 86.5 92.6 74.7 89.6 87.9

Table 2. Results for objects of specific scale ranges on the NWPU VHR-10 data set.

Method
mAP

(×100)
mAP (×100) for Objects of Different Scales

Large Middle Small

YOLO v3 76.4 74.2 69.9 52.3
Faster RCNN 76.3 76.5 73.0 35.2
Faster RCNN

with FPN 82.0 77.4 79.5 47.9

TRD 82.9 79.8 75.6 43.7
T-TRD-DA 87.9 80.8 83.6 65.7

Table 3. Comparison results of the proposed methods and baseline methods on the DIOR data set.

Method RICNN [10] YOLO v3
[20]

Faster
RCNN [12]

Faster RCNN
with FPN [17]

Mask RCNN
with FPN [41] TRD T-TRD-DA

AP (×100)
for Each

Class

Airplane 39.1 72.2 57.6 63.2 53.8 72.9 77.9
Airport 61.0 29.2 68.6 61.3 72.3 79.3 80.5
Baseball

Field 60.1 74.0 62.4 66.3 63.2 70.0 70.1

Basketball
Court 66.3 78.6 83.7 85.5 81.0 83.8 86.3

Bridge 25.3 31.2 31.2 36.0 38.7 38.8 39.7
Chimney 63.3 69.7 73.9 73.9 72.6 77.8 77.9

Dam 41.1 26.9 42.2 45.0 55.9 58.5 59.3
ESA 51.7 48.6 55.0 56.9 71.6 57.6 59.0
ETA 36.6 54.4 46.4 49.0 67.0 57.0 54.4

Golf course 55.9 31.1 65.6 73.2 73.0 75.2 74.6
Ground-

track
field

58.9 61.1 61.4 67.5 75.8 70.5 73.9

Harbor 43.5 44.9 52.2 48.9 44.2 44.2 49.2
Overpass 39.0 49.7 51.0 54.7 56.5 55.0 57.8

Ship 9.1 87.4 48.0 73.2 71.9 73.5 74.2
Stadium 61.1 70.6 51.0 62.8 58.6 52.1 61.1
Storage

Tank 19.1 68.7 35.3 68.3 53.6 67.6 69.8

Tennis
Court 63.5 87.3 73.5 78.7 81.1 82.5 84.0

Train
Station 46.1 29.4 50.3 51.4 54.0 56.0 58.8

Vehicle 11.4 48.3 29.8 48.1 43.1 47.0 50.5
Wind Mill 31.5 78.7 69.6 70.1 81.1 73.2 77.2

mAP (×100) 44.2 57.1 55.4 61.7 63.5 64.6 66.8
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Table 4. Results for objects in specific scale ranges from the DIOR data set.

Method
mAP

(×100)
mAP (×100) for Objects of Different Scales

Large Middle Small

Faster RCNN 55.4 80.7 43.7 7.9
Faster RCNN

with FPN 61.7 81.9 45.7 18.4

TRD 64.6 83.2 50.1 20.4
T-TRD-DA 66.8 93.1 67.2 33.3

Table 5. Results of ablation experiment.

Method mAP on NWPU VHR-10 mAP on DIOR

TRD 0.829 0.646
T-TRD 0.835 0.650

TRD-DA 0.866 0.664
T-TRD-DA 0.879 0.668

4.1. Comparison Results on the NWPU VHR-10 Data Set

Figure 6 shows the qualitative inference results of the proposed Transformer-based
detectors on the NWPU VHR-10 data set. As illustrated in the figures, the proposed T-TRD-
DA can detect most object instances in RSIs and correctly identify their categories. Even if
the object instances are small, which are hard to detect, the T-TRD-DA still performs well.
Figure 7 provides a qualitative comparison between the proposed T-TRD-DA and YOLO
v3. In Figure 7a,b, the smaller storage tanks are all detected by the proposed T-TRD-DA,
while the YOLO v3 omits some of them. In Figure 7c,d, the T-TRD-DA recognizes almost
all vehicles, while the YOLO v3 leaves out more than half of them. As a consequence, in
contrast to YOLO v3, the proposed T-TRD-DA is shown not to be susceptible to objects of
small scale, clustered objects, or objects being obscured by shallows, etc.

Table 1 shows the comparison results on the NWPU VHR-10 data set, where ST
denotes the storage tank, BD denotes the baseball diamond, TC denotes the tennis court,
BC denotes the basketball court, and GT denotes the ground-track field. As shown in the
table, the CNN-based methods exhibit a noticeable advantage compared to the traditional
BOW-based SSCBOW method and the SVM-based COPD method. Among these CNN-
based methods for object detection in RSIs, the Faster RCNN is the most representative one,
which can swiftly provide region proposals and then make precise predictions. The FPN is
often used for the multi-scale feature fusion of features extracted from the CNN backbone,
which effectively enhances the detection capability of small-object instances. Therefore, the
Faster RCNN with FPN is a relatively competitive baseline method for object detection in
RSIs. Nevertheless, the proposed TRD outperforms all the baseline methods and surpasses
the Faster RCNN with FPN baseline with a 0.02 improvement on the mAP. With the same
backbone to extract features of RSIs, the Transformer-based detection head of the TRD
exhibits its powerful detection capability and exceeds the CNN-based detection heads,
which demonstrates the feasibility of using the Transformer for object detection in RSIs.
Furthermore, with the promotion of the proposed attention-based transferring backbone
and data augmentation, the T-TRD-DA achieves a better detection performance, with an
mAP that reaches 0.879 and obtains outstanding APs in all categories. As a consequence,
the improvements can make efficient progress on the proposed Transformer-based RSI
object-detection framework.

Additionally, the comparison results of the proposed methods and baseline methods
on objects of specific scale ranges, i.e., large, middle, small, are reported in Table 2. The mAP
of the Faster RCNN baseline is limited in its detection of small objects because its backbone
only outputs the highest-level features, which have low resolution and cause poor detection
performance. The FPN capable of multi-scale feature fusion effectively solves this problem.
Therefore, the Faster RCNN with FPN baseline achieves great improvement on small
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objects. The proposed TRD and T-TRD-DA can aggregate multi-scale features without
FPN, and they also have outstanding detection capacities for small objects. Moreover,
the proposed Transformer-based detectors also perform well on large objects and middle
objects, which means a better overall detection capability.

4.2. Comparison Results on the DIOR Data Set

To further evaluate the effectiveness of the proposed Transformer-based detectors, the
detectors are trained on the DIOR data set and compared with more competitive baseline
methods. Figure 8 shows the qualitative inference results of the proposed T-TRD-DA on the
DIOR data set. It is obvious that the proposed T-TRD-DA exhibits an intuitively satisfactory
detection capability on the large-scale challenge data set. The precision–recall curves of
each category are provided in Figure 9, which intuitively shows the detailed relationship
between precision and recall. The ETA and ESA are the abbreviations of expressway
toll station and expressway service area, respectively. It can be seen that the proposed
T-TRD-DA detector exhibits a superior performance in most categories, such as airplane,
ground-track field, tennis court, etc.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

4.2. Comparison Results on the DIOR Data Set 

To further evaluate the effectiveness of the proposed Transformer-based detectors, 

the detectors are trained on the DIOR data set and compared with more competitive base-

line methods. Figure 8 shows the qualitative inference results of the proposed T-TRD-DA 

on the DIOR data set. It is obvious that the proposed T-TRD-DA exhibits an intuitively 

satisfactory detection capability on the large-scale challenge data set. The precision–recall 

curves of each category are provided in Figure 9, which intuitively shows the detailed 

relationship between precision and recall. The ETA and ESA are the abbreviations of ex-

pressway toll station and expressway service area, respectively. It can be seen that the 

proposed T-TRD-DA detector exhibits a superior performance in most categories, such as 

airplane, ground-track field, tennis court, etc. 

 
(a) Vehicles. 

 
(b) Vehicles and an overpass. 

 
(c) Storage tanks. 

 
(d) Play grounds. 

 
(e) Windmills 

 
(f) Airplanes. 

Figure 8. Qualitative inference results on the DIOR data set. 

 
(a) Airplane 

 
(b) Airport 

 
(c) Baseball Field 

 
(d) Basketball Court 

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
(e) Bridge 

 
(f) Chimney 

 
(g) Dam 

 
(h) ESA 

 
(i) ETA 

 
(j) Golf course 

 
(k) Ground-track field 

 
(l) Harbor 

 
(m) Overpass 

 
(n) Ship 

 
(o) Stadium 

 
(p) Storage tank 

 
(q) Tennis court 

 
(r) Train station 

 
(s) Vehicle 

 
(t) Wind mill 

Figure 9. The p–r curve of the detectors on each category of the DIOR data set. 

Table 3 shows the results of the DIOR data set and compares the proposed TRD and 

T-TRD-DA to five representative deep-learning-based methods, including the AP values 

of the 20 categories and the mAP. In these baseline methods, the Mask RCNN, which was 

originally designed for object-instance segmentation, is extended from the Faster RCNN 

and achieves state-of-the-art performance of object detection. With the FPN, both the 

Faster RCNN and Mask RCNN can detect objects with a wide variety of scales and acquire 

great advances to their overall detection performance. Additionally, as shown in Table 4, 

compared to the Faster RCNN and the Faster RCNN with FPN, the proposed TRD ac-

quires outstanding detection capacity for the three scale ranges, especially on the small 

objects. The proposed T-TRD-DA achieves the best performance, which is attributed to 

the multi-scale-feature embedding. Above all, with the powerful context-modeling capa-

bilities of the Transformer, the proposed Transformer-based detectors can accurately de-

tect the objects of interest in the complicated RSIs. 

  

Figure 9. The p–r curve of the detectors on each category of the DIOR data set.



Remote Sens. 2022, 14, 984 17 of 21

Table 3 shows the results of the DIOR data set and compares the proposed TRD and
T-TRD-DA to five representative deep-learning-based methods, including the AP values
of the 20 categories and the mAP. In these baseline methods, the Mask RCNN, which
was originally designed for object-instance segmentation, is extended from the Faster
RCNN and achieves state-of-the-art performance of object detection. With the FPN, both
the Faster RCNN and Mask RCNN can detect objects with a wide variety of scales and
acquire great advances to their overall detection performance. Additionally, as shown in
Table 4, compared to the Faster RCNN and the Faster RCNN with FPN, the proposed TRD
acquires outstanding detection capacity for the three scale ranges, especially on the small
objects. The proposed T-TRD-DA achieves the best performance, which is attributed to the
multi-scale-feature embedding. Above all, with the powerful context-modeling capabilities
of the Transformer, the proposed Transformer-based detectors can accurately detect the
objects of interest in the complicated RSIs.

4.3. Ablation Experiments

Four sets of ablation experiments on both data sets are performed to evaluate the
efficiencies of the improvements to the proposed T-TRD-DA, and the results are reported in
Table 5. The results indicate that both the improvements to the attention-based transferring
backbone and the data augmentation benefit the detection performance of the TRD. The
transferring backbone utilizes the knowledge learned from the source-domain data to
extract more effective features of the RSIs, and then uses the attention mechanism to
adaptively regulate the channel-wise features. Additionally, the data augmentation enriches
the orientations, scales, and backgrounds of the object instances, which strengthens the
generalization performance of the detectors. Therefore, the final T-TRD-DA achieves a
competitive detection capability and indicates the great potential of the Transformer for
RSI object detection.

4.4. Comparison of the Computational Complexity and Inference Speed

To evaluate the computational efficiency of the methods, the values of floating-point
operations (FLOPs) and the inference speeds of the proposed Transformer-based methods
and three baseline methods are reported in Table 6. The FLOPs and FPS of each method are
measured with the analysis tools of MMDetection, with inputs of 800× 800 size from both
data sets. As is shown, the FLOPs of the proposed Transformer-based-detection models are
close to the models of the baseline methods, and are only higher than YOLO v3. However,
due to the high computational cost of the Transformer, the inference speeds are still able to
be improved.

Table 6. Comparison of the computational complexity and inference speed.

Method
NWPU VHR-10 DIOR

FLOPs (G) Inference FPS FLOPs (G) Inference FPS

YOLO v3 121.27 42.8 121.41 33.2
Faster RCNN 127.91 27.5 127.93 26.3
Faster RCNN

with FPN 135.25 22.4 135.30 19.6

TRD 125.63 14.2 125.67 13.2
T-TRD-DA 125.70 13.2 125.74 12.5

4.5. Discussion

In the experiments, the proposed Transformer-based methods were evaluated and
compared with the state-of-the-art CNN-based RSI object-detection frameworks. The ex-
periments demonstrated the effectiveness of the proposed Transformer-based frameworks
and their advantages over the CNN-based frameworks.

From the qualitative inference results in Figures 6–8, it could be seen that the proposed
T-TRD-DA could accurately recognize objects of various categories, scales, and orientations.
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The bounding boxes of prediction were highly closed to the GT boxes. Additionally, from
the quantitative evaluation results in Tables 1 and 3, the TRD and T-TRD-DA achieved 82.9
and 87.9 on the NWPU VHR-10 data set, and obtained 64.6 and 66.8 on the DIOR data set
in terms of centuple mAP, respectively.

From the ablation experiments in Table 5, compared with the TRD, the proposed
T-TRD obtained an improvement of 0.6 in terms of centuple mAP on the NWPU VHR-10
data set. It was not a great success, but it showed that the proper adjustment of the feature
map led to better RSI detection performance. Moreover, the TRD-DA improved by 3.7 in
terms of centuple mAP on the NWPU VHR-10 data set. The overfitting problem caused by
limited training samples was mitigated by the data augmentation in the TRD-DA. With the
two improvements, the proposed T-TRD-DA improved by 5.0 in terms of centuple mAP on
the NWPU VHR-10 data set. Therefore, the attention-based transferring backbone and the
data augmentation were both efficient and indispensable in the proposed T-TRD-DA.

From Tables 1 and 3, the proposed TRD and T-TRD-DA methods both exceeded all
the competitive CNN-based RSI object-detection methods. For example, Faster RCNN
only obtained 0.554 in terms of mAP on the DIOR dataset. The proposed TRD, which
was based on a well-designed Transformer, obtained 0.646 in terms of mAP on the DIOR
dataset. The results of the comparison experiments revealed the advantages of the proposed
Transformer-based methods, which are discussed as follows.

Firstly, CNN-based methods were good at object detection. However, for RSI object-
detection tasks, due to the large spatial size (e.g., the spatial size of DIOR data set is 800× 800),
it was difficult to obtain the global representation of RSIs. The Transformer was good at
capturing long-distance relationships, hence it could obtain more discriminative features.

Secondly, CNN-based methods usually required FPN [14] for multi-scale feature
fusion to improve the performance on small objects. From Tables 2 and 4, the TRD and
T-TRD-DA performed better on objects of various scales than the CNN-based methods with
FPN, especially on small objects. In contrast to the FPN, which added the down-sampled
features at the same positions of all the scales, the proposed Transformer-based frameworks
could adaptively integrate features at various crucial positions of different scales; therefore,
it achieved impressive small-object-detection performance.

Additionally, the representative CNN-based frameworks, such as the Faster RCNN [12]
or YOLO v3 [20], were usually based on anchors. However, the setting of sizes, amount,
and aspect ratios for anchor generation affected the detection performances. The proposed
TRD and T-TRD-DA aggregated the pyramidal features and acquired spatial- and level-
aware feature points for representing instances. Therefore, the proposed methods were
anchor-free and convenient to train.

Moreover, from Table 6, although deformable attention was developed in the TRD
and T-TRD-DA to simplify the calculation of the Transformer, the inference speeds of the
proposed methods were slower than those of the CNN-based methods. More research into
the improvement of inference speed is required.

Above all, in this study, a modified Transformer combined with a transfer CNN was
proposed for RSI object detection. Elaborate experiments and analyses have indicated the
superiorities of the proposed Transformer-based frameworks. Besides, the disadvantages
have also been analyzed for further research on developing Transformer-based RSI object-
detection methods.

5. Conclusions

In this study, Transformer-based frameworks were explored for RSI object detection.
It was found that the Transformer was good at obtaining the long-distance relationship;
therefore, it could capture global spatial- and scale-aware features of RSIs and detect objects
of interest. The proposed TRD used the pre-trained CNN to extract local discriminate
features, and the Transformer was modified to process feature pyramid of an RSI and
predict the categories and the box coordinates of the objects in an end-to-end manner. By
combining the advantages of the CNN and Transformer, the experimental results of diverse
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terms demonstrated that the TRD achieved impressive RSI object-detection performance
for objects of different scales, especially on small objects.

There was still a lot of room for improvement in the TRD. On the one hand, the use of
the pre-trained CNN faced the problem of data-set shift (i.e., the source data set and the
target data set were quite different). On the other hand, there were insufficient training
samples for RSI object detection to train a Transformer-based model. Hence, to further
improve the performance of the TRD, an attention-based transferring backbone and data
augmentation were combined with the TRD to formulate the T-TRD-DA. The ablation
experiments on various structures, i.e., TRD, T-TRD, TRD-DA, and T-TRD-DA, have shown
that the two improvements as well as their combination were efficient. The T-TRD-DA was
proved to be a state-of-the-art RSI object-detection framework.

Compared with the CNN-based frameworks, the proposed T-TRD-DA was demon-
strated to be a better detection architecture. There were not anchors, non-maximum
suppression, or FPN in the proposed frameworks. However, the T-TRD-DA exceeded
YOLO-v3 and the Faster RCNN with FPN in detecting small objects. As an early stage
of the Transformer-based detection method, the T-TRD-DA showed the potential of the
Transformer-based RSI object-detection methods. Nevertheless, the proposed Transformer-
based frameworks have the problem of low inference speed, which is another topic for
further research.

Very recently, some modifications of the Transformer, including the self-training Trans-
former and transferring Transformer, can be investigated for RSI object detection in the
near future.

The findings reported in this study have some implications for effective RSI object
detection, which show that Transformer-based methods have huge research value in the
area of RSI object detection.
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