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Abstract: This study developed a new atmospheric correction algorithm, GeoNEX-AC, that is in-
dependent from the traditional use of spectral band ratios but dedicated to exploiting information
from the diurnal variability in the hypertemporal geostationary observations. The algorithm starts by
evaluating smooth segments of the diurnal time series of the top-of-atmosphere (TOA) reflectance to
identify clear-sky and snow-free observations. It then attempts to retrieve the Ross-Thick–Li-Sparse
(RTLS) surface bi-directional reflectance distribution function (BRDF) parameters and the daily mean
atmospheric optical depth (AOD) with an atmospheric radiative transfer model (RTM) to optimally
simulate the observed diurnal variability in the clear-sky TOA reflectance. Once the initial RTLS
parameters are retrieved after the algorithm’s burn-in period, they serve as the prior information to
estimate the AOD levels for the following days and update the surface BRDF information with the
new clear-sky observations. This process is iterated through the full time span of the observations,
skipping only totally cloudy days or when surface snow is detected. We tested the algorithm over
various Aerosol Robotic Network (AERONET) sites and the retrieved results well agree with the
ground-based measurements. This study demonstrates that the high-frequency diurnal geostationary
observations contain unique information that can help to address the atmospheric correction problem
from new directions.

Keywords: atmospheric correction; diurnal variability; geostationary observation; NASA earth
exchange; MAIAC; BRDF; GeoNEX

1. Introduction

The emerging global constellation of the third generation of geostationary satellites
carry advanced instruments with spectral, spatial, and radiometric resolutions comparable
to flagship satellite sensors such as MODIS and VIIRS [1]. More importantly, the new
geostationary sensors continuously scan Earth’s full disk every ~10 min, generating data
streams of much higher temporal resolution than the Low Earth Orbit (LEO) satellites [2–5].
Such datasets provide valuable and unique opportunities for Earth monitoring [6,7].

Geostationary NASA Earth Exchange (GeoNEX) is a collaborative effort led by NASA,
NOAA, and many other research institutes to explore the potential of geostationary data
streams in generating rigorous and systematic science products. We introduced the GeoNEX

Remote Sens. 2022, 14, 964. https://doi.org/10.3390/rs14040964 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14040964
https://doi.org/10.3390/rs14040964
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1105-5739
https://doi.org/10.3390/rs14040964
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14040964?type=check_update&version=1


Remote Sens. 2022, 14, 964 2 of 27

Level 1G products, including the top-of-atmosphere (TOA) reflectance and brightness tem-
perature, in a previous paper [8]. The GeoNEX Level 1G products include radiometrically
calibrated and geometrically rectified TOA BRF and brightness temperatures reprojected
onto a common grid in the geographic projection [8–10]. The common grid covers Earth’s
surface from 60◦ N to 60◦ S and is divided into 6◦ × 6◦ tiles that were numbered from 0 to
59 horizontally and from 0 to 19 vertically. The spatial resolutions of the grid are 0.005◦,
0.01◦, and 0.02◦ in correspondence to the native 0.5 km, 1 km, and 2 km (nadir) spatial
resolution of the original geostationary data in the fixed-point projection. The temporal
resolution of the products is also the same as the original data, being 10–15 min for full-disk
scans. The L1G data include accurate sun-target-satellite geometry information, in partic-
ular the solar zenith and azimuth angles, for each pixel in the domain at every time step.
The data are archived in the EOS-HDF format and publicly accessible at the GeoNEX data
portal (https://data.nas.nasa.gov/geonex; data were last accessed on 4 February 2022).
More details regarding the GeoNEX L1G products can be found in [8].

The next (Level 2) step in the GeoNEX processing chain is atmospheric correction,
which removes the effects of atmospheric absorption and scattering from the L1G TOA
radiances to retrieve the surface reflectance (SR) and, as a by-product, the corresponding
atmospheric aerosol optical depth (AOD). The algorithm we are adapting for this task is
the Multiangle Implementation of Atmospheric Correction (MAIAC) system [11–16]. In
this paper, however, we introduce a new algorithm, which is inspired by MAIAC and de-
veloped from its framework, to particularly exploit the diurnal variability in geostationary
observations for atmospheric correction. (In this paper we do not distinguish the differences
between “diurnal” and “daytime” but may use them interchangeably.) The algorithm,
named GeoNEX-AC, is not intended to replace MAIAC as the operational algorithm for
the GeoNEX L2G products but rather be a tool for diagnostic analyses. Before we introduce
the motivations behind the development of GeoNEX-AC, let us review some of the basic
ideas of atmospheric correction.

Because the TOA radiance is a composite of solar radiations reflected by the sur-
face and backscattered by the atmosphere, retrieving SR or/and the AOD from the TOA
measurements is fundamentally under-constrained [17]. Additional information or a sim-
plification must be introduced so that a solution may be obtained. Such information can be
derived from various aspects of optical remote sensing data in spatial, spectral, angular,
and temporal dimensions. Different algorithms have been developed to exploit different
information sources.

For instance, atmospheric aerosol loading generally varies smoothly over spatial
scales under 50 km [18]. Therefore, we may opt to retrieve the AOD over dark pixels,
where the measured TOA reflectance is mainly regulated by the atmosphere and thus the
retrieved AOD is more accurate [19]. This is the basic idea underlying the MODIS Dart
Target algorithm [20–22]. Note that pixels that are bright in some spectral bands could be
dark in other bands. For instance, the visually bright deserts indeed appear dark in the
0.41 µm spectral region, which has motivated the development of the Deep Blue algorithm
to retrieve the AOD over deserts and similar regions [23–25].

A very common approach adopted by existing atmospheric correction algorithms to
decouple the atmospheric and the surface regulation on TOA reflectance is based on the
notion of spectral dependency between different bands [19]. On one hand, because the
AOD generally decreases with wavelengths following the power law [26], its regulation
to the TOA reflectance in the Short-Wave Infrared (SWIR) range (e.g., 2.2 µm) is relatively
small. This allows us to more accurately retrieve the surface reflectance for the SWIR band.
On the other hand, it was found that the ratios between the visible (i.e., Blue and Red) and
the SWIR bands (e.g., 2.2 µm) over densely vegetated pixels are statistically stable [19,20,22].
When the band ratios are determined a priori, we can easily estimate the reflectance of the
visible bands from the SWIR band [19] and subsequently retrieve the AOD in the visible
spectral range [20,22].

https://data.nas.nasa.gov/geonex
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In general cases (without the restriction on dense vegetation pixels), the spectral band
ratios can vary by land surface types as well as the illumination-view geometry [27,28].
Different approaches have been developed to determine the spatial and the temporal
variations in the spectral band ratios. Since Collection 5, the MODIS Dark Target algorithm
has used empirical models to account for land-cover and angular variations in the band
ratios [20]. The latest Visible/Infrared Imager Radiometer Suite (VIIRS) AOD algorithm
develops a spatial database of spectral band ratios to account for their spatial variability [29].
The MAIAC algorithm dynamically maintains band ratios at various illumination-view
geometries with the latest surface reflectance retrievals at each pixel [11,16].

Another important consideration of atmospheric correction algorithms is how to treat
the anisotropy of the surface reflectance. A full description of the angular dependence
of surface reflectance (SR) requires the Bi-directional Reflectance Distribution Function
(BRDF), which itself is challenging to model. The simplest approach is to neglect the
surface anisotropy by assuming the surface to be Lambertian. The Lambertian assumption
has the advantage of easy implementation and has been adopted in many atmospheric
correction and aerosol retrieval algorithms, such as 6S [30,31], Dark Target [20], ATREM [32],
ISOFIT [33], and many others [34,35]. This approach, however, neglects the angular
variations in the surface reflectance, which can be an important information source for
atmospheric correction for GEO observations.

Recent atmospheric correction algorithms have emerged that explicitly account for the
SR anisotropy. One example is the Aerosol and surface albedo Retrieval Using a directional
Slitting method-application to GEOstationary data (AERUS-GEO) algorithm originally
developed in [36,37] to process observations from the Spinning Enhanced Visible and
Infra-Red Imager (SEVIRI) on board the Meteosat Second Generation (MSG) geostationary
satellite. The algorithm adopts the semi-analytical Ross-Thick–Li-Sparse (RTLS) model to
represent surface BRDF and evaluates its regulation on the TOA reflectance in a linearized
semi-physical model at low computational cost [36]. The AERUS-GEO algorithm has been
applied to process GOES ABI and Himawari AHI data [38].

A more rigorous and comprehensive algorithm that explicitly accounts for the surface
BRDF effects is MAIAC. Like AERUS-GEO, MAIAC also adopts the RTLS BRDF model.
However, unlike AERUS-GEO, MAIAC rigorously derives the expression of the TOA
reflectance (as a function of surface BRDF) with the help of Green’s function method [39,40].
Because the RTLS model essentially represents BRDF as a combination of kernel functions
(of illumination and view geometries) weighted by a few linear parameters, MAIAC is able
to efficiently and accurately exploit the angular dimension of the satellite observations.

MAIAC also exploits temporal information from time series of satellite observations.
The algorithm uses the differences in space-time variability between land surface and at-
mospheric optical conditions (e.g., clouds, aerosols, etc.) to separate land and atmospheric
signals. It regularly monitors time series of surface reflectance in the Red, the Near Infrared
(NIR), and the SWIR bands to detect potential changes in surface conditions due to weather
(e.g., rain/snow) or natural disturbances (e.g., fires). The algorithm “remembers” and
dynamically updates a set of physical signatures for each grid cell, including full spectral
BRDF, spectral and thermal contrasts, and metrics of spatial variability from higher resolu-
tion channels with the latest measurements. These functional requirements increase the
complexity of the implementation of the MAIAC algorithm, but help improve its capability
in cloud/snow detection, which is a dominant error source in land remote sensing [11,12].
The data composition approach described above is based on the assumption that surface
properties are stationary at short time scales. The choice of composition time windows
is clearly affected by the satellite’s revisit frequency. LEO sensors such as MODIS and
VIIRS complete the global coverage at daily scales. By the well-known Nyquist–Shannon
sampling theorem [41], this means that these observations cannot be used to resolve surface
processes that occur on bi-diurnal or shorter time scales. This time-scale limit can be much
longer due to cloud contamination and issues in practice. For instance, the MAIAC algo-
rithm composites MODIS observations with a sliding window up to 16 days [16], which
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is by no means ideal and only reflects the limitation of the LEO data. We will show in
this paper that the 10-min data frequency of the GEO sensors provides a most promising
alternative to address the issue.

The above brief review shows that MAIAC has many advantages in processing multi-
angular satellite data. For this reason, we are adapting it as the operational algorithm to
generate GeoNEX Level 2 products. At the same time, because MAIAC is also applied
to process data streams from many other satellites, such as MODIS and VIIRS, we are
interested in the question: “what advantages do geostationary datasets have, in comparison
with their LEO counterparts, that facilitate atmospheric correction?”

This paper is set to answer this question. We will demonstrate that the diurnal
variability in the geostationary TOA reflectance (or radiance), as represented by the high-
temporal-resolution (i.e., ~10 min) time series, contains unique information that helps
us separate the surface and the atmospheric signals without invoking other common
techniques such as the spectral band ratios. We develop the GeoNEX-AC algorithm
particularly to exploit the temporal and the angular information from the diurnal variations
in the geostationary data. We will show that our algorithm has good performance on
various, even challenging, land cover types. In addition, we will show that the retrieval
results from our algorithm have the potential to help validate and refine conventional
atmospheric correction techniques.

2. Materials and Methods
2.1. Data

We use the GeoNEX Level 1G products [8] of GOES 16 ABI in this study. The products
include the bidirectional reflectance factor (BRF) for the reflective bands and brightness
temperature (BT) for the emissive bands [8]. As GOES 16 is parked over the equator at
75.2◦ W, its GeoNEX spatial domain covers both North and South America from 138◦ W
(Horizontal Tile 7) to 18◦ W (Horizontal Tile 26) and from 60◦ N (Vertical Tile 0) to 60◦ S
(Vertical Tile 19). Figure 1 shows the tiles over the conterminous Unites States (CONUS).

Figure 1. Examples of the GeoNEX common grid and the L1G TOA BRF products over North
America. The solid red dots denote the six AERONET sites used in this study (also see Table 1).
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Table 1. List of AERONET sites, including their geographic location and GeoNEX coordinates, used
in this paper.

Name Location
(Lat/Lon)

Tile
(H/V)

Pixel
(Line/Sample)

Local Noon
(UTC Time)

ARC, CA (37.42, −122.06) (9, 3) (458, 394) 20:08
Tucson, AZ (32.23, −110.95) (11, 4) (377, 305) 19:23

White Sands, NM (32.92, −106.35) (12, 4) (308, 165) 19:05
SMEX/Ames, IA (41.94, −93.66) (14, 3) (006, 234) 18:14

Churchill (Canada) (58.74, −93.82) (14, 0) (126, 218) 18:15
GSFC, MD (38.99, −76.84) (17, 3) (301, 116) 17:07

Key Biscayne, FL (25.73, −80.16) (16, 5) (427, 384) 17:20

For the interest of this paper, we developed and tested our atmospheric correction
algorithm with time series of the GeoNEX L1G products over selected AERONET sites,
which are listed in Table 1 and indicated in Figure 1. These sites were specifically chosen to
cover a diverse range of representative geographic locations or/and surface types. We used
the Level 2 Aerosol Optical Depth (AOD) products [42,43] measured at the AERONET sites
to validate the retrieval results from our algorithm.

2.2. Radiative Transfer Model

Atmospheric radiative transfer models (RTMs) are well-developed tools to simulate
the propagation of sunlight, including the absorption and the scattering of photons by air
molecules and aerosols, in the atmosphere. The RTMs used in MAIAC include the Spherical
HARMonics code (SHARM) [44] and the Intensity and POLarization code (IPOL) [45], both
of which represent the state of the art [46]. The SHARM code performs fast and accurate
simulations of the monochromatic radiance at the top of the atmosphere over spatially
variable surfaces with Lambertian or anisotropic reflectance. It assumes that the atmosphere
is laterally uniform and aerosols are mainly contained in the bottom atmosphere layer.
The code computes the spectral absorption of six major atmospheric gases (H2O, CO2,
CH4, NO2, CO, and N2O) based on the HITRAN 2008 database [47] using a line-by-line
interpolation and profile correction method [48] for the GOES ABI and Himawari AHI
spectral response functions. Absorption by Ozone is corrected separately with the six-
hourly NCEP Global Data Assimilation System (GDAS) data. MAIAC uses the IPOL code
to simulate the effects of polarization on the transport of solar radiation, especially those
induced by the scattering of atmospheric particles. The solutions of IPOL are then used to
update the atmospheric path reflectance in the SHARM simulation [16].

A particular advantage of the SHARM model is that it rigorously decouples the
atmospheric transport of sunlight from its interactions with the surface via the method of
Green’s functions [39,40]. This feature allows the model to fully describe the solutions of the
TOA reflectance in terms of a few surface BRDF parameters and kernel functions [16]. The
current implementation of MAIAC uses the Ross-thick–Li-sparse (RTLS) BRDF model [49],
which represents the surface BRF (ρ) as the sum of Lambertian, volume scattering, and
geometric optical components:

ρ(µ0, µ, φ) = kL + kV fV(µ0, µ, φ) + kG fG(µ0, µ, φ) (1)

where fV and fG are the kernel functions for volume scattering and geometric optical com-
ponents (the Lambertian kernel is normalized to be 1), respectively, and K =

{
kL, kG, kV}

are the sets of weights for the corresponding components. Note that the kernel functions
are purely determined by the sun-satellite geometry, including the cosines of the solar and
the view zenith angles (µ0 and µ) and the relative azimuth angle (φ), and therefore can be
accurately calculated.

With the RTLS parameters, the TOA reflectance is explicitly expressed as
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R(µ0, µ, φ) = RA(µ0, µ, φ) + kLFL(µ0, µ) + kGFG(µ0, µ, φ) + kV FV(µ0, µ, φ) + Rnl(µ0, µ) (2)

where RA represents the atmospheric path reflectance. The functions FL, FV , FG, and Rnl

are calculated with a few basic functions representing different hemispheric integrals of
downward path radiance, atmospheric Green’s function, and the RTLS kernels [11]. These
functions depend on the illumination-view geometry and aerosol properties.

MAIAC pre-calculates Green’s functions on selected sun-satellite angles and aerosol
levels and stores them in Look-Up Tables (LUTs), which enable fast and accurate simulations
of TOA reflectance in operational runs. MAIAC uses eight different dynamic aerosol models
for various regions of the world [16]. Particular to this study, MAIAC separately uses two
aerosol models for Eastern and Western United States, both of which are calibrated with
regional AERONET observations [43] and represent the state of the art [16]. MAIAC also
generates a separate LUT for a Rayleigh atmosphere, which has no aerosol loading and
thus considers only the molecular scattering of the photons. It uses the 1976 US Standard
Atmosphere profile in computing the LUTs over the domain of CONUS. We use the same
DEM as in the MODIS MAIAC to correct for variations in surface pressures. Details of the
latest technical aspects of the MAIAC LUT can be found in [16].

Figure 2 illustrates the use of the MAIAC RTM in simulating the Blue-band (0.47 µm)
TOA BRFs at the Tucson site. Because the view angles of geostationary satellites are fixed
for a given pixel, we mainly consider the dependence of TOA BRF on solar angles (µ0
and φ), aerosol optical depth (AOD), and surface reflectance (ρ(µ0, µ, φ)). For the purpose
of illustration, we keep the relative azimuth angle constant and simplify the surface to
be Lambertian so that it is easy to visualize the simulation results as functions of solar
zenith angles (SZA) and AOD levels at the specified surface reflectance. In Figure 2a, the
surface reflectance is zero (“black soil”) and thus the TOA BRF is contributed totally by
atmospheric path reflectance. It is clear that the path reflectance increases as the AOD and
SZA increase (the cosine of SZA, cSZA, decreases). When the surface reflectance increases
to 0.3 (Figure 2b), the contribution from the surface-reflected component in the TOA signal
becomes more important at lower AOD levels (AOD < 0.5). However, its importance
decreases at higher AOD levels (AOD > 1) or/and larger SZAs (SZA > 60◦ or cSZA < 0.5).
These results are expected from the well-known fact that solar radiation in the Blue band is
prone to atmospheric scattering.

The example shown in Figure 2 illustrates the forward simulation with the MAIAC
RTM. In comparison, atmospheric correction is an inverse problem, where the surface
BRDF parameters and the AOD level need to be determined from the observed TOA BRFs.
We show below that this is essentially achieved by identifying the optimal combinations of
AOD and surface reflectance (and its component) so that the simulated diurnal variations
in TOA BRFs best match the observations.
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Figure 2. Blue-band TOA BRF simulated by the MAIAC RTM as a function of AOD and the cosine
of SZA (cSZA) at the Tucson site with a Lambertian surface model: (a) SR = 0.0 (“black soil”) and
(b) SR = 0.3. The satellite (GOES-16) zenith and azimuth angles are 53.66◦ and 123.68◦, respectively,
at the site. For the shown example, the solar azimuth angle is fixed at 180◦ (corresponding to the local
noon) and the 1976 US Standard Atmosphere is used in the simulations.

2.3. Algorithm Overview

We give a quick overview of our algorithm (Figure 3) in this section before discussing
the major components in detail in the following sections.

Figure 3. Box diagram of the atmospheric correction algorithm.

In order to exploit information from the diurnal variability in the TOA observation,
our processing starts with reading in the whole diurnal cycles of TOA BRFs, brightness
temperatures, and other ancillary data (e.g., climate reanalysis products). The first major
step (Box 1) is to distinguish smooth and rough segments of the time series with specifically
designed Roughness Indices for the visible bands. Only smooth segments of consecutive
data points are deemed suitable for further analysis. The next step (Box 2) conducts initial
tests to further filter out observations that are likely contaminated by persistent clouds.
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This step temporarily labels the rest of the data points as clear observations. The workflow
proceeds only if there are at least three clear observations remaining in the diurnal cycle.

For the next stage of processing, we first check if prior surface BRDF parameters exist.
If not, the workflow proceeds only when the day is clear and there are sufficient clear-sky
data points in the diurnal time series. We perform the clear-day atmospheric correction
algorithm to fully retrieve the BRDF parameters and the daily mean AOD, and calculate
the corresponding surface reflectance (Box 5). The BRDF information will be saved and
serve as the prior information for the next processing cycle.

If the BRDF has been previously retrieved, the prior information is used to refine
the (partial) cloud/snow tests (Box 3). It is followed by an initial estimation of surface
reflectance and AOD with the partial-clear-day algorithm (Box 4). If the day is fully clear,
the BRDF parameters, AOD, and SR will be estimated for the second time with the clear-day
algorithm (Box 5).

The final step in the processing chain is to update the posterior BRDF information
(Box 6). For clear days, the basic strategy is to use the newly retrieved BRDF parameters
as the posterior. This approach is taken as a measure to refresh the “memory” of the
processing and therefore remove potential biases accumulated from previous days. For
partially clear days, we update the posterior BRDF by compiling the surface reflectance in
the past few days (up to 32 cloud-free observations) and re-estimate the RTLS parameters
from the composited time series. The processing iterates at daily time steps and generates
outputs of 10-min surface reflectance, daily BRDF parameters, and daily mean AOD at the
end of every day.

2.4. Diurnal Variability and Smoothness/Roughness Index

We started to develop our atmospheric correction algorithm by examining the char-
acteristics of the diurnal variations in the observed TOA reflectance. Figure 4 shows an
example of the diurnal circle of the summertime TOA BRF at the Tucson site. As shown,
the time series is very smooth in the (local) morning but becomes rough in the afternoon.
Visual examination of the corresponding satellite images (not shown) indicated that the
smooth time series were obtained under clear sky conditions while the increased variability
in the afternoon corresponds to emerging clusters of cumulus in the sky.

The strong disparity between the smooth and the rough segments of the time series
of TOA BRF is not unique to the Tucson site but observed everywhere across the domain,
reflecting a key fact about the diurnal variability in the measured TOA BRF. Except for
anomalous events (e.g., land clearing, snow storms, etc.), land surface structures and prop-
erties vary little on sub-daily time scales. Under clear-sky (cloud-free) conditions, variations
in the reflected radiances (and the corresponding reflectances) are mainly regulated by
the changing positions of the sun in the sky and thus are a smooth function of solar (and
satellite) angles. Inversely, if the time series of radiance/reflectance change significantly at
short (~10-min) time steps, they very likely indicate varying atmospheric conditions under
the disturbances of, for instance, passing clouds or shadows. Therefore, the smoothness
and roughness of the observed diurnal TOA BRF variations give us a handy tool to filter
cloud-contaminated data and identify potential clear-sky measurements.

We devised a Roughness Index (RI) based on the second derivatives of time series to
evaluate the smoothness/roughness of the diurnal variations in TOA reflectance. Mathe-
matically, the second derivatives of a curve are closely related to its curvatures and thus
commonly used to measure the roughness of curves [50]. Because we are mainly interested
in the magnitudes of the changing rates/curvature, we defined the RI as the squares of the
derivatives:

RI(i) = c · y(i)2, where y(i) =
d2ρ

dt2 =
ρ(i + 1) + ρ(i − 1)− 2ρ(i)

(∆t)2 (3)

where ρ is the TOA BRF of a given spectral band, ∆t is the time step (in minutes), and c is a
constant scaling factor.
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Figure 4. Example of (a) diurnal variations in GeoNEX TOA BRF and (b) the corresponding rough-
ness/smoothness indices. The data were measured by GOES16 ABI over the Tucson AERONET site
on 5 July 2018. The local time offset is about 7 h and 19:23 UTC is approximately the local noon
(Table 1).

By Equation (3), the roughness index calculates how the TOA BRF at a given time step
(ρi) deviates from the arithmetic mean of the preceding and the following measurements
( ρi−1+ρi+1

2 ). The greater the deviation is, the larger the roughness index is. We can thus
use a threshold, RIthresh, to determine if the data were acquired under cloudy/unstable
atmospheric conditions. In this study, we chose the scaling factor c to be 2 × 107 so that
RIthresh is 1. An example of the roughness indices corresponding to the time series of TOA
BRF at the Tucson site is presented in Figure 4. As shown, the roughness indices are below
0.1 in the morning but above 1 in the afternoon, clearly indicating the distinction between
the smooth and the rough segments of the time series.

The roughness index occasionally can have values lower than RIthresh by chance
(Figure 4). Therefore, we tightened our criteria for potential clear-sky observations to
be consecutive low RI values at three or more timesteps. Additionally, because different
spectral bands may be sensitive to different atmospheric or surface disturbances (e.g., cirrus
or mist), we calculated the roughness indices for all reflective bands for data screening.
We emphasize that (consecutive) low roughness indices are only a necessary, but not a
sufficient, condition for detecting clear atmospheric conditions. Smooth TOA BRFs could
result from large persistent cloud cover or sunglint over oceans. In cold seasons, we also
want to differentiate snow-free and snow-covered surfaces. We need other tools (e.g., cloud
tests based on temperature or brightness) to fulfill these tasks, which we will describe later
in the paper. Nevertheless, the smoothness/roughness test of the diurnal variations in TOA
BRF adds a new gadget to our toolbox to address these challenges.

2.5. Atmospheric Correction on Clear Days

Let us first consider atmospheric correction for the easier case when the sky is mostly
clear during the day. Figure 5 shows the TOA BRF of four Visible to Short-Wave Infrared
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(VSWIR) bands (0.47, 0.64, 0.86, and 2.20 µm) on 26 March 2018 at the GSFC site, where the
time series are mostly smooth based on the roughness index criteria. The diurnal cycles of
the reflectances reveal certain patterns. For bands of shorter wavelengths (e.g., 0.47 µm),
the time series tend to show a “bowl” (or “cup”) trajectory: the TOA BRFs are as high as
~0.28 earlier in the morning, decrease to ~0.2 during the course of the day, and increase
to ~0.25 later in the afternoon. This characteristic pattern reverses as the wavelength of
the spectral bands increases. For the 2.20 µm band, for instance, the TOA BRF peaks at
~0.21 during the day and decreases to ~0.1 earlier in the morning or later in the afternoon,
showing a “bell” (or “cap”) shape.

Figure 5. (a) Diurnal variability in clear-sky TOA BRFs at the GSFC AERONET site on 26 March
2018. The clear-sky BRFs were identified with the developed roughness index for all bands and are
denoted by solid dots. (b) Diurnal cycles of the absolute values of the cosine of the scattering angles
(ScatAng) and the Sun Zenith Angle (SZA), as well as the geometric optical kernel (Fgeo) and the
volume scattering kernel (Fvol) of the RTLS model. The local time offset is about 5 h and 17:07 UTC
is approximately the local noon (Table 1).

The TOA BRF patterns shown in Figure 5 reflect the relative balance between the
scattering and the absorption of photons in the atmosphere and the surface media (e.g.,
canopy), and are also related to the illumination-view geometry at the site (see below).
Indeed, these patterns reflect a phenomenon known as the “hot-spot” effect, which occurs
when the solar illumination direction and the satellite view direction coincide [51]. For
geostationary sensors, the hot-spot phenomena are most evident in March and October over
CONUS [52]. Shown in the bottom panel of Figure 5, the scattering angle approaches 172◦

around 17:00 UTC, indicating the close approximation of the positions of the Sun and the
satellite in the local sky. This timing corresponds to the substantial rises (i.e., the “hot-spot”)
in the TOA BRFs in the longer-wavelength bands. Figure 5 shows also that the hot-spot
effects are partially captured by the geometric optical kernel (Fgeo) of the RTLS model. The
volumetric kernel (Fvol) shows a “bowl” shape similar to the diurnal trajectories of the
Blue (0.47 µm) and the Red (0.64 µm) bands, suggesting stronger scattering at larger solar
zenith angles (Figure 4).
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We used the MAIAC RTM to simulate the identified diurnal variability in the clear-
sky TOA BRFs. We ran the RTM at 13 AOD levels ranging from 0 to 4.0 and, for each
AOD level, used a gradient-descent approach to optimize the surface reflectance BRDF
parameters (Equation (1)) so that the simulated TOA reflectance (Equation (2)) best matches
the observations. To ensure that the results are physically justifiable, we imposed further
constraints on the retrieved RTLS parameters (i.e., kL, kG, kV) so that they are non-negative.
We evaluated the performance of the optimization by calculating the root-mean-square-
error (RMSE) statistics.

Figure 6 shows the simulation results for the Blue band (0.47 µm) and the SWIR band
(2.20 µm) with the RTLS BRDF model, which well capture the observed diurnal cycles of the
TOA BRF for both bands. For AOD levels from 0.0 to 0.1, the RMSE statistics are ~0.006 for
the Blue band and ~0.007 for the SWIR band, suggesting that the model simulation errors
are generally less than 5% of the observed TOA BRF. The errors between the simulation and
the observations apparently increase when the AOD increases. The spread of the model
simulations at high AOD levels is particularly wide for the Blue band. The spread of the
SWIR simulations is mostly discernible early in the morning or late in the afternoon. All
these results suggest that the atmospheric aerosol loading is low at the GSFC site on the
particular day.

Figure 6. Comparison between the observed TOA BRF (solid dots) shown in Figure 5 and those
simulated with the RTLS surface model under different AOD levels: (a) the Blue band, (b) the
SWIR band.

The simulation results shown in Figure 6 indicate that, with appropriate RTLS pa-
rameters and AOD values, the MAIAC RTM can accurately simulate the observed diurnal
variability in the TOA BRFs for all spectral bands in the visible to short-wave infrared
range. In other words, surface reflectance on diurnal time scales is a smooth function of the
illumination-view geometry, which can be accurately represented by the RTLS model to
the extent of the observed (solar and satellite) angular space. On the other hand, though
a bit unfortunate, the solutions of appropriate AOD values and RTLS parameters are not
unique. As shown in Figure 6, for any AOD value from 0 to 0.1, there exist reasonable RTLS
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parameters that allow the RTM to successfully simulate the observed TOA BRF. Therefore,
we calculated the weighted mean of AOD values that have the lowest RMSE values and
satisfy certain other criteria (see below) as the best estimate of mean AOD for the given
day. We also used the range of the most plausible AOD levels as a metric to evaluate their
uncertainties.

Figure 7 shows the atmospheric correction results of the time series shown in Figure 5
with the RTM simulations presented in Figure 6. The retrieved AOD value generally agrees
with the ground-based measurement, though our algorithm has neglected the diurnal
variations in AOD. This is a compromise made for greater degrees of freedom in our
analysis. The retrieved diurnal cycles of the Surface BRF (SR) clearly show the regulation
of the RTLS model. They all show a “bell” shape, though to various amplitudes, reflecting
the influence of the geometric optic kernel function (Figure 5). These results indicate that
the angular dependence of the surface reflectance (i.e., the BRDF effects) is a key source of
information for us to perform atmospheric correction. Because there is no ground-measured
surface reflectance (at satellite pixel scales) available to validate the retrieved results, we
used the AERONET-measured AOD as an input to the MAIAC RTM and derived a set
of “reference” surface BRFs following a common procedure in the literature [34]. This
approach largely eliminates the uncertainties associated with the atmospheric optical
properties, and thus the reference data are considered as the best proxy of the “true” surface
BRF. Comparing the retrieved surface BRF with the corresponding reference data indicates
a high degree of agreement (Figure 7). Although the reference data are not ground truths
but model results, the consistency between the two sets of results (Figure 7) confirms that
our retrieval algorithm (for surface reflectance, in particular) is robust. The corresponding
RTM simulations with the Lambertian surface model (not shown) were found to be less
optimal than the RTLS counterparts.

Figure 7. Atmospheric correction results for the diurnal time series of Figure 5 with the RTM
simulations of Figure 6. (a) AOD and the corresponding AERONET measurement (Level 2.0 product
at 0.50 µm). (b) Surface BRF (solid dots) for the Blue, the Red, and the SWIR (2.2 µm) bands. The
dashed lines show the corresponding reference surface BRF (“ref”) retrieved with the AERONET
AOD for comparison.
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2.6. Atmospheric Correction on Partially Clear Days

Fully clear days like the one shown in Figure 5 are relatively rare, especially in cloudy
regions like the tropics. More frequently, the sky will be clear for a few hours and then
covered by clouds, or vice versa. The number of clear observations we can obtain on
partially clear/cloudy days can be much less than those shown in Figure 5. The fewer
clear observations present additional challenges to atmospheric correction. They reduce
the degrees of freedom in the empirical analysis such that the results become unreliable
(e.g., overfit) at a certain point. More importantly, retrievals with fewer observations are
typically associated with higher uncertainties. The latter can be understood by the model
simulations shown in Figure 6. The TOA BRFs simulated with a wide range of AOD levels
(0–0.55) have similar trajectories between 15:00 UTC and 19:00 UTC (roughly local time
10 a.m. to 2 p.m.) at the GSFC site (Figure 6). If the only clear observations were restricted
in this time window on that day, the upper bound of acceptable AOD levels that allow the
MAIAC RTM to reasonably approximate the observed TOA BRF could be increased up to
0.55 with suitable surface RTLS parameters. Therefore, we need a different approach to
perform atmospheric correction on partially clear days.

A natural strategy to address the challenge of partially clear days is to leverage the
retrievals from the preceding (or adjacent) days as prior information in the analysis. To
illustrate, the top panel of Figure 8 shows two diurnal time series of TOA BRFs observed
at the Key Biscayne AERONET site on 14 and 15 April 2018. Based on the roughness
indices and other tests, there are only four reliable clear observations on 15 April at the
site (Figure 8), making it impractical to perform the full retrieval algorithm on that day.
Fortunately, there are more than a dozen cloud-free observations on 14 April (Figure 8),
which allow us to successfully retrieve the surface RTLS parameters. The trajectories of
the clear-sky observations on both days appear to be consistent (Figure 8), suggesting
that the surface reflective properties did not change much between the two days. We can
therefore use the RTLS parameters estimated on 14 April as the prior information, with
some necessary adjustments (see below), to estimate the AOD level on 15 April. The bottom
panel of Figure 8 shows that the retrieved AOD values closely match the corresponding
ground measurements.

There may be multiple days before a full set of RTLS parameters can be independently
retrieved. It is thus necessary to adjust the prior RTLS information before performing
partially clear-day retrievals. One approach to do this is to allow the magnitudes of the
RTLS parameters to change but assume the BRDF shape to be stable. That is, we represent
the new RTLS parameters (at time t) as the product of the prior ones (at time t − 1) and a
single scaling factor ( f ),

ρt(µ0, µ, φ) = f · ρt−1(µ0, µ, φ)

or more explicitly 
kL

t = f · kL
t−1

kV
t = f · kV

t−1
kG

t = f · kG
t−1

In this way, we only need to estimate the scaling factor ( f ) from the observations and
therefore save the degrees of freedom of the analysis. This method is often referred to as
the Vermote–Justice–Bréon (or simply VJB) approach after the authors’ 2008 paper [53].

A convenient way to estimate the scaling factor for all the bands can be achieved
with the spectral dependency assumption mentioned in the Introduction, which suggests
that the ratios between the directional reflectances of different spectral bands are relatively
stable [19]. Under this assumption, variations in the scaling factors among different spectral
bands are negligible and thus we only need to estimate one scaling factor for all the bands.
We chose the SWIR band to estimate the scaling factor because this band is less affected by
AOD variations due to its longer wavelength.
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Figure 8. (a) TOA BRFs of the Blue band at the Key Biscayne AERONET site on 14 (green line) and
15 (red line) April 2018. The identified clear-sky BRFs on both days are denoted by solid dots of
corresponding colors. Surface reflectance (RTLS) parameters were estimated on the observations of
14 April and then used as prior information to estimate the AOD level on 15 April. The solid and the
dashed black lines show the model-simulated TOA BRFs with the prior RTLS parameters and two
AOD levels, 0 and 2.8, respectively. (b) AOD measured at the AERONET site and retrieved by our
algorithm on both days. The time offset at the site is about 5 h and 17:20 UTC is approximately the
local noon.

We notice that the VJB assumption (i.e., the BRDF shape does not change) is a very
strong constraint on the retrieved surface reflectance, which should be gradually relaxed
with the elapse of time between adjacent partially clear-day retrievals. For this purpose,
we compiled the surface reflectance in the past few days (up to 32 cloud-free observations)
and re-estimated the RTLS parameters from the composited time series. The re-estimated
RTLS parameters were deemed the “posterior” results and used to calculate the surface
reflectance.

Figure 9 shows the retrieved surface reflectances of the Blue and the SWIR bands at
the Key Biscayne site on 14–16 April 2018. The results generally suggest that the BRDF
at the site has a relatively strong geometric-optics component such that the reflectances
decrease substantially (>30%) at large solar zenith angles. The surface reflectances on
15 April closely follow those of 14 April, reflecting the influence of the latter (as the prior
estimates) on the retrieval results on (partially) cloudy days. Interestingly, we see that the
Blue-band reflectances on 15 April are slightly higher than those on 14 April while the
corresponding SWIR reflectances are slightly lower. This implies small variations in the
ratio between the two bands. The surface BRDF on 16 April, which was independently
estimated (and the retrieved AOD is highly consistent with AERONET measurements),
shows more discernible differences from the preceding days. In particular, the SWIR band
reflectance decreases (−5%) around local noon but increases (up to ~30%) in the morning
and the afternoon, indicating variations in the ratios between the Blue and the SWIR bands
on diurnal scales. Such BRDF changes on successive days emphasize the importance of
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frequently updating the surface RTLS parameters with new observations, especially when
surface changes are detected (see below).

Figure 9. (a) Surface BRFs of the Blue band retrieved at the Key Biscayne site on 14 (green line), 15
(red line), and 16 (blue) April 2018. The solid dots indicate the time steps where clear-sky observations
are identified. (b) The same as the top panel but for the SWIR band.

2.7. Snow and Cloud Detection

Although (land) surface properties in general do not rapidly change, rapid changes
could happen with natural or anthropogenic disturbances, including snow, wildfire, agri-
cultural harvesting, forest clearcutting, and so on. In particular, snowfall occurs commonly
over vast regions outside the tropics (and the subtropics) during the cold seasons and can
induce significant changes in surface reflectance overnight. Figure 10 shows an example
observed at the SMEX/Ames (Iowa) AERONET site between 4 and 7 February 2018 (where
the two days of the 5th and the 6th are totally cloudy). In only a couple of days, the Blue
BRF increased from ~0.25 to ~0.9, indicating significant brightening of the surface in the
visible spectral range. In comparison, the SWIR BRF decreased (“darkened”) from above
0.3 to below 0.2. The diurnal time series of the SWIR BRF also flattened on 7 February,
showing much less sensitivity to the illumination geometries during the course of the day
as compared with the snow-free case on 4 February.
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Figure 10. (a) TOA BRFs of the Blue (blue) and the SWIR (black) bands at the SMEX/Ames (Iowa)
AERONET site on 4 (solid line) and 7 (dashed line) February 2018. (b) Normalized Difference Snow
Index (NDSI, magenta) and Normalized Difference Vegetation Index (NDVI, green) calculated from
the retrieved surface reflectances. (c) Brightness temperature differences between the 3.9 µm and the
11.2 µm bands on the two days. In all panels, the solid dots indicate where clear-sky observations
were identified on both days. The time offset at the site is about 6 h and 18:14 UTC is approximately
the local noon (Table 1).

We used a set of spectral variables/indices to detect surface snow and discriminate
between snow and persistent cloud cover, including the Normalized Difference Vegetation
Index (NDVI), the Normalized Difference Snow Index (NDSI), and the Brightness Tempera-
ture Difference between the 3.9 µm and the 11.2 µm bands (dBT4-11). They are calculated
as follows: 

NDVI = ρnir−ρred
ρnir+ρred

NDSI = ρred−ρswir
ρred+ρswir

dBT4_11 = T3.9µm − T11.2µm

where ρλ and Tλ represent the reflectance (or reflectance factor) and the brightness temperature
at the spectral band or wavelength λ, respectively. Note that because the GOES16/17 ABI
does not have a Green band, we used the Red band in calculating the NDSI.

In general, NDVI values are high (>0.7) over densely vegetated pixels, low (<0.3)
over bare soils, and can even be negative over snow pixels [54]. The NDSI behaves in an
opposite manner to the NDVI, having positive/high values (up to 1.0) over snow cover but
negative/low values over common snow-free surfaces [55]. The MAIAC algorithm uses
a NDSI threshold of 0.3–0.4 for snow detection, where pixels with a NDSI exceeding the
threshold are considered to be potentially covered by snow. However, this criterion alone
is not sufficient to make the final classification as high NDSI values can also result from
ice clouds [56,57]. The brightness temperature contrast test (dBT4-11) was thus used to
help solve the problem. During the day, the 3.9 µm band of the ABI instrument senses both
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reflected solar radiation and Earth-emitted radiation. Because water and small ice crystals
in the clouds are more effective in reflecting the 3.9 µm infrared radiation than the large ice
crystals in the snow, this leads to a higher thermal contrast in clouds than surface snow [1].
We used a dBT4-11 threshold of ~5 K in our algorithm, where bright pixels with a high
NDSI value and a low thermal contrast dBT4-11 value are reliably classified as snow cover.
The effectiveness of these tests is illustrated in the middle and bottom panels of Figure 10.
From the 4 to the 7 of February at the SMEX/Ames site, NDVI values dropped from 0.22 to
−0.02, the NDSI increased from −0.4 to 0.6, while the dBT4-11 remained less than 3 K on
the 7th, especially for the identified clear-sky data points (Figure 10). These results together
indicate that the detected surface changes were induced by snow, likely precipitated on
5 and/or 6 February 2018 in this region, which is consistent with visual examination of the
corresponding satellite images (not shown).

Compared with the large contrast between snow-covered and snow-free surfaces as
shown in Figure 10, the transition states, such as melting snow or partial snow cover, are
more challenging to detect. For this purpose, we refined the snow tests by evaluating
changes in NDVI and NDSI between the observations and the expectation (or the prior
information), that is, {

dNDVI = NDVI − NDVIprior
dNDSI = NDSI − NDSIprior

where the prior NDVI/NDSI indices are calculated with the previously retrieved results.
The pair of differential indices turns out to be very useful in detecting subtle but important
surface changes.

Figure 11 shows an example of TOA BRFs observed at the GSFC site on 28 and 30 Jan-
uary 2019 (the 29th is totally cloudy). At first sight, the clear-sky observations on the
30th appear to be consistent with those of the 28th, suggesting similar surface conditions
between the two days. However, when we compare the observations of the 30th with the
corresponding prior estimates, which were simulated with the RTLS parameters retrieved
(or updated) on the 28th and an initial estimate of AOD (0.05), it becomes clear that the
observed BRFs of the Blue band (and other visible/infrared bands) are consistently higher
than the prediction while those of the SWIR BRFs are lower (Figure 11). If we estimate the
surface reflectances of the Blue band from the SWIR band using the VJB approach described
in the preceding section, they will be under-estimated, and the differences between the
observed and the simulated Blue-band TOA BRFs will be further over-estimated. The en-
larged discrepancies have to be compensated for by increased scattering of the atmosphere,
which ultimately leads to large positive anomalies in the retrieved AOD (not shown). Fortu-
nately, such biases are captured by the dNDSI test. Shown in the bottom panel of Figure 11,
the NDSI values on 28 January are about −0.25 on average and jump to about −0.05 on the
30th. Although the NDSI values are still low and the corresponding changes in NDVI are
small (Figure 11), this magnitude (~0.24) of the dNDSI alone cannot be easily dismissed.
Visual examination of the satellite images indicated that partial snow cover is most likely
the culprit in this example. Our algorithm currently classifies such cases as partial cloud
or snow, depending on the context of a few other criteria (e.g., temperature). In any case,
subtle surface changes of this kind should be separated from the normal conditions and the
dNDSI/dNDVI tests serve the task well.
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Figure 11. (a) TOA BRFs of the Blue band at the GSFC AERONET site on the 28th (solid line) and the
30th (dashed line) of January 2019. The orange curve indicates the prior estimation of the TOA BRF
on 30 January simulated with RTLS parameters retrieved on the 28th. (b) the corresponding TOA
BRFs of the SWIR band. (c) NDSI (magenta) and NDVI (green) calculated from the retrieved surface
reflectances. In all panels, the solid dots indicate where clear-sky observations were identified on
both days. The time offset at the site is about 5 h and 17:07 UTC is approximately the local noon.

3. Results

We ran the GeoNEX-AC algorithm at the selected AERONET sites (Table 1) for a
two-year period from 1 January 2018 to 31 December 2019 and compared the retrieved
results with the corresponding ground observations. Figure 12 shows the daily averaged
results retrieved at the White Sands site compared with AOD observations measured at the
nearby White Sands HLSTF site. This site was chosen as an example because it represents
a few challenges for traditional atmospheric correction algorithms. The surface is very
bright in the visible spectral range at the site. The Blue-band surface reflectance is ~0.5
(Figure 12), while it is typically less than 0.1 at vegetated surfaces (see Figures 7 and 9
for the cases of the GSFC and the Key Biscayne sites, respectively). This implies that
the regulations of atmospheric aerosol loadings on the TOA BRFs are relatively weak as
compared with variations in the surface reflectance. As a result, the retrieved AOD values
are often associated with large uncertainties [58–60]. In contrast to the bright visible bands,
the reflectance at the SWIR band at the site is relatively low. The large positive contrast
between the visible and the SWIR bands results in high NDSI values (0.4–0.6; Figure 12),
making it difficult to separate from clouds or snow in the cold season.
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Figure 12. Daily averaged retrieval results at the White Sands AERONET site from 1 January 2018 to
31 December 2019. (a) the retrieved AOD compared to AERONET observations. (b) Retrieved
surface reflectance of the Blue band and the SWIR band. (c) NDVI and NDSI calculated with the
corresponding surface reflectance. All retrieved values were calculated for the detected clear or
partially clear days. Note that there is a data gap of about two months at the beginning of 2018 due to
the “burn-in” process of the algorithm (see text for details).

Because we ran our algorithm without prescribed prior information, the high bright-
ness and high NDSI values confused the cloud/snow detection tests at the beginning of the
run: the algorithm struggled to identify any clear or partially clear days for an elongated
“burn-in” period of almost two months (Figure 12). However, when the site was finally
classified as a bright snow-free surface (with the help of temperature tests), the algorithm
started to regularly and accurately retrieve AOD and surface reflectance for the remainder
of the experiment. As shown, the retrieved AOD well captures the daily and seasonal
variations in the corresponding AERONET observations (Figure 12). The correlation and
the RMSE statistics between the two time series are about 0.8 and 0.05, respectively, with
the retrieved AOD being ~20% higher than the observations. The AOD retrievals, though
not perfect, give us confidence in the retrieved surface reflectance, where ground obser-
vations at the spatial scales of satellite image pixels are difficult to obtain. Sensitivity
tests of the MAIAC RTM indicate that the variations in surface reflectance induced by an
AOD uncertainty of 0.05 are generally less than 0.01 at the Blue band and further decrease
towards longer-wavelength bands. This level of uncertainty is relatively small compared
with the retrieved daily/seasonal variations in SR shown in Figure 12. In other words,
the SR values retrieved from our algorithm are accurate and thus can provide a robust
source of information to study the dynamics of surface processes (e.g., phenology) at daily
to seasonal time scales (see below).



Remote Sens. 2022, 14, 964 20 of 27

Figure 13 shows another challenging example at the Churchill AERONET site, which
is located not far from the northmost boundary of the GeoNEX grid (60◦ N). Because the
satellite zenith angle is large at this latitude, the data quality of TOA BRFs is more sensitive
to changes in solar zenith angles and day lengths than at lower latitudes. As a result,
few clear (or partially clear) days can be identified during the winter months (October to
February of the next year) at this site (Figure 13). For the rest of the months, the site is
covered by snow until May when it starts to melt. By the end of June, the surface is largely
snow-free. As shown, the Blue-band reflectance drops sharply from 0.8 to 0.1 between May
and June (Figure 13). The corresponding NDSI drops from 0.6 to about 0 while the NDVI
increases from 0 to about 0.4 by the end of June. The increase in NDVI (or surface greenness)
continues until it peaks in late July/early August, and then the trajectory reverses. By
early October, the NDVI decreases to about 0.2 before the first snowfall of the next cold
season (Figure 13). As such, the phenological cycle and its interannual variations at the site
are well captured by the retrieved time series of surface reflectance and vegetation/snow
indices.

Figure 13. The same as Figure 12 but for daily averaged retrieval results at the Churchill AERONET
site from 1 January 2018 to 31 December 2019. The data gaps between October and February were
mainly caused by the short day-length during the boreal winter at the high latitudes.

Figure 13 also shows that the retrieved AOD values are closely comparable to the
in-situ measurements. The correlation and the RMSE statistics between the two time
series are about 0.9 and 0.06, respectively, with the retrieved AOD being slightly (~10%)
lower than the observations. It is important to notice that the retrieval algorithm correctly
captures multiple large AOD anomalies caused by wildfires. The two clusters of AOD
anomalies in August 2018 and June 2019, where corresponding AERONET observations
are available, indeed reflect the influences of the Carr Fire in California (2018) and the



Remote Sens. 2022, 14, 964 21 of 27

Alberta Fire in Alberta, Canada (2019), where the smoke is transported by the atmospheric
circulation thousands of miles across the continent. The other spike of AOD anomalies in
July 2018, where no corresponding AERONET measurements are available, appears to have
been induced by the smoke transported from the North Bay 69 fire in Temagami, Ontario.
The successful detection of these events demonstrates the capability of our algorithm to
distinguish smoke/heavily polluted air from other atmospheric disturbances (such as
partial/sub-pixel clouds).

Figure 14 shows the comparisons of the retrieved and the observed daily AOD at the
rest of the selected AERONET sites. The results are consistent with those described for the
White Sands and Churchill sites. In particular, the correlations between the retrievals and
the observations are greater than 0.9 at the Key Biscayne, ARC, GSFC, and SMEX/Ames
sites, where the regression coefficients are also very close to 1 (Figure 14). The corresponding
statistics are less optimal at the Tucson site, mostly likely induced by the fact that the surface
is brighter at the semi-arid site. On the other hand, the RMSE values of the comparisons
are lower (~0.04) at the Tucson and ARC sites but slightly higher (~0.06–0.07) at the GSFC
and SMEX/Ames sites, where the AOD values also cover a higher range (Figure 14).
Such inter-site differences likely reflect the spatial pattern of mean AOD levels over the
United States, which are typically higher over the East Coast than the West [61]. Overall,
the results presented in Figure 14 suggest that our AOD retrievals have similar, if not
better, accuracy and precision as the latest MODIS products [60]. We recognize that our
algorithm retrieves daily mean AOD levels while MODIS products reflect a “snapshot”
of the AOD at the measurement time. Therefore, the two products may not be directly
comparable. Because this paper mainly focuses on the algorithm’s development, we have
not conducted comprehensive intercomparisons between the GeoNEX level 2 products
and the corresponding MODIS (or other satellite) products, which we plan to report in the
future.

Figure 14. Scatter plots of the retrieved daily mean AOD versus the corresponding AERONET
Observations at selected sites: (a) Tucson, (b) Key Biscayne, (c) ARC, (d) GSFC, (e) SMEX/Ames, and
(f) Churchill.
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Finally, and importantly, a key feature of the surface reflectance and BRDF informa-
tion retrieved by our algorithm on clear days is that they do not depend on conventional
assumptions of stable spectral band ratios [19]. Therefore, these results provide indepen-
dent data sources to examine such assumptions. Figure 15 shows the diurnal cycles of
the ratios between the Blue/Red bands and the SWIR band, respectively, at the testing
AERONET sites on cloud-free days when the atmosphere is clear and the retrieved AOD
values closely match the ground observations. Overall, we see a diverse range of variabil-
ities in the band ratios in both spatial (between-site) and temporal (diurnal) dimensions.
For instance, the mid-day Blue-to-SWIR ratio is above 1.0 at the Key Biscayne site but is
only ~0.3 at the SMEX/Ames site. Their diurnal variations also show different patterns,
which can be flat (Tucson), bowl-shaped (Key Biscayne and GSFC), bell-shaped (Churchill
and AMEX/Ames), or rather asymmetric (ARC). The reasons for the variations in the
band ratios are complex, involving illumination-view geometries, land cover types, surface
heterogeneity, and other factors [20,62]. For instance, the relatively large Blue-to-SWIR
ratios at Key Biscayne are likely influenced by the coastal location of the site, where the
reflectance in the SWIR range is negligible over the adjacent waters. The relatively low
band ratios at SMEX/Ames likely reflect that the site is densely vegetated, which is also
suggested by the corresponding NDVI value (0.78; Figure 15). Indeed, the mid-day band ra-
tios at the SMEX/Ames site are close to that originally suggested by the literature for dense
vegetation (0.25/0.5 between the Blue/Red and SWIR bands) [19]. However, Figure 15
emphasizes that the spectral band ratios change significantly over different land-cover
types. Even for the densely vegetated site (SMEX/Ames), the ratios can change by 50% at
large sun (zenith) angles (Figure 15).

Figure 15. Diurnal cycles of the spectral band ratios between the Blue/Red and SWIR bands (blue
and red lines, respectively) on selected clear-sky days at the selected AERONET sites: (a) Tucson,
(b) Key Biscayne, (c) ARC, (d) Churchill, (e) SMEX/Ames, and (f) GSFC. The green text indicates the
NDVI values of the sites on the particular day at the local noon time (Table 1).
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Although the spatiotemporal variability in spectral band ratios is complicated and
difficult to describe analytically, such diurnal variability at individual sites is continuous
(Figure 15) and varies smoothly on consecutive days (Figure 9). It is thus a legitimate
approach to dynamically maintain the diurnal cycle of spectral ratios at each pixel for
atmospheric correction in the subsequent time steps, which is a key feature of the MAIAC
algorithm [11,16]. As the archive of (third-generation) geostationary data grows, we expect
to collect more and more clear-day observations to derive independent diurnal cycles of
the spectral band ratios to study their spatial and temporal (e.g., seasonal and annual)
variations.

4. Discussion

A limitation of the current GeoNEX-AC algorithm is that it retrieves only daily mean
AOD. This compromise, as stated before, was made to save the degrees of freedom in the
statistical analysis for atmospheric correction on individual clear-sky days. Intuitively, we
may wonder whether the constraint on degrees of freedom may be relaxed. For instance,
because surface optical properties do not change much at the scale of a few days, we may
use the BRDF parameters estimated from preceding days as the (a priori) inputs to the
RTM to simulate the TOA BRF at every time step and thus retrieve time-specific AODs.
However, succeeding in this task requires a deeper understanding of the propagation of
uncertainties in the surface BRDF and atmospheric AOD, as well as their influences on the
TOA BRF.

Neither the RTM nor the input data are perfect. In general, RTM simulations with
the reference surface BRDF (RTLS) parameters and the AERONET-observed AOD are not
able to fully replicate the observed TOA BRF variations. Aside from the uncertainties
associated with the TOA BRF, such model-observation discrepancies can be induced by the
truncation errors of the surface BRDF because the three kernels of the RTLS model are by
no means complete in the functional space of the BRDF. Therefore, when we attempt to
retrieve the time-specific AOD by driving the RTM with the estimated RTLS parameters
to accurately simulate the observed TOA BRF, uncertainties in the TOA BRF and/or the
surface BRDF will actually lead to uncertainties in the retrieved AOD. The magnitude of the
latter inversely depends on the sensitivity of the TOA BRF to the surface BRDF as well as
the illumination-view geometries, and can be significantly amplified at data points where
the simulated TOA BRF struggles to match the observation (e.g., the hot-spot point).

Uncertainties other than truncation errors can arise in the estimated surface BRDF.
One apparent source is the temporal variations in surface optical properties. Figure 9 shows
such an example at the Key Biscayne site, where the retrieved diurnal trajectories of surface
BRF seem to fluctuate on consecutive days. Except for a few well-studied scenarios (e.g.,
snowfall), presently we do not have a good means to evaluate whether such day-to-day
variations are induced by bio-geophysical processes or simply arise from model errors. It
must be recognized that because of the use of time series in our algorithm, uncertainties
associated with surface BRDF can persist into the following retrieval results over a spell of
partially clear days, which is of particular concern in cloudy regions such as the tropics.
In order address this issue, we are testing new sampling strategies to detect possible
outliers in the retrieved surface reflectances before using them to update the posterior RTLS
parameters in our algorithm.

Last but not least, surface BRDF is supposed to be a function both solar and satellite
angles. However, a geostationary sensor only observes a specific ground location from
a fixed angle. At diurnal time scales, therefore, observations from a single geostationary
sensor only sample a small proportion of the angular space of the target surface BRDF.
The retrieved BRDF may closely approximate the target function within the region of
the sampled angles but deviate considerably outside the region. In fact, we find that
sometimes the geometric and the volumetric kernels of the RTLS model are very collinear
over the sampled solar angles of the diurnal cycle, leading to multiple solutions to the
atmospheric correction problem. Fundamentally solving this issue requires additional
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concurrent observations from other angles, which may come from other GEO satellites
(e.g., GOES17) and/or LEO sensors (e.g., MODIS, VIIRS).

Therefore, there are challenges that need to be addressed for us to accurately resolve
the diurnal variability in both surface reflectance and atmospheric AOD at the same time,
which are the subjects of our ongoing research. Indeed, the Level 2 GeoNEX products,
which are processed with the full MAIAC algorithm, will provide 10-min AOD and surface
reflectance values as well as daily BRDF parameters to the user community.

5. Conclusions

In this study, we developed a new atmospheric correction algorithm, GeoNEX-AC,
that is dedicated to exploiting the high temporal resolutions of the latest geostationary
satellite sensors (e.g., GOES-16/17 ABI, Himawari 8/9 AHI, and Geo-KOMPSAT 2A/AMI)
in deriving surface reflectance (SR), atmospheric aerosol optical depth (AOD), and the
corresponding RTLS BRDF model parameters. The algorithm is inspired by and was
developed based on the MAIAC algorithm, inheriting its Green’s function-based and
BRDF-specific radiative transfer model as well as its framework for time-series processing.
Like MAIAC, the new algorithm dynamically maintains a set of variables that “memorize”
the surface properties at each grid cell from the preceding time steps and use them for the
up-coming processing. On the other hand, we totally re-designed the cloud detection and
atmospheric correction algorithms in order to take full advantage of the diurnal variability
exhibited by the geostationary observations.

The GeoNEX-AC algorithm operates at daily time steps and takes whole diurnal
cycles of time series, instead of individual data points, as the basic processing unit. This
essentially shortens the time window of data-compositing from one week (MODIS) to
one day (GeoNEX), making it easier to justify the assumption that the surface reflective
properties do not change within the compositing time window. More importantly, our
approach explicitly emphasizes the importance of the continuous—In temporal and angular
dimensions—variations in satellite measurements in supplying unique information for
atmospheric correction. Instead of treating the measurements as separate points, we
consider them as a whole that reflects the dynamic diurnal process.

The techniques we developed in the new algorithm thus reflect the “dynamic” view of
atmospheric correction. Our algorithm identifies and exploits the “smoothness” exhibited
by the time series of geostationary data. In general, smoothness is a desirable property
of a time series (and the underlying dynamic process) that renders its behavior highly
predictable. We developed roughness indices based on the notion of second derivatives to
identify smooth and rough segments of the TOA BRF time series, which provide us with a
convenient tool to distinguish potential clear-sky observations (e.g., smooth segments) from
those measured under cloudy conditions (e.g., rough segments). The tool also makes it
easier for the subsequent brightness or/and temperature tests to refine the cloud detection
results.

The smooth variations in clear-sky TOA BRFs reflect the smoothness of the surface
reflectance under varying illumination-view geometries, which preludes the RTLS BRDF
model from successfully representing the diurnal variations in surface reflectances. Our re-
sults demonstrate the existence of suitable RTLS parameters and AOD values that allow the
MAIAC RTM to accurately simulate the observed diurnal variability in TOA reflectance un-
der various illumination-view conditions. In comparison, simulations with the Lambertian
surface model were found to be less optimal than those with the BRDF model.

The successes in simulating the observed diurnal variations in TOA BRFs with only a
few parameters avoid the need to use spectral band ratios in estimating AOD or SR in our
algorithm. Indeed, our results suggest that the ratios between the visible and SWIR bands
may experience large changes even on successive days. For instance, on days when the
surface is in transition between snow and snow-free conditions, changes in the visible and
SWIR bands can be in opposite directions. Under such circumstances, retrievals based on
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band ratios may introduce significant uncertainties. In comparison, our approach tends to
produce more consistent retrievals under snow or partial snow conditions.

We emphasize that because this paper is intended to demonstrate the unique advan-
tages of geostationary data in Earth surface monitoring, the GeoNEX-AC algorithm uses
primarily temporal and angular information from the diurnal time series. In comparison,
the MAIAC algorithm, which is the operational GeoNEX atmospheric correction algorithm,
comprehensively exploits information from all sources. We are working to incorporate the
results from this study with the MAIAC algorithms to better exploit the spatio-temporal
information obtained by geostationary satellites and, potentially, use GEO–LEO synergy
to further improve the quality of the GeoNEX Level 2G products. We expect these hyper-
temporal data products to help scientific investigations on, for instance, rapid responses of
terrestrial ecosystems to heatwaves, droughts, floods, and other climatic/environmental
extremes, which are difficult to conduct with current satellite products. We plan to report
our progress in the near future.
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