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Abstract: High-resolution UAV imagery paired with a convolutional neural network approach offers
significant advantages in accurately measuring forestry ecosystems. Despite numerous studies
existing for individual tree crown delineation, species classification, and quantity detection, the
comprehensive situation in performing the above tasks simultaneously has rarely been explored,
especially in mixed forests. In this study, we propose a new method for individual tree segmentation
and identification based on the improved Mask R-CNN. For the optimized network, the fusion
type in the feature pyramid network is modified from down-top to top-down to shorten the feature
acquisition path among the different levels. Meanwhile, a boundary-weighted loss module is
introduced to the cross-entropy loss function Lmask to refine the target loss. All geometric parameters
(contour, the center of gravity and area) associated with canopies ultimately are extracted from
the mask by a boundary segmentation algorithm. The results showed that F1-score and mAP
for coniferous species were higher than 90%, and that of broadleaf species were located between
75–85.44%. The producer’s accuracy of coniferous forests was distributed between 0.8–0.95 and that
of broadleaf ranged in 0.87–0.93; user’s accuracy of coniferous was distributed between 0.81–0.84 and
that of broadleaf ranged in 0.71–0.76. The total number of trees predicted was 50,041 for the entire
study area, with an overall error of 5.11%. The method under study is compared with other networks
including U-net and YOLOv3. Results in this study show that the improved Mask R-CNN has more
advantages in broadleaf canopy segmentation and number detection.

Keywords: tree crown segmentation; tree species identification; tree quantity detection; Mask R-CNN;
UAV images

1. Introduction

Forests play a key role in maintaining the natural environment, such as carbon storage,
water cycle, soil conservation, and timber production [1,2]. According to recent studies [3],
there are approximately three trillion trees on Earth, among which most trees are in tropical
and subtropical regions (1.39 trillion), successively followed by boreal forests (0.74 trillion)
and temperate forests (0.61 trillion). As one of the major sinks of atmospheric CO2, these
trees also can contribute critical ecosystem services to mitigate climate change [4]. Since
forests have a great influence upon the human environment in many ways, it becomes
critical to obtain accurate value at the single tree aspect—with key characteristics such as
tree species, canopy size and the number of trees.

In the last decade, unmanned aerial vehicle (UAV) remote sensing has demonstrated
remarkable advantages in the precision measurement of the forestry ecosystem [5–7]. To
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acquire field data, one common approach is through pairing drones with sensors, such as
high-resolution cameras [8], LiDAR [9] hyperspectral [10,11] and multispectral sensors [12].
LiDAR and hyperspectral devices are able to fulfill high extraction accuracy, whereas they
may be limited reproducibility on a low budget due to high cost for data acquisition in
large-scale forestry [13,14]. In order to save experimental costs, many scholars attempted
to conduct experiments for extracting individual tree canopy and classifying tree species
by employing airborne high-resolution cameras. For example, Miraki combined high-
resolution UAV images with the structure from motion (SfM) algorithm to derive a canopy
height model (CHM), as well as segment individual tree crown [7]. Another approach
involved the application of multi-scale filtered segmentation was used to depict high-
quality tree canopy maps from UAV imagery in forest areas [15].

Classical canopy segmentation algorithms based on remote sensing images include re-
gion growth [16], edge detection [15] and watershed [17]. These methods have been utilized
to map stand characteristics, for instance, species composition [18], biomass [19] and canopy
biochemical in individual tree species by using RGB images and CHM [20,21]. As the above
methods only provide color and texture features among pixels but no attention to semantic
information in this content, it is still difficult to simultaneously segment the individual
tree crown and discriminate species attributes at a multi-species environment [22]. In this
case, deep learning (DL) and various convolutional neural networks (CNN) give a novel
idea in dealing with the segmentation and classification from the multi-species individual
trees [1,23]. CNN can reproduce expert observations of individual trees over hundreds of
hectares and has become a powerful artificial intelligence tool for analyzing forestry RGB
images [4]. The widespread use of DL and CNN in forest research has facilitated analysis of
tree detection [24], tree species classification [25,26] and forest disturbance detection [27,28]
in detail. Specifically, an improved Res-UNet network [29] has been designed to classify
tree species in the aerial orthophotos from Nanning peak forests with an accuracy of 87%.
The GoogLeNet algorithm [30] was introduced to extract canopy features in the high spatial
resolution satellite image WorldView-3, with the kappa coefficient of 0.79. In addition,
CNN is also extensively applied in agricultural farming, including counting, detecting and
locating corn and various fruit trees [31], and counting coconut trees [7]. Thereby, CNN
has an overwhelming advantage over traditional image segmentation methods in object
detection, multi-target classification and instance segmentation on large-scale satellite or
UAV remote sensing images of forestry.

Among a variety of multi-target recognition networks, mask region-based CNN
(Mask R-CNN), a state-of-the-art instance segmentation model, is improved from Faster
R-CNN [32] and integrates two core tasks, namely target detection and semantic segmen-
tation [33]. Compared with Faster R-CNN, Mask R-CNN not only modifies the region of
interest (RoI) layer into a RoIAlign layer but adds a fully convolutional network (FCN) at the
back end to find a high-precision mask for RoI. Similarly, the use of Mask R-CNN provides
an opportunity for remote sensing applications involving construction [34], agriculture [35],
forestry [36,37] and other fields [38]. In particular, as for forestry survey, the algorithm
accurately distinguishes canopy and shade and estimates the biomass of olive trees by
processing NDVI and GNDVI spectral image metrics [39], as well as separately identifies
and segments tree canopy with high-resolution satellite images [40]. Many recent stud-
ies [41,42] have shown that Mask R-CNN is superior to other networks (e.g., DenseNet [43],
DaSnet [44]) in both speed and segmentation accuracy.

However, previous studies on Mask R-CNN were only applicable to stand-alone
canopy segmentation or tree count detection. The performance of simultaneously im-
plementing three applications, that is, individual tree canopy segmentation, species clas-
sification and count detection, in large-scale multi-species forest areas remains unclear.
Additionally, Mask R-CNN has some defects in the target extraction layer [45]. When
detecting targets and predicting key points in large-scale imagery attached Gaussian noises,
the path between the highest-level features and low-level features in the feature extrac-
tion network the feature pyramid networks (FPN)is too long, which affects the fusion
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between effective information and leads to low accuracy of multi-target segmentation [46].
This shortcoming may cause disruption in detection interference and a waste of com-
puting resources, especially in cases of forest environments with a complex landscape,
ultimately resulting in the increase of target detection error and the decrease of pixel
segmentation accuracy.

Therefore, in this paper, an improved Mask R-CNN network is proposed for process-
ing UAV high-resolution images in large-scale forest areas with mixed species, thereby
achieving the purpose of simultaneously solving the individual tree canopy segmentation,
species classification and count detection. On the one hand, the top-down feature fusion
feature of the FPN network is modified to reduce the feature fusion path between the lower
and upper layers of the network. On the other hand, the boundary weighted loss module
is added to the cross-entropy loss function Lmask as an improvement of the prediction
algorithm at the target boundary.

The objectives of this study are: (i) To propose an improved instance segmentation
algorithm suitable for forestry based on Mask R-CNN. (ii) To test the capability of the above
method for implementing canopy segmentation, species identification and quantity detec-
tion simultaneously in mixed-species forests and compare the segmentation performance
with other networks.

2. Study Areas and Material
2.1. Study Site

Our study area (Figure 1) is located near the Jingyue Eco-Forest in Changping District,
Beijing, China at 40◦10’52” N, 116◦11’24” E, with an area size of 249.18 ha. The local climate
is temperate semi-humid semi-arid monsoon within an average annual temperature of
approximately 19 ◦C, humidity of 60%, and rainfall of 600 mm. The terrain consists of
a relatively flat plain (relief less than 2 m), and the mean elevation of the study area is
approximately 43 m, which avoids data loss arising from orthophotos with excessive
elevation fluctuations.
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Figure 1. (a) Location of the study area in China; (b) Changping District of Beijing with plains and
hills as the main landform; (c) satellite map site near the study area; (d) Digital surface model (DSM)
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2.2. Field Data

The field survey was conducted from 15–30 May 2020, and lasted 15 days, with
a team of 10 participants taking measurements. All of the trees in the study area were
planted by artificial cultivation, and the density of different species varied significantly,
with coniferous species being relatively sparsely distributed and broad-leaved species
being densely distributed. For location data collection, we used a Trimble® Geo7X (The
manufacturer of this product is Trimble, located in California, USA.) global positioning
system (GPS) handheld device to locate 5 sampling points in each block area of Figure 1e
and averaged 15 consecutive position measurements to improve the positioning accuracy.
The positional accuracy of all locations was between 2–4 m. The distribution of all sampling
points is shown in Figure 2c, covering the entire study area. By comparing the latitude and
longitude of the ground control points obtained from GPS and Google Maps, we found
that the GPS coverage points were all located at the research area, thereby the GPS accuracy
was sufficient to locate in each block area (No. 1–No. 9) of Figure 1e. The GPS point data
will be used for coordinate point positioning via ContextCapture in the later orthophoto
map section.
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Figure 2. (a) GPS points from field sampling; (b) Sample images and ground truth. The orange, green
and blue borders in (b) are the ground truth, respectively, and the numbers on the bounding boxes
are the category labels; (c) Sampling area selected from the study area; (d) Various tree species of
study area.

A set of aerial images were collected in the morning of 26 May 2020, in cloudy weather
with a wind force 3–5 km/h, which effectively prevented the interference of environmental
factors such as tree shadows and high winds to image-stitching and segmentation. The
drone (DJI Royal 2 Professional) was equipped with an internal high-resolution camera
consisting of a 1-inch 20-megapixel CMOS sensor with a 28 mm equivalent focal length,
and the structure and functional parameters are shown in Table 1. Each AGL (above ground
level) flight height was at an altitude of 170 m, with a heading overlap rate of 85%, a lateral
overlap rate of 80% and took a total of 2504 images. The acquired image resolution was
5472 × 3648 pixels, and the ground resolution was 4 cm/pixel.
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Table 1. DJI MAVIC 2 PRO UAV flight parameters.

Remote Sens. 2022, 14, 874 5 of 23 
 

 

Table 1. DJI MAVIC 2 PRO UAV flight parameters. 

 

Size 322 mm × 242 mm × 84 mm 

Maximum flight time 31 min 
Hover precision V: ±0.1 m; H: ±0.3 m 

Maximum flight speed 72 km/h 
Maximum cruising mileage 18 km 

Maximum wind resistance level 5 

For species identification and number counting, we manually counted 52,737 trees 
(including all seedlings larger than 4 cm in diameter or with a crown area larger than 30 
cm) across the entire area and judged the records to determine the tree species in each 
area. As shown in Figure 2c, there are eight different species of trees in the study area, 
including three coniferous types of trees—Pinus armandii, Ginkgo biloba and Pinus tabu-
laeformis, as well as five broad-leaved types of trees—Sophora japonica, Salix matsudana, Ai-
lanthus altissima, Amygdalus davidiana and Populus nigra. The multi-species tree coexistence 
environment facilitates the construction of standard sample sets and provides rich data 
for analyzing the variability of coniferous and broad-leaved tree canopy delineation. Ad-
ditionally, we visually interpreted the type and number of trees in the drone images, 
where the minimum canopy area of the trees that could be identified was about 50 cm. 
The ground measurement data and visual interpretation aerial image data of different tree 
species are given in Table 2 and used as ground truth and training input values for model 
evaluation, respectively. In line with the measurement error, the visual interpretation re-
sults from drone images are within the error range required by the forestry survey and 
can be used as a set of data with high accuracy for training and testing of the model. 

Table 2. Field investigation and visual interpretation of various tree species. 

Type Species 
Field 

Investigation 
Visual 

Interpretation 
Similarity of 

Totals (%) 

Coniferous 
forest 

Pinus armandii 11,776 11,669 99.09 
Ginkgo biloba 15,681 15,552 99.18 

Pinus tabulaeformis 3232 3221 99.63 

Broadleaf for-
est 

Sophora japonica 2976 2943 98.89 
Salix matsudana 4408 4356 98.83 

Ailanthus altissima 10,152 10,045 98.95 
Amygdalus davidiana 2464 2439 98.98 

Populus nigra 2048 2030 99.12 
Total - 52,737 52,079 - 

2.3. Individual Tree Crown Dataset 
2.3.1. Orthophoto Map 

This study used software ContextCapture [47] and ArcGIS [48] to pre-process the 
original UAV aerial images. Firstly, we used ContextCapture to merge original aerial im-
ages in three aspects of sparse point cloud reconstruction, dense point cloud reconstruc-
tion and surface texture mapping for establishing the three-dimensional DSM. Secondly, 
the DSM model was generated into multiple DOM using the forward mapping function 
of ContextCapture to prevent data loss from insufficient processor memory. All of the 
regional orthophoto maps were eventually synthesized into one large-scale orthophoto 
map using ArcGIS [48] software (Figure 1e). 

2.3.2. Sample Labels 
As shown in Figure 2b, all of the trees in the entire study area were identified by 

using the image annotation tool VGG Image Annotator (VIA) [49] to produce the canopy 
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Maximum flight time 31 min

Hover precision V: ±0.1 m; H: ±0.3 m
Maximum flight speed 72 km/h

Maximum cruising mileage 18 km
Maximum wind
resistance level 5

For species identification and number counting, we manually counted 52,737 trees
(including all seedlings larger than 4 cm in diameter or with a crown area larger than 30 cm)
across the entire area and judged the records to determine the tree species in each area. As
shown in Figure 2c, there are eight different species of trees in the study area, including
three coniferous types of trees—Pinus armandii, Ginkgo biloba and Pinus tabulaeformis, as well
as five broad-leaved types of trees—Sophora japonica, Salix matsudana, Ailanthus altissima,
Amygdalus davidiana and Populus nigra. The multi-species tree coexistence environment
facilitates the construction of standard sample sets and provides rich data for analyzing
the variability of coniferous and broad-leaved tree canopy delineation. Additionally, we
visually interpreted the type and number of trees in the drone images, where the minimum
canopy area of the trees that could be identified was about 50 cm. The ground measurement
data and visual interpretation aerial image data of different tree species are given in Table 2
and used as ground truth and training input values for model evaluation, respectively. In
line with the measurement error, the visual interpretation results from drone images are
within the error range required by the forestry survey and can be used as a set of data with
high accuracy for training and testing of the model.

Table 2. Field investigation and visual interpretation of various tree species.

Type Species Field
Investigation

Visual
Interpretation

Similarity of
Totals (%)

Coniferous
forest

Pinus armandii 11,776 11,669 99.09
Ginkgo biloba 15,681 15,552 99.18

Pinus tabulaeformis 3232 3221 99.63

Broadleaf forest

Sophora japonica 2976 2943 98.89
Salix matsudana 4408 4356 98.83

Ailanthus altissima 10,152 10,045 98.95
Amygdalus davidiana 2464 2439 98.98

Populus nigra 2048 2030 99.12
Total - 52,737 52,079 -

2.3. Individual Tree Crown Dataset
2.3.1. Orthophoto Map

This study used software ContextCapture [47] and ArcGIS [48] to pre-process the
original UAV aerial images. Firstly, we used ContextCapture to merge original aerial images
in three aspects of sparse point cloud reconstruction, dense point cloud reconstruction
and surface texture mapping for establishing the three-dimensional DSM. Secondly, the
DSM model was generated into multiple DOM using the forward mapping function of
ContextCapture to prevent data loss from insufficient processor memory. All of the regional
orthophoto maps were eventually synthesized into one large-scale orthophoto map using
ArcGIS [48] software (Figure 1e).

2.3.2. Sample Labels

As shown in Figure 2b, all of the trees in the entire study area were identified by
using the image annotation tool VGG Image Annotator (VIA) [49] to produce the canopy
dataset. Throughout the process, it referred to field survey data involving locational
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information and the number of various trees, so that can reduce the error taken by only
using visual interpretation. Both the orthophoto and tag images were cut into 1029 images
of 1024 × 1024 by Photoshop [50], then the entire dataset was divided into the training set,
validation set, and test set. To improve the completeness of the dataset, the images of the
training and validation sets are extended by translation, rotation and inversion to fully
extract the feature points from the orthophoto. The final entire dataset consists of a training
set (1603), a validation set (876), and a test set (902), and the assignment of each dataset is
shown in Table 3.

Table 3. The number of images in training sets, verification sets and test sets of each tree species.

Species
Dataset

Train Set Validation Set Test Set

Pinus armandii 285 162 165
Ginkgo biloba 308 169 173

Pinus tabulaeformis 175 106 112
Sophora japonica 168 85 88
Salix matsudana 184 97 99

Ailanthus altissima 259 135 141
Amygdalus davidiana 131 74 69

Populus nigra 93 48 55

3. Methods
3.1. Overall Workflow

The individual tree segmentation and identification algorithm consist of five parts:
data pre-processing, network training, canopy prediction, extraction of contours and
centers, as well as accuracy evaluation. As shown in Figure 3, first of all, the UAV images
were placed into the dataset by a list of 3D reconstruction, sample tagging and image
cutting. The sample and labeled images then were introduced to the mask R-CNN network
for training, and at the same time, the corresponding parameters were adjusted to the best
condition. Lastly, the optimal model was selected to predict the individual tree crown on
the entire aerial orthophoto, extract the contour and center of the tree and calculate the
canopy area.
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3.2. Mask R-CNN and the Improved Model
3.2.1. Mask R-CNN

Mask R-CNN is a classical instance segmentation model proposed by He [33]. The
framework of the network is based on the Faster R-CNN [32] with the addition of a se-
mantic segmentation branch-mask that determines the range of each RoI and achieves the
recognition and detection of target contours at the pixel levels. The network’s output is
converted from classification–regression to classification–regression–segmentation for the
multi-target object detection, recognition and segmentation. The structure of Mask R-CNN
includes backbone network layer (Backbone), region proposal network (RPN) layer, RoI
align layer (RoIAlign), and bounding box (bbox) as well as classification and masks. As
shown in Figure 4, the network’s input is a set of RGB images with 1024 × 1024 pixels, and
the feature maps are generated by the feature extraction of ResNet101 [51] and the FPN. The
RoI then maps the feature vectors with fixed dimensions in the PRN and RoIAlign layers.
Eventually, a segmentation map was obtained on the basis of RoI by utilizing a classifier,
a border reviser and a mask generator.
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3.2.2. Network Improvements

Because there is a long path between upper and lower features, the location informa-
tion of lower features may not be well works in multivariate object segmentation, which
ultimately reduces the fusion efficiency between upper and lower features [52,53]. More-
over, the loss function of the mask relies only on the region extraction information but
ignores the prediction loss of the boundary that yields poor segmentation and recognition
results for multiple targets covering each other. Therefore, the following improvements are
made to the network:

(a) Modification of the fusion style

A top-down approach is adopted to fuse the features between the upper and the low
levels in the classical Mask R-CNN network. In this way, the single object segmentation
needed for classification can be assigned to the FPN network without any loss of features.
However, for the large-scale multi-target segmentation, the fusion path between the low-
level and the high-level features of the FPN reaches more than 100 levels, for example, the
blue dashed line in Figure 5a. This long path can cause underutilization of the features in
the low levels [46]. Therefore, a bottom-up approach is applied on features fusion between
different levels to shorten the path of features and enhance the utilization of the bottom-
level features. As shown in Figure 5b, the bottom-up path is a layer-by-layer iterative
process that terminates after reaching the top layer. As a result, the feature fusion path
from lower to higher layers can reach between 5 and 10 layers (as shown in the red dashed
line), which largely reduces the feature information fusion path between lower and higher
layer features. The improved FPN network stores the pinpointed signals and enhances the
feature pyramid architecture, thus enabling finer multi-target segmentation.
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(b) Evolution of loss function Lmask

In the loss calculation of Mask R-CNN, each RoI outputs with a corresponding binary
mask, and the loss of the mask is a part of the loss in the entire network. To gain the
number of categories and the image size, the mask branch encodes an output matrix of size
K × m2 for each RoI, where K is the number of categories. Combined with the sigmoid
function applied to each single pixel, the mask loss is defined as the average binary cross-
entropy loss function Lmask. When RoI belongs to the kth category, Lmask only considers
the loss caused by the kth mask to it, while the other mask inputs do not contribute to
this loss function, decoupling the dependency between category prediction and mask to
some extent.

Lmask = −Σkk log(1− k̂) + (1− k) log (1− k̂) (1)

However, the cross-entropy loss function ignores the prediction loss of the boundary in
the segmentation task, which reduces the accuracy of segmenting the boundary [54]. Since
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the segmentation task in this study is a densely distributed and irregularly edged individual
tree crown, which requires high segmentation accuracy for the boundary, thereby we add
the boundary weighted loss (BWL) function to Lmask. During the training process, BWL
regularizes the position, shape and continuity of the segmentation using distance loss Ldist
to make it closer to the target boundary. The optimized Lmask-bwl is defined as:

Lmask−bwl = Ldis + Lmask = αΣ ŷ∈B ŷ Mdist(y)− Σ ŷ∈Rylog(ŷ) + (1− y) log(1− ŷ) (2)

3.3. Outline and Center Extraction

The simulated canopy for different species is shown in Figure 6a in a way of different
color masks. Firstly, the solid closed surfaces are classified and grayed out to different types
of images (Figure 6b) by using a color classifier. Next, the grayscale image is scanned using
the raster scan method to extract the boundary starting points. Assuming that the input
image is F(i, j) = {fij}, when a pixel is scanned with grayscale value fij 6= 0, we can check
whether it is a starting point on the boundary:

if (fij = 1 & fi,j−1 = 0):
{

(i,j) is the starting point of the outer boundary;
(i2,j2) = (i,j−1);

}
else

{
Continue scanning grating;
}
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According to its starting boundary point fij, a hollow boundary can be produced by
utilizing the boundary tracking algorithm [55], and then restoring its color before graying
to yield each solid surface contour as Figure 6c.

In the binarized graph, the zero-order moments M00 and first-order matrices M10, M01
are defined as follows.

M00 = ΣiΣjF(i, j) (3)

M10 = ΣiΣji · F(i, j), M01 = ΣiΣj j · F(i, j) (4)

Since F(i,j) is the sum of the grayscale values of all contour pixels, and in the binarized
graph, all-white as 1 and all-black as 0, M00 is the sum of the pixel values representing
all-white regions. Similarly, the first-order matrix M10 represents the sum of x-coordinates
of all-white area pixels, and M01 represents the sum of y-coordinates of all-white areas.
Using first-order moments, we can obtain the coordinates of the center of gravity of the
graph, which is given as follows:

xc =
M10

M00
, yc =

M01

M00
(5)
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3.4. Evaluation Index

In this study, four evaluation metrics were used to assess the accuracy of individual
tree stand measurement, including Precision, Recall, F1-score and mean average preci-
sion (mAP).

Pre =
TP

TP + FP
× 100% (6)

Rec =
TP

TP + FN
× 100% (7)

F1− score =
2Pre · Rec

2Pre + Rec
× 100% (8)

mAP =
Σm

1
∫ 1

0 Pre(Rec)dRec

m
(9)

Here, TP is the number of trees correctly identified, FP is the number of trees incorrectly
identified, FN is the number of trees incorrectly identified as other species, and TN is the
number of trees correctly identified as other species.

Four metrics were used for canopy classification accuracy evaluation, including
Kappa coefficient, overall classification accuracy (overall), producer’s accuracy and user’s
accuracy [56].

Kappa =
P0 − Pe

1− Pe
× 100% (10)

Overall =
TP + TN

TP + TN + FP + FN
× 100% (11)

Producer′s accuracy =
xii

Σn
j=0xij

(12)

User′s accuracy =
xjj

Σm
i=0xij

(13)

where P0 is the number of pixels correctly predicted as the number of canopy pixels and
divided by the number of total canopy pixels, Xij is the number of pixels predicted as
a certain tree species, Pe is equal to a1 × b1 + a2 × b2 + . . . + ac × bc/n × n, where ai
represents the number of true samples and bi represents the number of samples predicted.

3.5. Network Training and a Comparison with Different Models

The network training parameters have an unparalleled impact on the model training
and prediction. In this experiment, when the learning rate was adjusted to 1 × e−4, the
batch size was set to 32, and the epoch was set to 600 times with each epoch of 200 steps, the
model accuracy reached the highest level. For the software platform, tensorflow-gpu-1.15
and keras-2.3.1 under Linux system were used as the deep learning framework, and the
whole algorithm process was implemented through python. The hardware attributes of the
workstation are shown in Table 4, which is configured with Intel i9-10850 central processing
unit (CPU), NVIDIA GTX 2080Ti graphics processor unit (GPU), 1T solid-state drive and
64GB RAM.

Table 4. Workstation hardware attribute.

Hardware Attribute

CPU i9-10850
GPU GTX 2080Ti 11GB
SSD 1T SSD

Memory 64GB

In order to verify the accuracy of the improved Mask R-CNN for individual tree
extraction, a comparison with other popular image segmentation networks in terms of
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classification and counting is necessary. U-net and YOLOv3 are also deep learning models
based on convolutional neural networks, which can efficiently train self-produced data
sets and achieve high accuracy image segmentation models [57,58]. Both approaches have
also been repeatedly used for extraction and segmentation in forestry and have achieved
high accuracy scores [6,40]. Hence, U-net, YOLOv3 and Mask R-CNN are used in the
following for training and prediction of tree crowns to achieve a segmentation performance
comparison with the improved Mask R-CNN.

4. Results
4.1. Accuracy Evaluation of Individual Tree Crown Segmentation

In accordance with the results of canopy segmentation and field survey data, various
metrics such as precision, recall ratio, F1-score and mAP of each tree species were calculated.
Comparing the data in Table 5, it can be concluded that Pinus armandii, Ginkgo biloba and
Pinus tabulaeformis had superior segmentation results, with their precision and recall ratio
greater than 88%, and F1-score and mAP higher than 90%. Meanwhile, the precision and
recall ratio of Sophora japonica, Salix matsudana, Ailanthus altissima, Amygdalus davidiana
ranged between 80.02% and 85.44%, and the F1-score and mAP between 80% and 84%,
slightly lower than those of coniferous species. The prediction results of Populus nigra
were deficient, with the precision and recall ratio within 77%, and the F1-score and mAP
within 75%.

Table 5. Accuracy evaluation of number prediction in different tree species.

Type Species Precision (%) Recall (%) F1-Score (%) Mean Average
Precision (%)

Coniferous
forest

Pinus armandii 90.28 89.87 90.07 90.39
Ginkgo biloba 93.21 91.78 92.48 91.23

Pinus tabulaeformis 92.45 88.71 90.54 90.14

Broadleaf
forest

Sophora japonica 80.62 83.42 81.99 80.72
Salix matsudana 85.44 82.63 84.01 83.68

Ailanthus altissima 81.97 80.02 80.90 80.06
Amygdalus davidiana 82.59 80.52 81.54 81.77

Populus nigra 75.76 77.23 76.98 75.55

In addition, Figure 7 shows the application of a subset of orthophotos that contains
two categories of broad-leaved species (Sophora japonica and Salix matsudana) and one cat-
egory of coniferous species (Pinus tabulaeformis). The canopy’s bounding box, mask and
center of gravity were extracted and shown respectively in Figure 7b–d. The overall results
illustrate that the model is superior in identifying coniferous species than broad-leaved
species. In particular, the difference between the two maps was about 10%.

4.2. Species Identification and Classification Accuracy Evaluation

The producer’s accuracy and user’s accuracy respectively depict the probability of
a true pixel being correctly predicted and the probability of a correct value in the predicted
pixels for a particular species. As shown in Table 6, both producer accuracy and user
accuracy of canopy segmentation for each tree species were higher than 0.70 when the field
survey data was used for reference. In terms of user accuracy, the distribution range of
coniferous canopy was 0.81–0.84 and that of the broadleaf canopy was 0.71–0.76, implying
that the image pixels of coniferous species were correctly segmented better than broadleaf
species. However, in terms of producer accuracy, the distributions of two species were
similar, with the prediction accuracy of coniferous trees ranging from 0.8 to 0.95, and that
of broadleaf trees from 0.87 to 0.93. Furthermore, the analysis of the overall accuracy and
kappa coefficient in the entire region will be shown later in the discussion section.
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Figure 7. (a) Input image; (b) Bbox prediction; (c) Mask prediction; (d) Center of gravity prediction.

Table 6. Comparison of user’s and producer’s accuracy at crown delineation distributed in various
tree species 1.

Prediction Data

Reference Data

Pinus
armandii

Ginkgo
biloba

Pinus
tabulaeformis

Sophora
japonica

Salix
matsudana

Ailanthus
altissima

Amygdalus
davidiana

Populus
nigra Background User’s

accuracy

Pinus armandii 2.599 0.038 0.076 0.022 0 0 0.019 0 0.415 0.82
Ginkgo biloba 0.234 8.971 0.17 0.010 0 0.010 0 0.010 1.270 0.84

Pinus tabulaeformis 0.127 0.102 10.35 0.051 0.038 0.012 0.025 0.012 2.057 0.81
Sophora japonica 0.035 0.023 0.011 8.822 0.023 0.186 0.140 0.233 2.193 0.75
Salix matsudana 0.096 0.032 0 0.064 7.643 0.160 0.245 0.128 2.309 0.71

Ailanthus altissima 0.007 0.037 0.007 0.014 0.185 5.49 0.133 0.185 1.359 0.74
Amygdalus davidiana 0.049 0.037 0.012 0 0.111 0.223 8.949 0.174 2.858 0.72

Populus nigra 0.049 0.033 0.066 0.398 0.082 0.099 0.082 12.60 3.168 0.76
Background 0.015295 0.12236 0.1560 0.03 0.091 0.122 0.214 0.061 29.764 0.97

Producer’s accuracy 0.80 0.9 0.95 0.93 0.93 0.87 0.91 0.93 0.65 -

1 The measurement unit of prediction and reference data is 9.000 × 106 pixel.

4.3. Accuracy Evaluation of Tree Count Detection

To some extent, the accuracy of tree count determines biomass assessment in the
whole forest area. The numbers of all tree species measured by field survey and prediction
approach are shown in Figure 8, which shows that the average error of coniferous species
(3.7%) is smaller than that of broad-leaved species (7.9%). Pinus armandii had the smallest
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mean error of 2.1%, and Populus nigra had the largest mean error of 9.6%, meanwhile, the
total number of trees in the field survey for the whole study area was 52,737 and that of
the predicted tree was 50,041, with the overall error (5.11%). This further confirms that our
new approach meets the statistical requirement of stand number.
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predicted area values for individual tree canopies (Figure 9). The scatter fit curve for the 
area of three coniferous species was y = 1.253x − 105.9 and the coefficient R-Square reached 
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Figure 8. Comparison of field survey data and predicted data for the number of eight species.

Due to the excessive number of trees across the entire area, fitting the area to all
canopies would result in an excessive amount of data and would not be necessary [33].
Therefore, we used a subset of images containing all studied tree species, which includes
coniferous trees with 246 and broadleaf trees with 238, to fit the distribution of measured
and predicted area values for individual tree canopies (Figure 9). The scatter fit curve for the
area of three coniferous species was y = 1.253x − 105.9 and the coefficient R-Square reached
0.9921, which implies that the measured canopy area explained 99.21% of the predicted
values. The scatter fit curve for the area of five broadleaf species was y = 0.8919x + 1805,
and the R-Square reached 0.9741, indicating that the measured canopy area explained
97.14% of the predicted values.
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5. Discussion
5.1. Comparison of the Segmentation and Detection Performance of Different Networks

The kappa coefficient and overall accuracy of crown delineation in different models
are illustrated in Table 7. Also, Figure 10 shows the results of crown identification and
segmentation using the four different networks in junction land of three species shown
in Figure 7a. In the canopy segmentation of coniferous species Pinus tabulaeformis (yellow
contour), the segmentation results of the four models were close with a low error rate.
U-net’s loss of the entire canopy is obvious in the high canopy density segmentation of
coniferous species Sophora japonica (red). There are a lot of internal nested and crossover
errors in segmentation of Sophora japonica (red) by YOLOv3 and Mask R-CNN, resulting
in a large deviation between the total number and the predicted value. The improved Mask
R-CNN achieved the best segmentation results with the least loss compared with other
models, without clear conditions of internal nesting. It is attributed to the improved loss
function using distance loss Ldist to normalize the position, shape and continuity of the
densely distributed canopy for segmentation to improve the accuracy of target boundary
segmentation. The above results show that compared with other models, our model not
only has significant results in coniferous canopy segmentation, but also still has good
results in the dense broadleaf canopy.

Table 7. Comparison of kappa coefficient and overall accuracy of crown delineation in different models.

Network Type
Kappa Coefficient Overall Accuracy (%)

Training Set Test Set Training Set Test Set

U-net [57] 0.75 0.70 85.42 81.14
YOLOv3 [58] 0.70 0.62 81.56 78.57

Mask R-CNN [33] 0.79 0.76 90.86 89.72
Improved Mask R-CNN 0.81 0.79 92.71 90.13
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Figure 10. Tree crown identification and segmentation results by using 4 different networks. (a) U-net,
(b) YOLOv3, (c) Mask R-CNN, (d) The improved Mask R-CNN.

To compare the accuracy of the different models for area prediction of individual
canopies, we fitted the distribution of measured and predicted area values of individual
canopy layers using three other models (U-net, YOLOv3, Mask R-CNN) to the subset of im-
ages used in Figure 9. As shown in Figure 11, for broadleaf canopies, the U-net actual area
interpretation is the lowest compared to YOLOv3 (R-Square = 0.9615) and Mask R-CNN
(R-Square = 0.9712), with the coefficient R-Square of 0.9501 and slope of 1.19. For coniferous
canopies, the R-Square of the three models differed less, and the minimum coefficient
R-Square was YOLOv3 (0.8269). Compared with Figure 9, it can be seen that the improved
Mask R-CNN has accurate prediction ability for both conifer and broadleaf, and the advan-
tage is more obvious for broadleaf area prediction (y = 1.253x − 105.9, R-Square = 0.9921).
This is due to the modified bottom-up FPN network that optimizes the signal storage and
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enhances the pyramid structure for feature extraction so that it improves the accuracy of
multi-target segmentation.
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and the advantage is more obvious for broadleaf area prediction (y = 1.253x − 105.9, R-
Square = 0.9921). This is due to the modified bottom-up FPN network that optimizes the 
signal storage and enhances the pyramid structure for feature extraction so that it im-
proves the accuracy of multi-target segmentation. 

 

 

 

 
(a) (b) 

Remote Sens. 2022, 14, 874 16 of 23 
 

 

 

  
(c) (d) 

 

 

 

 
(e) (f) 

Figure 11. Fitting curves of predicted and real values of canopy area by using other networks. (a) 
Conifer curve fitted by U-net, (b) Broadleaf curve fitted by U-net, (c) Conifer curve fitted by 
YOLOv3, (d) Broadleaf curve fitted by YOLOv3, (e) Conifer Mask R-CNN, (f) Broadleaf Mask R-
CNN. 

5.2. Comparison of Training Time and Loss 
The number of model parameters will affect the training time, and the training time 

will affect the segmentation efficiency. By comparing the data in Table 8, we can see that 
the training parameters (33.47 million) of the improved Mask R-CNN were reduced by 
17.88% compared to Mask R-CNN (40.76 million) and the parameters time (327 s) of im-
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Figure 11. Fitting curves of predicted and real values of canopy area by using other networks.
(a) Conifer curve fitted by U-net, (b) Broadleaf curve fitted by U-net, (c) Conifer curve fitted by
YOLOv3, (d) Broadleaf curve fitted by YOLOv3, (e) Conifer Mask R-CNN, (f) Broadleaf Mask R-CNN.

5.2. Comparison of Training Time and Loss

The number of model parameters will affect the training time, and the training time
will affect the segmentation efficiency. By comparing the data in Table 8, we can see that the
training parameters (33.47 million) of the improved Mask R-CNN were reduced by 17.88%
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compared to Mask R-CNN (40.76 million) and the parameters time (327 s) of improved
Mask R-CNN reduced by 12.09% compared to Mask R-CNN (372 s), which was attributed
to the modification of FPN fusion from up-bottom to bottom-up fusion [45,46]. Although
our method is at a disadvantage in training time compared with U-net, it still has an
overwhelming advantage over U-net with referring to the segmentation evaluation results
in Figure 7.

Table 8. Model parameters and training time for different models.

Network Type Model Parameters (million) Time in Each Epoch (s−1)

U-net 31.05 318
YOLOv3 56.78 489

Mask R-CNN 40.76 372
Improved Mask R-CNN 33.47 327

Figure 12 shows the data loss of the classical Mask R-CNN and the improved model
in the training process. As the loss function, Lmask was modified to Lmask-bwl, the improved
Mask R-CNN had a more considerable reduction in bbox loss, class loss and mask loss,
which, therefore, directly and significantly reduced the overall loss and demonstrated the
positive production of Lmask-bwl. At the same time, it enhances the effectiveness of previous
studies in loss reduction [39,50]. 
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Figure 12. (a) The full loss in Mask R-CNN and Improved Mask R-CNN. (b) The bbox loss in Mask
R-CNN and Improved Mask R-CNN. (c) The class loss in Mask R-CNN and Improved Mask R-CNN.
(d) The mask loss in Mask R-CNN and Improved Mask R-CNN.
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5.3. The Offset Value in the Center of Gravity and the Bounding Box

Figure 13a,b respectively show the horizontal and vertical offsets (dx, dy) on the center
of gravity pixels between ground truth values and the predicted value by the improved
Mask R-CNN, which records measurement of pixels in the morphological and structural
attributes of the forest canopy [59]. The offset demonstrated a distribution centered at zero
with a distribution interval of [−5, 5], which implied that the deviation between predicted
value on the center of gravity and the real value was within 20 cm. Figure 13c,d shows
the offsets between ground truth and length and width predicted from the bounding box
of individual trees (d(log(w)), d(log(h)). It can see from the figures that the offsets of the
bounding box showed a distribution centered at 4, with the main distribution interval of
[0, 10], indicating that the deviation between the predicted values and the ground truth
was within 40 cm on the canopy boundary. Combined with previous studies [1,60], the
stability in the above deviations satisfied the basic requirements of size measurement in
forestry individual tree crown.
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and the predicted value. (c) The offset between ground truth and length predicted from the bounding
box of individual trees. (d) The offset between ground truth and width predicted from the bounding
box of individual trees.

5.4. Segmentation Results at Different Brightness Levels

To verify the suitability of the algorithm for extracting individual trees under different
conditions, different light intensity environments are simulated by varying the brightness
of the images. Assuming that the original image has a light intensity of 1, the images in
the brightness interval range [0.5, 1.5] are predicted and segmented, where the step value
of the brightness variation is 0.1. The results show that the accuracy of individual tree
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prediction is higher than 90% when the brightness varies over the range of [0.6, 1.25]. The
segmentation results for brightness of 0.5, 0.8, 1, 1.2, 1.4 are shown in Figure 14, which
demonstrates that the improved Mask R-CNN model has an excellent environmental utility. 

2 

   
(a) (b) (c) 

   
(d) (e) (f) 

● Ailanthus altissima         ● Salix matsudana           ● Pinus tabulaeformis 
 

Figure 14. (a) Original image. (b) Predicted results at a brightness of 0.5. (c) Predicted results at
a brightness of 0.8. (d) Predicted results at a brightness of 1. (e) Predicted results at a brightness of
1.2. (f) Predicted results at a brightness of 1.4.

5.5. False Segmentation

The proposed method also has certain inherited drawbacks in individual tree segmen-
tation, and the misspecification of broad-leaved species is higher than that of coniferous,
mainly because of the following reasons: (1) As shown in Figure 15b, the whole aerial
image dataset is affected by the weather such as light intensity and wind speed on the day
of shooting, and there are phenomena such as feature point mismatch and surface texture
generation confusion in the process of 3D reconstruction and orthophoto synthesis, which
makes the canopy prediction and segmentation with random errors. This phenomenon
is also consistent with the findings from Freudenberg et al. [40]. (2) The canopy width
was obscured or overlapped between single trees, resulting in some canopy widths not
being displayed in the aerial images, such as the false A and B encircled by the black box
in Figure 15d. (3) Coniferous tree canopies are simple in shape and consistent in size,
and feature points are easy to search, while broad-leaved tree canopies are complex in
shape and size, with fewer similar structures, making feature matching more difficult, for
example, false C exists in Figure 15d. (4) The distribution of the background data in Table 6
indicates that the loss and misjudgment in tree species canopy are mainly related to the
presence of background and False segmentation, and it also can be directly observed in
Figure 15b,d.
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6. Conclusions

Multi-species individual tree segmentation algorithm based on UAV images can
accurately detect and extract the contour, center of gravity, canopy area, and the number
of each species by utilizing the improved Mask R-CNN. In the modification of the model,
the optimized FPN network stores the accurate signal and shortens the training time by
enhancing the feature pyramid structure for a more efficient multi-target segmentation.
Additionally, the modified Lmask-bwl regularizes the position, shape, and continuity of
the segmentation using the distance loss Ldist to make it closer to the target boundary.
Based on the test results, the individual tree segmentation and identification accuracy
of the three coniferous and five broadleaf species satisfied the requirements in forestry
engineering measurement. Meanwhile, in comparison with other image segmentation
networks (U-net, YOLOv3, and Mask R-CNN), the improved Mask R-CNN in multi-species
tree classification has the highest overall accuracy (90.13%) and kappa coefficient (0.79).
The proposed method has more advantages over the other three networks for canopy
segmentation and counting of broad-leaved tree species. Nevertheless, the algorithm in this
study is still affected by the environment and the complexity of the canopy, and there are
subtle segmentation errors in the individual tree segmentation. The currently constructed
model only focused on canopy segmentation and statistics under planar images but was
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not explored in the DSM model. Future studies will be focused on studying the DSM model
using a 3D-Mask-R-CNN network for extracting and measuring tree height.
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