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Abstract: In this study, we propose a range detection (RD) ability by a continuous wave (CW) bistatic
Doppler radar (RDCWB) of small and fast targets with very high range resolution. The target’s
range and velocity are detected simultaneously. The scheme is based on the transmission of a
continuous wave (CW) at millimeter wavelength (MMW) and the measurement of the respective
Doppler shifts associated with target movements in different directions. The range resolution in
this method is determined by the Doppler resolution only, without the necessity to transmit the
modulated waveforms as in frequency modulation continuous wave (FMCW) or pulse radars. As
the Doppler resolution in CW depends only on the time window required for processing, a very
highrange resolution can be obtained. Most other systems that perform target localization use the
transmission of wide-band waveforms while measuring the delay of the received signal scattered
from the target. In the proposed scheme, the range resolution depends on the processed integration
time of the detected signal and the velocity of the target. The transmission is performed from
separated antennas and received by a single antenna. The received signal is heterodyned with a
sample of the transmitted signal in order to obtain the Doppler shifts associated with the target’s
movement. As in a multi-in multi-out (MIMO) configuration, the presented scheme allows for the
accumulation of additional information for target classification. Data on the target’s velocity, distance,
direction, and instantaneous velocity can be extracted. Using digital processing, with the additional
information obtained by analyzing the difference between the resulting intermediate frequencies
caused by the Doppler effect, it is possible to calculate the distance between the radar and the target
at high resolution in real-time. The presented method, which was tested experimentally, proved to be
highly effective, as only one receiver is required for the detection, while the transmission is carried
out using a fixed, single-frequency transmission.

Keywords: micro-Doppler radar; millimeter wave radar; bistatic radar; evasive object detection;
target tracking

1. Introduction

Identifying and locating small moving items has always been a challenge due to
numerous physical factors. There is a concrete need to detect and localize small targets
(i.e., in the order of a few millimeters) at a range resolution of a few centimeters, such as
with moving vehicles [1], where it is necessary to detect the locations of pedestrians or
other vehicles; gesture detection [2,3] in order to detect the motion characteristics of a target
or translate movements into a human–machine interface; target localization; searching for
survivors buried in rubble [4–6]; road safety [7]; transient sensors [8] that are realized mainly
by optical systems; and other applications [9]. Radars with millimeter wavelength (MMW)
capability have become more common in the military [10], civilian, and automotive [11]
industries. Over time, technology has progressed, and the requirement to protect private
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and public areas against new targets and scenarios that were not detectable in the past has
become more feasible. As a result of such developments, the radar industry has seen great
progress, mainly due to increased transmission frequencies from the S-band (2–4 GHz)
to the W-band (75–110 GHz) and improved signal processing abilities. The increase in
transmitting frequencies has enabled the detection of stealthy and fast targets, as a result
of the reduced transmission wavelength that increases scattering resistance of targets [12],
such as bullets [13,14], drone blades [15–18], missiles, and birds [19]. By improving data-
processing capabilities, it has become possible to analyze additional information about
the targets and, consequently, to classify them [20] as well as to recognize them and their
actions [21]. Detecting a target by radar requires a large amount of backscatter from the
target and the longest possible period of integration time [22]. The signal-to-noise ratio
(SNR) increases when these two parameters are considered. As far as evasive targets
are concerned, they are typically designed to have minimal returns to the radar, simply
because of the external structure. During the detection of a fast object, the integration time
is shortened due to the shorter detection range, which causes significant problems in terms
of the SNR and the error rate. To increase the chances of being able to detect a target, the
number of transmitters and receivers should be increased [23,24].

Target detection is based on the transmission of radiation toward a target and analysis
of the returns. Choosing the transmission wavelength is important, as it affects the amount
of scattering by the target, where more scattering will result in better detection by the
radar. The amount of scattering by a target will increase as long as the wavelength is small
relative to the dimensions of the target. Decreasing the wavelength relative to the target
dimensions increases the Radar Cross Section (RCS), according to [12]. The RCS in the
Rayleigh region is lower than the RCS of the same object in the optical region. Therefore,
a few millimeter-sized target detections should be performed using a system operating
with frequencies in the range of 75–110 GHz, i.e., W-band frequencies. Reference [25]
presents the results of measuring bullet returns at different frequencies, with the increase
in frequency showing a significant improvement in the scattering from the bullets.

In order to detect the range of a target at high resolution, standard methods require
transmission of ultra-wideband waveforms as in Frequency-Modulation Continuous Wave
(FMCW), frequency spread, or pulse radars [26]. The greater the bandwidth, the more
accurate the detection quality due to an improvement in the range resolution [26]. Typically,
when the required resolution for detection is a few centimeters, the bandwidth needed to
detect the signal is more than several GHz [26].

The proposed scheme is based on a Continuous Wave (CW) transmission, which is
narrowband in nature. The target localization is performed using a MIMO multi-state
configuration, where the different waves scattered from the target are received simulta-
neously with different Doppler frequency shifts. It is shown that analysis of the resulting
Doppler frequencies allows the calculation of the target position in very high accuracy.
The study reveals that in such a scheme, the accuracy of range estimation is determined
by the integration time of the detected signal. The diversity in space demonstrates the
ability to localize moving targets via their instantaneous Doppler signature without the
necessity to transmit ultra-wide band modulated waveforms. CW radars at millimeter
wavelengths, rather than FMCW ones, are easy to realize, much less spectrum consuming
and less exposed to dispersive effects, caused by the target or the propagation medium.

The article is organized as follows: Section 2 introduces the scheme of micro-Doppler
radar for MIMO configuration. Section 3 presents the model for the scenario where the
target moves vertically to the antenna plane. This simple scenario is used to clarify the
ability of the MIMO Doppler radar to facilitate distance measurement. Section 4 extends the
analysis to the general scenario where the target moves towards the radar in an arbitrary
angle. Section 5 presents the experimental setup and the results of the range measurements.
The results are presented with a comparison between the measurement of the radar and the
measurement of an independent camera system. Sections 6 and 7 present the analysis for
the obtained range resolution depending on the integration time and the barrier depending
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on the various parameters. Section 8 presents the analysis for the obtained range accuracy
depending on the SNR. Section 9 presents a comparison between the proposed method and
other standard methods for range detection. Section 10 presents further application and
discussion. Section 11 concludes the study.

2. Bistatic Micro-Doppler Radar

CW MMW Doppler radar output is an intermediate frequency (IF) that indicates the
velocity of a target without any information about its location relative to the radar. The
information regarding the velocity obtained from CW radar has relatively good resolution
and depends only on the time window size that is considered in the processing. Other mod-
ulations, such as pulse or FMCW radars, measure the range to targets, but the resolution of
the distance measurement depends on the transmission bandwidth.

It is possible to develop a system that detects a relative distance to the radar with
the same resolution as standard monostatic CW radar by multiplying the transmitters.
Detection is achieved by finding different velocity components from each transmitter. A
model with two transmitters and one receiver was researched, built, and used to perform
range measurement. This configuration includes two velocity components in the receiver.
Based on the distance, R, from the radar and the distance, d, between the transmitters, the
angle between the velocity components changes. It is possible to develop more complex
models for different scenarios.

Figure 1 is an illustration of a bi-static radar, consisting of a master transceiver and
a slave transmitter, both transmitting a CW waveform at the same carrier frequency. For
simplicity, we consider here a situation where the target is moving towards the master
antenna (Antenna 1). This is a simplified example, where only the master has the capability
of reception of the scattered signal from a ‘threat’ targeting it, while the side antenna (An-
tenna 2) is illuminating the target at a different observation angle. As will be demonstrated
in the upcoming sections, the proposed technique can deal with a general scenario, where
the target is moving in an arbitrary direction, by enabling both sites to have the capability
of reception of the scattered signal.
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The operating principle of a stationary coherent micro-Doppler radar is based on a
transmitted signal, ẼT(t), which is a CW with amplitude AT and transmission frequency f0:

ẼT(t) = ATej2π f0t (1)

The transmission is performed by both antennas simultaneously, while the reception
is performed by Antenna 1 only. As a result of the multipath between two transmissions
and one reception, two transmissions are received by Antenna 1 with different time delays
due to the different distances:
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ẼR(t) =

AR1 exp

−j

θ1(t)︷ ︸︸ ︷
2π f0

c
2R1(t)

+ AR2 exp

−j

θ2(t)︷ ︸︸ ︷
2π f0

c
[R1(t) + R2(t)]


× ej2π f0t . (2)

After passing through a mixer and low-pass filter, the following result is obtained:

ṼIF(t) = Ẽ∗T(t)× ẼR(t) = AR1 ATexp{−jθ1(t) }+ AR2 ATexp{−jθ2(t) } . (3)

Here, (·)* denotes a complex conjugate. There exists a relationship between the two
velocity components in the different directions of the transmitters with respect to the angle
between the two components, as shown in Figure 2.
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The angle α(t) is the relative observation angle between the two transmitting sites.
For the simple scenario described in Figure 2, the respective radial velocity towards each
transmitting site is given by:

v1(t) = v(t) , (4)

v2(t) = v(t)cos(α0) . (5)

The distances R1(t) and R2(t) in Equation (2) are integrals on the relative velocity
components, while the direction is given in terms of the instantaneous angle α(t) between
them, with initial location R0 and initial angle α0:

R1(t) = R0 −
∫ t

0
v1
(
t′
)
dt′ = R0 −

∫ t

0
v
(
t′
)
dt′ , (6)

The distance from Antenna 2 is calculated as follows:

R2(t) = R0 × cos(α0)−
∫ t

0
v2
(
t′
)
dt′ = R0 × cos(α0)−

∫ t

0
v
(
t′
)
cos
[
α
(
t′
)]

dt′ (7)

From the radar output, ṼIF(t), in Equation (3), two phases are obtained:

θ1(t) =
2π f0

c
2R1(t) =

2π f0

c
2
[

R0 −
∫ t

0
v
(
t′
)
dt′
]

, (8)

θ2(t) =
2π f0

c
[R1(t) + R2(t)] =

2π f0

c

[
R0 −

∫ t

0
v
(
t′
)
dt′ + R0cos(α0)−

∫ t

0
v
(
t′
)
cos
[
α
(
t′
)]

dt′
]

. (9)

Frequency analysis, which is the expected result after FFT, requires a differential on
the phases of the radar output ṼIF(t):

f1(t) = −
1

2π

dθ1(t)
dt

=
2 f0

c
v(t) , (10)
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f2(t) = −
1

2π

dθ2(t)
dt

= {1 + cos[α(t)]} f0

c
v(t)︸ ︷︷ ︸

f1(t)
2

. (11)

The number of transmitters in the system determines the number of frequencies that
are received at the output of the radar. The frequencies will be determined by the velocity
components between each transmitter and the target, with the velocity components related
to the angles formed between the target and the receiver, and each of the transmitters. In
the case of two transmitters, two frequencies will be received at the output of the radar.
By using (11), the connection between the two frequencies and the angle between the two
transmitters that caused them can be seen in Equation (12):

cos[α(t)] = 2
f2(t)
f1(t)

− 1 . (12)

Equation (12) presents a way to calculate α by measuring the frequencies at the radar
output. The presented setup describes a simplified model of two transmitters, which
causes two different frequencies at the radar output. Such a case might be generalized
by increasing the number of transmitters to receive more frequencies, contributing to
the detection of more information about the target. We assume in this scheme that there
is no need to track a target that does not pose a risk, and therefore we choose to focus
on tracking after objects that move directly to one of the transmitters. Regardless of the
number of transmitters, there will always be one receiver that has a relatively vertical
component in the direction of the target’s motion, more so than the others. In the case of
additional transmitters, information according to this model can also be obtained without a
vertical component to one of the transmitters. It can be seen from Equation (12) that the
instantaneous angle between the two paths plays a role in the resulting ratio between the
respective Doppler frequency shifts, while the distances have no direct effect.

3. Range Detection in Super Resolution Using CW Bistatic Radar

The relationship between the resulted Doppler frequencies and the angle α(t) between
the two directions is now studied. For clarity, we consider a simple scenario where the
target moves towards the main antenna, perpendicular to the plane of transmission, as
demonstrated Figure 3. We extend the derivation to deal with a more general scenario in
the next section. The relation between the distances R1(t) and R2(t) and the angle α(t) are
shown in Figure 3.
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R2(t) can be written, by Pythagoras’s law, as follows:

R2(t) =
√

d2 + R1
2(t) . (13)
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For triangulation, cos[α(t)] can be converted to the following:

cos[α(t)] =
R1(t)
R2(t)

=
R1(t)√

d2 + R1
2(t)

. (14)

After comparing Equations (12) and (14), the distance R1(t) can be written as follows:

R1(t) =
2 f2(t)

f1(t)
− 1√

1−
(

2 f2(t)
f1(t)
− 1
)2
× d . (15)

The ratio f2/f1 is explained in Figure 4.
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From Equations (10) and (11), it can be seen that as α approaches 90
◦
, when the

target is close to antenna 1, the relation between the frequencies f2/f1 is equal to 0.5, while
Equation (15) and Figure 4 present the same case with distance 0. From Equations (10) and
(11), it can be seen that as α approaches 0

◦
, when the target is far from the radar or the

antennas are very close, the relation between the frequencies f2/f1 approaches 1. Equation
(15) and Figure 4 present the same case when approaching infinity. Equation (15) presents
a solution to find the distance of a target from the system without the need for bandwidth,
by transmitting a single frequency. By knowing the distance between the transmitters and
by analyzing the returns to a single receiver, the target distance can be extracted.

4. Range Detection in the General Scenario

The previous section introduced the simple model for a scenario in which the target
moves directly towards the master antenna (Antenna 1) perpendicular to the axis of the
transmitters. In the following, we generalize the analysis to consider targets approaching
the sensor at an angle β. In such a scenario, the sensor should also detect the direction of
target arrival, as illustrated in Figure 5.
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It can be seen that Equations (4) and (5) for the simple case of the vertical motion
discussed previously are still valid for the general scenario. Therefore, Equation (12) is also
relevant here.

In accordance with the cosine theorem, the distance R2(t) can be expressed in terms of
the geometrical quantities:

R2(t) =
√√√√R2

1 + d2 − 2dR1(t)cos(90 + β)︸ ︷︷ ︸
−sin(β)

. (16)

Similarly, the instantaneous angle α(t) can be derived from:

d2 = R1
2(t) + R2

2(t)− 2R1(t)R2(t)cos[α(t)] (17)

resulting in:

cos[α(t)] =
R1

2(t) + R2
2(t)− d2

2R1(t)R2(t)
(18)

The distance R2(t) from Equation (16) is now introduced in Equation (18), obtaining:

cos[α(t)] =
2R1

2(t) + 2dR1(t)sin(β)

2R1(t)
√

R1
2(t) + d2 + 2dR1(t)sin(β)

=
R1(t) + dsin(β)√

R1
2(t) + d2 + 2dR1(t)sin(β)

(19)

Using Equations (12) and (19), the distance R1(t) can be found in terms of the Doppler
frequency shifts f1(t) and f2(t), as obtained at the two respective receivers:

2
f2(t)
f1(t)

− 1 =
R1(t) + dsin(β)√

R1
2(t) + d2 + 2dR1(t)sin(β)

(20)

It can be easily seen that when β = 0, Equation (20) degenerates to the expression
given in Equation (15) for the scenario where the target is moving perpendicular to the
sensor as discussed in Section 3. The distance R1(t) can be found by solving a quadratic
equation:

R1
2(t)

[(
2

f2(t)
f1(t)

− 1
)2
− 1

]
+ R1(t)2dsin(β)

[(
2

f2(t)
f1(t)

− 1
)2
− 1

]
+ d2

[(
2

f2(t)
f1(t)

− 1
)2
− sin(β)2

]
= 0 (21)

We assume that in most communication and radar systems, the angle of arrival (AoA)
of transmission is known, since the use of antenna arrays is very common. When the angle
β is known, RDCWB can also be used to track targets in the general scenario. In a scenario
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when the AoA is unknown, the number of transmitters can be increased so that a situation
similar to an antenna array is obtained.

5. Bistatic CW Radar Measurements

A bistatic system was designed, according to Figure 6.
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Figure 6. Bistatic CW radar scheme.

The system was built from a transmitter and a radar that contains a transmitter and
a receiver. The system was designed such that the target movement would be in front of
the radar and next to the separate transmitter. For these reasons, the separate transmitter
was designed to transmit more power than the radar in order to compensate for the wider
beam width that was needed to cover the target’s movement. The radar and its parameters
are presented in Figure 7.
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The system was built as shown in Figure 8.
In the presented experiment, plastic bullets served as targets, as shown in Figure 8.

The manufacturer indicates that the bullets are shot at a velocity of 30 m/s. Real bullets
move at much higher than 30 m/s velocities, but we chose to perform the measurements
on a safer target, even though the same radar has previously performed that successful
detection of bullets moving at velocities greater than 1000 m/s. The only difference in
measuring bullets at different velocities is the time taken for processing, with low velocities
taking longer to process. A fast bullet does not allow long processing times but also does
not require it because the high velocity allows less time to be used for processing. Equation
(29) demonstrates the relation between the resolution, the velocity, and the processing time.
In order to make a comparison between the results of the system and the video recording, it
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was necessary to perform the measurements on a slow target in relation to the photographic
capabilities so that it would be possible to make the comparison. This is another reason
we chose to perform measurements on a slow bullet. The measurements were made when
bullets were fired from the system and beyond, unlike the developed model, which was for
the movement of a target towards the system, because such a measurement was simpler to
conduct. Although the experiments were performed when the movement is in the opposite
direction, we performed the experiments in order to show the ability to track the range of
the bullets, so the direction of movement does not have an impact on the results.
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Figure 8. Bistatic CW radar system.

According to Equation (10), it can be seen that higher target velocity results in an
increase in the expected Doppler frequency shift. It can be also revealed from Equation (28)
that for higher f1 frequency, an improved resolution is expected. Thus, it is claimed that for
a given integration time, a better estimation of the distance and velocity will be achieved
for high-speed targets. Noting that in the present laboratory demonstration, relatively
slow targets are detected, in common scenarios, where high speed targets are involved, the
resulting resolution will be even better.

In addition, in the presented laboratory demonstrations, the targets were made of
non-conductive plastic sponge. Such targets present relatively low radar cross section
(RCS), while in most scenarios we may expect higher RCS targets. It is important to note
that despite their small reflectivity, plastic bullets are shown to be well detected, as can be
seen in Figure 9.
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by time windows of 10 ms with 10 ms of zeros padding. Between the windows there is an overlap of
99%. Conversion from frequency axis to velocity axis performed by Equation (22).
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A camera and the radar recorded several bullet shots simultaneously. The radar
output is analog, and it is necessary to sample it at a frequency that corresponds to the
expected maximum velocity of the target. The expected maximum velocity is 30 m/s, and
the transmission frequency of the radar is 94 GHz. According to Equation (10), the expected
frequency at the radar output is 19 kHz. In order to perform a measurement according
to a strict requirement of Nyquist, the sampling frequency was chosen to be 10 times the
expected maximum frequency, and therefore, the radar was sampled at fsample = 200 kHz.
The camera was used to present a comparison of the accuracy of the radar measurement
after analysis. A spectrogram function was applied to the data from the radar, which split
the signal into equal parts and performed a fast Fourier transform on them. The resulting
spectrogram was a three-dimensional graph presentation of time, frequency, and intensity,
where the frequency and the time are shown in a two-dimensional ordinary graph, and the
intensity is represented by colors (as shown in the colormap in Figure 9). A spectrogram
is a tool that allows spectral analysis to be displayed over time. The relationship between
frequency and velocity in a Doppler radar is linear, so the frequency axis in the spectrogram
can easily be replaced by a velocity axis, as shown in the graph of velocity component
vectors in Figure 9. The frequency axis is replaced by the velocity axis according to
Equation (10) when:

v[m/s] =
c

2 f0
f =

3× 108

2× 94× 109 f = 0.001595[m]× f [Hz] (22)

The spectrogram was input into an algorithm in order to locate several envelopes
on one graph and determine the numeric vectors of each velocity component separately.
One velocity vector was obtained from the velocity detected by the transmission from
the radar, while the second was obtained from the velocity detected by the transmission
from the individual transmitter. Exemplary results of the code and the spectrogram are
presented in Figure 9. The spectrogram shown in Figure 9 was created in accordance with
the parameters given in Table 1.

Table 1. Spectrogram parameters from Figure 9.

Spectrogram Parameter Value

Bullets’ maximum velocity 30 m/s
Expected frequency at radar output 19 kHz

Sampling Frequency 200 kHz
Window in time 10 ms

Window in samples 2048
Zeros Padding factor ×2

Total time for FFT calculation 20 ms
Total samples for FFT calculation 4096 [2048 samples + 2048 zeros padding]

Overlap between windows 99%

As the bullet moved away from the radar, the velocity was negative; it had a high
negative value at first and decayed with time due to drag from the air. The upper vector in
Figure 9 is the result of the transmission from the individual transmitter, and the bottom
vector is the result of the radar transmission.

From the presented measurement, it was possible to obtain additional information
about the movement direction of the target, based on a comparison between the differ-
ent velocity components, given the system and the transmitter locations. This type of
measurement will become more efficient as the number of transmitters increases.

Using the video captured by the camera and a video analysis program, the distance
between the radar and the bullet was measured for each frame. The video was recorded
according to Figure 6, with the camera filming the movement of the bullet from the side. A
known object in the video background helped with the distance normalization; in this case,
a TV with known dimensions was captured in the background (Figure 10).
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Figure 10. Bullet is marked in every frame, with normalization object.

A video recording and recording of the radar were performed for 40 s. During the
recording, five shots were fired one after the other. The result is a graph of the bullets’
range over time (Figure 11).
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Figure 11. Video analysis program result of bullet range from radar for five shots.

The velocity component vectors of one shot from Figure 9 were inserted to Equation
(15) when d = 1.4 m; as a result, a graph was obtained that indicates the position of the
bullet relative to the bistatic radar. The video analysis from the camera after the position
was determined from the radar is shown in Figure 12, presenting a comparison between
the camera and radar, in terms of the accuracy of the radar measurement.
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Figure 12. Comparison between radar and camera for one shot.

It can be seen that there was an unequivocal match between the camera and radar
measurements. According to the measurements, the distance of the moving target can be
measured in a non-limited physical resolution, where the distance is greater but at the scale
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of the distance between the two transmitters. Measurements from both the radar and the
camera were inserted into a curve fitting tool, using linear fitting to find the slope and first
point in the X-axis with t (R = 0) of both graphs. The estimated values are provided in
Table 2.

Table 2. Slope and start time of shooting comparison between radar and camera.

Estimated Slope Estimated Time of Firing Start

Radar 26.5 m/s 0.38 s
Camera 29 m/s 0.4 s

There was a less than 10% error between the estimated values from the radar and the
camera, as can be seen from the error estimation:

Slope Error(%) =

∣∣∣cameraest. slope − radarest. slope

∣∣∣
cameraest. slope

× 100(%) = 8.6% , (23)

Shooting Time Error(%) =
|cameraest.time − radarest.time|

cameraest. time
× 100(%) = 5% . (24)

6. Bistatic CW Radar Range Resolution Analysis

The range resolution in this method was obtained by a differential on the expression
from Equation (15), with x=f2/f1:

∆R =
dR
dx
× ∆x =

2[
1− (2x− 1)2

]1.5 × d× ∆x , (25)

where ∆x is the error calculation according to f1 and f2:

∆x =

√(
∂x
∂ f2

∆ f2

)2
+

(
∂x
∂ f1

∆ f1

)2
=

√√√√( 1
f1

∆ f2

)2
−
(

f2

( f1)
2 ∆ f1

)2

, (26)

∆ f is determined according to the sampling frequency over n samples:

∆ f1 = ∆ f2 =
fsample

N
=

1
T

, (27)

and T is the time window used for processing from Table 1. Using Equations (25)–(27) will
result in ∆R:

∆R =
2[

1− (2x− 1)2
]1.5 ×

√
1− x2

T × f1
× d , (28)

where the variable x depends on the ratio of the frequencies at the radar output, which is
determined by the velocity of the target, according to Equations (10) and (11), and the range
R between the radar and the target, according to Equation (13) (X-axis in Figure 13). For
that reason, ∆R from Equation (28) (Y-axis in Figure 13) can be determined as a function of
the velocity, range R, and distance d from Equation (15), as shown in the graph in Figure 13.
The parameter T was selected as 20 ms in order to create Figure 12, providing a clear
observation of the target (Figure 13).
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Figure 13. ∆R as a function of R/d and velocity, with T = 20 ms, d = 1 m.

Figure 13 shows how the relationship between the desired range for detection and the
size, d, of the system influences the range resolution. When the ratio between R and d is
ideal, the range resolution that can be obtained is less than 2 cm; meanwhile, when the
ratio is 1, the range resolution is less than 1 cm.

7. Barrier for Range Resolution in RDCWB

A low barrier can be set for the distance resolution from Equation (28). The low barrier
is obtained when the distance approaches 0, so it can be stated that x = 0.5 according to
Equation (15) and Figure 4. The frequency f1 is replaced by Equation (10), so the low barrier
can be written as:

∆R|x=0.5 ≥ 2.6× 108 × d
f0 × T × v

(29)

From Equation (29), it can be concluded that four main parameters influence the
resolution of the proposed scheme.

7.1. Integration Time and Velocity

The barrier is determined by the integration time for the FFT calculation and by
the velocity of the target, while the transmitted frequency f0 is fixed throughout the
measurement. Since a large integration time can be compensated by a greater percentage
of overlap between windows for FFT calculation, it can be said that the integration time is
the significant parameter that affects the resolution. As long as the processing capabilities
are stronger, the possible integration time is bigger, and the range resolution improves.

7.2. Transmission Frequency

It can be seen that determining transmission frequency sets the barrier in Equation (29).
Other than larger scattering strength at high frequency (as mentioned in the introduction),
increasing the transmission frequency also lowers the barrier in the proposed scheme and
improves the range resolution. In addition, it can be seen from Equation (10) that a high
transmission frequency causes a higher frequency at the radar output. In order to detect
the frequency at the radar output an FFT operation should be performed on the signal. A
high frequency signal requires less recording time to detect its power spectrum density.
Therefore, it can be said that given a target with a defined velocity, it will be detected
faster when the transmission frequency is higher. There is no limit to the velocity that can
be detected. At any transmission frequency it will be theoretically possible to detect any
velocity; the limit is usually in the system itself.
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7.3. Distance between the Transmitters

According to Equation (29), enlarging the distance d between the two transmitters
spoils the resolution and raises the barrier from Equation (29) but increases the effective
distance for detection, as can be seen in Figure 9, where the ability to separate the different
frequencies obtained at the radar output depends on the ratio between the distance of the
target and the distance between the two transmitters. It can be seen from Equation (11) that
a larger alpha angle causes a larger difference between the frequencies.

8. The Effect of Noise on Tracking Accuracy

The signal-to-noise ratio obtained at the IF affects the precision of targets tracking [27].
In order to examine the effect of SNR on the tracking accuracy of target location, an additive
white Gaussian noise (AWGN) n(t) is introduced in the received signal in (2). The signal
with the noise is given by:

ER(t) + n(t) =
[

AR1 e−jθ1(t) + AR2 e−jθ2(t)
]
ej2π f0t + n(t) (30)

For convenience, we assume from now on that both scattered signals are received with
the same power, i.e., AR1 = AR2 = AR. The noise is presented using quadrature base-band
components:

n(t) =
[
nI(t) + jnQ(t)

]
ej2π f0t (31)

Here, nI and nQ are independent, Gaussian stochastic processes, with zero statistical
average nI(t) = nQ(t) = 0 and variance n2

I (t) = n2
Q(t) = σ2

n , equal to the noise power.
Introducing the noise into the heterodyning detection results in:

VIF(t) = AT ARe−jθ1(t)+∆θ(t) + AT ARe−jθ2(t)+∆θ(t) (32)

where the phase noise fluctuations of the two products obtained at the mixer output can be
expressed as:

∆θ(t) = arctg
[

nQ(t)
AR + nI(t)

]
(33)

The phasor description of the detected signals in the presence of AWGN is depicted in
Figure 14. The common analytical derivation of phase noise in angle (phase or frequency)
modulated waveforms considers the case where the reception is above the threshold,
i.e., AR � nI(t), nQ(t). In this case:

∆θ(t) = arctg
[

nQ(t)
AR + nI(t)

]
∼= arctg

[
nQ(t)

AR

]
∼=

nQ(t)
AR

(34)
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The phase fluctuations cause frequency modulation (FM) in the Doppler shifts, leading
to a spectral spread. The phase noise is shown to be a gaussian process with zero mean
∆θ(t) = 0 and variance ∆θ2

RMS(t) = ∆θ2(t) = σ2
n/A2

R. The corresponding FM fluctuations
is given in terms of the phase derivative:

∆ν(t) =
1

2π

d
dt

∆θ(t) =
1

2πAR

d
dt

nQ(t) (35)

We use the notation ∆ν(t) to distinguish the frequency broadening caused by the
noise from the frequency resolution ∆ f = 1/T determined by the temporal windowing
(integration time). The FM noise is also Gaussian with mean ∆ν(t) = 0. The power spectral
density (PSD) of the frequency fluctuations is used to derive the expression for its variance
∆ν2

RMS:

S∆ν( f ) =
1

AR
2 f 2SnQ( f )→ ∆ν2

RMS =

+∞∫
−∞

S∆ν( f )d f =
1

AR
2

+∞∫
−∞

f 2SnQ( f )d f (36)

where SnQ( f ) = σ2
n/B is the PSD of the noise. Considering the noise-equivalent bandwidth

of B, the variances of the FM noise of the detected signals are found to be:

∆ν2
RMS =

1
AR

2

+B∫
−B

f 2SnQ( f )d f =
2
3

B2 σ2
n

AR
2 =

1
3

B2 1
SNR

(37)

where the signal-to-noise ratio is SNR = A2
R/
(
2σ2

n
)
.

Substituting ∆ f1 = ∆ f2 = ∆νRMS from (37) into Equations (25) and (26), the graph
of the range accuracy ∆R as a function of the signal-to-noise ratio (SNR) for different
bandwidths is presented in Figure 15.
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Note that for the examined bandwidths, increasing the SNR results in range tracking
accuracy approaches the range resolution determined by the integration time.

9. The Proposed RDCWB Scheme vs. Other Range Detection Sensors

Measurements were carried out using plastic bullets in order to prove the method. If
the measurement is performed on a real bullet, which moves at a velocity of 800 m per



Remote Sens. 2022, 14, 867 16 of 18

second, and R/d = 5, the range resolution in the proposed method will be, according to
Equations (10) and (11):

f1 =
2 f0

c
v =

2× 94× 109

3× 108 800 = 501.33 kHz (38)

f2 = {1 + cos[α(t)]} f1

2
=

{
1 + cos

[
tan−1

(
d
R

)]}
f1

2
= 1.9806× 501330

2
= 496.46 kHz (39)

The obtained range resolution is 3.7 cm, according to Equation (28) and the frequencies
from Equations (38) and (39), where d = 1 m and the processing time is 2 ms (shorter
due to the higher velocity). Standard systems (FMCW Radar or Pulse Radar) for range
detection with a range resolution of 3.7 cm must perform transmission and reception in
ultra-wideband, according to:

BW =
c

2× ∆R
= 4 GHz (40)

where BW is the required bandwidth, c is the speed of light, and ∆R is the range reso-
lution. Developing a system with this requirement is expensive, and it is very difficult
to implement, whereas the method proposed in this study does not require such high
bandwidth.

The pros and cons of each system type can be summarized. Existing range detection
sensors have range resolution which depends on the bandwidth of the system. There are
systems that can detect a range with a resolution of a few centimeters, although they require
a bandwidth of several GHz. There is an advantage in favor of existing systems whose
range resolution does not depend on the target distance from the system.

In the proposed RDCWB in this study, there is a disadvantage that the range resolution
depends on the distance of the target from the system, but it can be compensated by spacing
between the locations of the transmitters. The significant advantage of the proposed system
is the resolution of several cm, which is easily achieved in an easy-to-implement system
that does not transmit with bandwidth but a single transmission frequency.

10. Further Applications and Discussion

The experiments performed in this study were performed in a non-neutral environ-
ment. There were many objects in the room, and the room was not electromagnetically
isolated. From this can be deduced the great advantage of using a Doppler system, which
is immune to interference, although it can be blocked. However, it cannot be manipulated
to sense fake targets because the system is only coherent to itself. Therefore, the proposed
scheme can be used for the purposes of identifying tiny movements, for situations where
existing systems have difficulty performing, such as identifying the breathing of survivors
under rubble. The rubble does not constitute a radar clatter, as long as there is a tiny
movement of breathing or limb movement. A system similar to the proposed RDCWB can
direct rescue forces toward survivors.

Recently, the field of intelligent reflective surface (IRS) has been extensively researched
[28,29]. These surfaces have been found to be efficient and even significantly increase the
range in communication networks through non-line-of-sight paths between the transmitter
and the receiver. This method can be imported into the proposed scheme in this study,
where the scattering of reflective surfaces in the area of the proposed RDCWB can contribute
significantly to an increase in the effective distance for detection and possibly also to an
improvement in range resolution, even when the target is significantly far away from the
transmitters.

In recent years, there has been a significant development in using artificial intelligence
for high resolution tracking of targets, with an emphasis on artificial neural networks
(ANN) processing [30,31]. It is possible that the proposed scheme of RDCWB can take a
further significant step with the help of ANN techniques.
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Figure 13 presents the disadvantage of the system, when the resolution is not useful
as the target is far from the system. For many systems such as vehicle radars or missile and
bullet protection systems, this disadvantage is insignificant, as it is often not necessary to
know the exact range when the target is far away. The necessity for accurate range is more
significant when the target is closer to the system.

11. Summary and Conclusions

Bistatic radar is, in most cases, more effective than monostatic radar in the detection
of evasive targets. In addition to this capability, a method was developed for the indirect
measurement of range. This method enabled the radar to provide information on the range
of a target as well as on the target’s velocity and direction.

Measurements were made using bullets with low RCS, small size, and a structure
that usually does not disperse in the radar direction. Measurements of firing were made
in parallel with a camera, and a comparison was made between the results obtained by
processing the radar and video analysis. The comparison showed the ability to detect
the target’s range at very high resolution with an error of less than 10%. The expected
range resolution in the measurement, which was designed and performed according to the
optimal parameters of the system and the bullets, was between 0.4 and 5 cm. Measurements
were performed on plastic bullets with low velocity, whereas real bullets with higher
velocity can be measured at a range resolution of 3 cm under the same system parameters.

The proposed method utilized a minimum number of transmitters. With the general-
ization of this setup using multiple transmitters, additional results and capabilities could
be obtained in order to discover more information about targets, such as their relative angle
to the radar.
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