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Abstract: Effective and precise monitoring is a prerequisite to control human emissions and slow
disruptive climate change. To obtain the near-real-time status of power plant emissions, we built
machine learning models and trained them on satellite observations (Sentinel 5), ground observed
data (EPA eGRID), and meteorological observations (MERRA) to directly predict the NO2 emission
rate of coal-fired power plants. A novel approach to preprocessing multiple data sources, coupled
with multiple neural network models (RNN, LSTM), provided an automated way of predicting
the number of emissions (NO2, SO2, CO, and others) produced by a single power plant. There
are many challenges on overfitting and generalization to achieve a consistently accurate model
simply depending on remote sensing data. This paper addresses the challenges using a combination
of techniques, such as data washing, column shifting, feature sensitivity filtering, etc. It presents
a groundbreaking case study on remotely monitoring global power plants from space in a cost-wise
and timely manner to assist in tackling the worsening global climate.

Keywords: emission; coal-fired power plant; remote sensing; machine learning; NO2

1. Introduction

Man-made emissions are the main cause of global climate change and exert myriad
impacts on environmental ecosystems and human well-being, including greater frequency
and magnitude of disruptive climate events, such as exceptional drought, hurricanes, and
deadly flash flooding. Action must be taken to stop the trends in the next decades to
slow down the increase of global temperature which has already increased by 1.5 Cel-
sius, on average, above pre-industrial levels, a rate which has not been seen in the past
2000 years. Many groups and world governments are taking steps to reduce emissions
through precautionary short-term and long-term goals to fight the concerning change.

U.S. EPA (Environmental Protection Agency) reports that over a quarter of the total
emissions of both pollutants and greenhouse gases in the United States come from the
energy sector and the majority is from burning coal, fossil fuels, and natural gas. Power
demand varies closely with the weather (especially extreme warmth and cold), which
changes significantly over daily timescales.

An essential step to control emissions is to accurately monitor them on a timely basis
to prevent further severe emission releases to the atmosphere. Currently, EPA requires
coal-fired power plant facilities to install real-time sensors to their emission outlets, such as
chimneys, and to send the data back regularly. The data is accurate and continuous and
serves as the sole source of information for policymaking and emissions control. However,
ground observation is expensive to install and maintain and only power plants in the
United States and some western countries allow open access to their high-resolution data

Remote Sens. 2022, 14, 729. https://doi.org/10.3390/rs14030729 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030729
https://doi.org/10.3390/rs14030729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3608-191X
https://orcid.org/0000-0001-9810-0023
https://orcid.org/0000-0002-4255-4568
https://doi.org/10.3390/rs14030729
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030729?type=check_update&version=2


Remote Sens. 2022, 14, 729 2 of 35

so far. To manage global emissions as a whole, we should have the ability to monitor all
the power plants around the world at low cost and in an environment-friendly manner.

EPA currently regulates nitrogen dioxide (NO2), the most important member in the
NOx family in the troposphere. NO2 can react and create ozone (O3). EPA defined national
ambient air quality standards (NAAQS) to regulate tropospheric NO2 levels for the sake of
public health. The recommended safe threshold of annual arithmetic mean concentration
is 0.053 parts per million (ppm) (100 micrograms per cubic meter) [1]. Power plants are
one of the main sources of human-induced NO2 due to their coal/gas combustion. One of
three chemical mechanisms results in the formation of NOx: (1) “thermal” NOx, which
accounts for 75% of NOx, is produced by oxidation of molecular nitrogen by combustion in
air; (2) “fuel” NOx, which accounts for 20% of NOx, is produced by oxidation of chemically
bound nitrogen in fuel, and (3) “prompt” NOx, which accounts for 5% of NOx, is produced
by the reaction between molecular nitrogen and hydrocarbon radicals [2]. NO2 is a trace
gas generated by both anthropogenic production and the environment. Sunlight can cause
chain chemistry reactions to produce nitric oxide and ozone in the troposphere. Thus, NO2
is often used to indicate the concentration of the larger family of nitrogen oxides (NOx),
other members of which are acidic and harmful (e.g., NO). NOx emissions lead to poor
air quality events, such as smog, haze, and even acid rain, and cause severe respiratory
problems. The emissions can also result in overpopulation of algae and contamination of
water bodies and soil. Although many power plants in the U.S. have adopted techniques
to absorb and reduce NOx and CO from their emissions, they are still a major concern on
a large spatial scale with significant accumulation after long-term operation. Furthermore,
even after 30 years of policies and regulations to improve air quality by reducing emissions,
some U.S. power plants still do not control emissions of pollutants, even though control
technology is widely available [3].

Satellite remote sensing has been developing rapidly in the past few decades. It is
widely used in monitoring many aspects of our planet, ranging from forests to urban ex-
pansion, and provides consistent and continuous information to decision-makers. Ground
observations are point-based and cannot provide full spatial coverage, which is where
satellite data can play a role. Multi and hyperspectral sensors carried on many satellites are
capable of remotely measuring common air pollutants and greenhouse gases. The selection
of sensors and algorithm development are largely dependent on the spatiotemporal resolu-
tion, sun height angle, spectral range, and the reflectance characteristics of NO2. Remote
sensing for NO2 is currently a very active area of research with many studies highlighting
its usefulness for accurately monitoring NOx emission using satellite instruments, such
as OMI (Ozone Monitoring Instrument) on NASA Aura satellite and TROPOMI (TROPO-
spheric Monitoring Instrument) on ESA Sentinel-5 Precursor (S5P) satellite. Additionally,
The Geostationary Air Quality (Geo-AQ) mission constellation consists of geostationary
satellites focused on air quality. The missions GEMS, Sentinel-4, and TEMPO are capable of
capturing spectrally resolved radiances in the ultraviolet (UV) and near infrared spectral
domains that are key for observing short-lived tropospheric trace gases and aerosols. These
missions are planned to launch within the 2019–2023 timeframe. The data from these
satellites might help in identifying specific sources of emissions from relatively small-scale
sources, such as power plants, through its key validation changes in sampling of the diurnal
cycle of atmospheric constituents in comparison to the validation used by OMI, S5P, and
OMPS that face large variability of short-lived species [4]. TROPOMI satellite instrument
has yet to reach a micro-spatial resolution able to distinguish power plant pollution from
other sources accurately. Under ideal weather conditions, there are examples of TROPOMI
accurately identifying relatively small-scale isolated sources with the help of spatial over-
sampling, temporal averaging [5], or enhanced surface reflectance conditions [6].

Machine learning (ML) has emerged as a promising method for building connections
between remotely sensed data and ground-based observations, without requiring explicit
performance of computationally expensive atmospheric chemistry and atmospheric dynam-
ics calculations. ML algorithms are capable of recognizing patterns in multi-dimensional
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datasets. Geoscience is a field that may be readily applied, with large data sets available
to train these models and many complex physical interactions that are, in some cases, not
fully defined. It has already been successfully applied to complete tasks, such as land
cover classification and automatically producing counterpart maps, with as high accuracy
as conventional mapping techniques. Recently, ML has been widely introduced to the
physics-based modeling community to help understand model uncertainty and biases and
how to correct them [7].

Considering the requirements of monitoring power plants from space and the avail-
ability of remote sensing data and the ML analytic framework, this study sought to use only
remote sensing data to monitor NO2 emissions by coal-fired power plants. It attempted to
utilize the massive power of ML for simulating the non-linear relationships and memoriz-
ing the hidden patterns in training datasets to estimate emissions from power plants based
only on remotely sensed data once the model is well trained. We tested several typical
ML algorithms, including deep learning (DL) neural networks, such as long short-term
memory (LSTM). Compared to traditional techniques, such as numeric modeling and
rule-based workflow processing systems, ML has fewer restrictions, such as requiring no
initial field conditions, equation coefficient adjustments, expensive computation costs, and
no unrealistic assumptions. In this study, we collected data from multiple data sources
including TROPOMI NO2 products, EPA eGRID ground monitoring network data, and
NASA MERRA weather data. The training data used TROPOMI and MERRA variables
as inputs and EPA emission data as outputs. It covered more than five thousand power
plants across the United States. However, due to the relatively coarse spatial resolution of
remote sensing data at present (TROPOMI has 7 × 3.5 km before August 2019 and a higher
resolution of 3.5 × 5.5 km currently), the NO2 reflected in the remote sensing data possibly
did not come exclusively from power plants, especially in urban areas. To exclude impacts
from other emission sources, we initially chose power plants located in rural regions for
initial tests. The results showed that ML was capable of correctly detecting changing
trends in NO2 emission by power plants. They confirmed that ML has much promise in
identifying a reliable value range for specific ground emission sources, simply based on
remotely sensed daily data (if the remote sensing data has no gaps, such as clouds).

To improve the stability of AI models, we performed a series of testing experiments
to verify the model’s usability on sites located in various backgrounds, such as rural and
urban settings, and tested how the model could perform on multiple sites instead of a single
site. The model presented in this paper was compared to other types of models to ensure
its accuracy; we found that LSTM outperformed most ML models with the same given
training data. The significance of each input variable was also assessed and refined to
improve the ML models. It was found that the day of the year and TROPOMI were the
two most significantly correlated variables which means that the combination of date and
TROPOMI reflects the highs and lows of power plant NO2 emissions. The significance of
the relationship between weather variables and emissions was not obvious in this case and
we think that it might be caused by the low temporal resolution of MERRA. In future work,
we will look for higher resolution weather products to replace MERRA and expect to see
increases in the correlation significance.

2. Related Work

Machine learning and remote sensing have attracted a lot of attention in air quality
research. Crosman [8] describes the meteorological drivers of CH4 by linking remote sensed
TROPOMI CH4 data. Lorente et al. [9] consider the use of TROPOMI NO2 for observations
over Paris as having superior accuracy to numerical models based on inventories that
rely on indirect data. Beirle et al. [10] used TROPOMI to map NOx emissions from power
plants near high urban pollution areas in Riyadh, KSA. Ialongo et al. [11] and Yu et al. [12]
compared TROPOMI NO2 and ground observations and found that TROPOMI under-
estimated NO2. Yang et al. [13] constructed a long short-term memory (LSTM) neural
network to model the relationship between operational parameters and the NOx emissions
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of a 660 MW boiler. Karim et al. [14] utilized an LSTM model to forecast PM2.5, PM10,
SO2, NO2, CO2, and O3 emissions produced in Dhaka, India, between 2013 and 2020.
Kristiani et al. [15] forecast PM2.5 emissions using an LSTM model. Abimannan et al. [16]
forecast air pollution using an LSTM multivariate model to predict precise PM2.5 measure-
ments during summer and cold seasons. Georgoulias et al. [17] used remote sensing data
to analyze NO2 plume emissions by ships in the ocean.

Si et al. [18] used XGBoost to predict NOx emissions from a boiler located in Alberta,
Canada. They showed XGBoost achieved better accuracy than an ANN. Zhan et al. [19]
used random forest to estimate daily ambient NO2 across China based on satellite images.
The land use regression model (LUR) is a commonly used algorithm to monitor pollutants
in populated regions. It couples regression algorithms to describe the relationship between
environmental variables and pollutants. Chen et al. [20] used an LUR model to assess
spatial-temporal variation of NO2 in Taiwan and captured 90% and 87% of NO2 variations
in annual and monthly datasets, respectively. Novotny et al. [21] used an LUR model
for monitoring outdoor NO2 pollution in the U.S. Wong et al. [22] used several machine
learning algorithms to estimate long-term daily NO2 data and concluded that XGboost
outperforms random forest and DNN (deep neural network) models.

El Khoury et al. [23] and Lin et al. [24] discuss the correlation existing between NO2,
SO2 with aerosol optical depth (AOD) and examined their effects on pollutant dispersion
and tropospheric data retrieval. Superczynski et al. [25] compared the aerosol optical
thickness (AOT) from MAIAC against data from the Visible Infrared Imaging Radiometer
Suite (VIIRS) for accuracy. Zhao et al. [26] used Pandora instruments in Toronto, CA, to
measure NO2 and evaluate TROPOMI NO2 accuracy. Using a wind-based validation tech-
nique, the study showed both Pandora and TROPOMI instruments could reveal detailed
spatial patterns and regional air quality changes. Verhoelst et al. [27] presented a validation
method for TROPOMI NO2 against consolidated ground-based results. Wang et al. [28]
compared and validated NO2 data measured by TROPOMI and its predecessor, the Ozone
Monitoring Instrument (OMI), over China.

Overall, most existing research has focused on studying the spatial-temporal distribu-
tion of NO2 and monitoring the general trends of variances at a large scale. However, the
regulatory agencies need detailed and specific reports about individual emission sources,
such as power plants. Therefore, this study changed the focus and re-examined the capabil-
ities of remote sensing and ML, using them for estimating single specific sources. Below
are our methods and findings.

3. Materials and Methods
3.1. Study Area

Our general study region covers coal-fired power plants in the United States, with
two testing scenarios set up for this study. As our benchmark site, we used a single power
plant (first scenario) in rural Alabama (Figure 1). It is about 66 miles south of Mobile, AL.
The plant was chosen as it is far away from cities and other emission sources that could
introduce noise to the remote sensing observations. Additionally, studying isolated power
plants gives us a clear idea of the impact to the population or natural environments.

The second scenario set of experiments focused on combining all coal-fired power
plants throughout the U.S. This was set as a goal to study the performance of machine
learning models in this context and their ability to generalize prediction accuracy for NO2.
Obtaining a large-scale emissions prediction for all the power plants gives an additional
perspective on the impact of pollutant emissions on the climate. A machine learning model
that predicts regardless of location is as beneficial as location-based predictions.
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3.2. Data
3.2.1. TROPOMI Tropospheric NO2 Data

The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precur-
sor (S5P) satellite launched on 13 October 2017, and its operational data collection started in
April 2018. TROPOMI provided a daily high resolution of 7 × 3.5 km before August 2019
and a higher resolution of 3.5 × 5.5 km after that. One of its L2 products is a tropospheric
vertical column of NO2 per mol/m2. TROPOMI NO2 data was extracted from Google
Earth Engine. To ensure image clarity and accurate emission reflection, TROPOMI only
samples during the day in the presence of sunlight. TROPOMI passes over and samples
a given location based on its latitudinal distance from the equator, with the local equator
crossing time being 13:30 h.

Additionally, TROPOMI provides quality control through its “qa_value” flag for each
ground pixel to indicate the quality of the retrieved pixel. The quality per pixel ranges from
0 (no output) to 1 (clear) (Wang et al. [28], 2020). The “qa_value” in the data collected for this
study included pixel quality over 0.75 for the tropospheric vertical column of NO2. As a result
of this quality control, some days of the year were left out of our dataset, resulting in gaps.

Validation of TROPOMI values against ground-based observations is a widely dis-
cussed aspect of TROPOMI. Several studies have measured and attempted to validate the
tropospheric data from the S5P satellite, with many discussing the differences observed
compared to ground-based measurements. (Verhoelst et al. [27], 2021). A similar monitor-
ing instrument to TROPOMI is OMI (Ozone Monitoring Instrument). It was considered,
but due to its lower resolution of (13 km × 25 km) [29], its benefit seemed unlikely and has
not been included in this study. TROPOMI NO2 was used as input in our experiments;
to mitigate the ML models relying on only one remote sensed data for NO2 prediction,
additional data sources were collected.

3.2.2. MERRA-2 Meteorology Data

The second Modern-Era Retrospective Analysis for Research and Applications, Version
2 (MERRA-2), was utilized for its monthly/weekly/daily mean data collection. These
collections include assimilations of single-level meteorological diagnostic data, such as
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temperature at 2 and 10 meters, wind components at 2, 10, and 50 meters, surface pressure,
and total precipitable water. This is coarser data, so only one grid point was used for each
power plant. This data was utilized as input for the study’s first scenario experiments to
test if meteorological features influenced the performance of the ML models.

MERRA-2 has several different types of data that were used, specifically surface
temperature, bias-corrected precipitation, cloud fraction, and surface wind speed. The
data collected from MERRA-2 were provided on a horizontal grid. The grid has 576 points
in the longitudinal direction and 361 points in the latitudinal direction corresponding to
a resolution of 0.625◦ × 0.5◦. MERRA-2 validation was compared to ground measurements;
strong correlation and low errors were found for air temperatures with a 0.99 correlation
coefficient observed and 0.81 and 0.99 for wind speed (Khatibi et al. [30], 2021).

3.2.3. EPA eGRID Data

Emission and Generation Resource Integrated Database (eGRID) data from the En-
vironmental Protection Agency (EPA) was used to validate the training data. This data
provides an inventory of environmental attributes of power plants in the United States by
tracking air pollutants, such as SO2, CO2, and NO2 per lb/MWh.

The continuous emission monitoring system (CEMS) validates the data collected using
the procedure, “Quality assurance requirements for gas continuous emission monitoring
systems used for compliance determination”. This procedure is primarily concerned with
determining compliance by evaluating the efficacy of quality control (QC) and quality
assurance (QA) of data provided by any operational CEMS. It specifies the minimal quality
assurance requirements for controlling and quality of any CEMS data provided to the
Environmental Protection Agency (EPA) [31]. Any owner of a CEMS must meet these
minimal conditions to submit the data they obtained to ensure its validity.

Additionally, the collected in situ EPA NO2 data for this study came with uncer-
tainty about the accuracy and under-sampling of the estimates. EPA releases a “National
Emissions Inventory” (NEI) every three years as an estimate of emissions of criteria pollu-
tants [32]. This study utilized remotely sensed data as a representation of in situ data. EPA
NO2 was used as the target variable to predict for this study.

3.2.4. U.S. Power Plants Data

Power plant metadata and location shapefiles were obtained from the Energy Informa-
tion Administration (EIA). The shapefile was dated January 2020 and included 9768 power
plants, 289 of which were coal-fired. “Plant Code”, “Plant Name”, “Utility Name” and
“Utility ID”, “Sector Name”, “Address”, “Primary Source” (e.g., coal, solar, etc.), power
plant capacity per MW (megawatt), and the plants’ latitudes and longitudes were among
the features included for each power plant.

3.2.5. MODIS MCD19A2

MCD19A2 is a Level 2 product of aerosol optical depth (AOD) which is calculated
by combining terra and aqua imagery into one single multi-angle implementation of
atmospheric correction (MAIAC) model. It is produced daily at 1 (km) resolution, and
this study used the blue band AOD at 0.47 µm Science Dataset (SDS) layer. The “QA”
bands contain flag information about cloud, adjacency, surface type, and surface change.
In this study, we collected data that had a cloud-free QA band. This dataset’s inclusion
was motivated by the effects of aerosol optical depth on pollutant dispersion, tropospheric
NO2 retrieval, and correlation to meteorological conditions (El Khoury et al. [23], 2019;
Lin et al. [24], 2019). MCD19A2 was used as input in this study.

3.3. Preprocessing & Post-Processing
3.3.1. eGRID Data Preparation

EPA NO2 data was collected in an hourly format for the whole year and averaged by
day. In order to scale the data, it was divided by 1 × 105 and rounded to five decimals.
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The scale applied to this feature is indicated by the dataset label “EPA NO2/100000”. This
feature was then merged with the other data sources listed below for each day of 2019.
The number of EPA NO2 values merged in the dataset for a power plant location was
determined by our TROPOMI NO2 available data. Certain power plants in the dataset had
less than a full year of data due to TROPOMI NO2 QA filtering, resulting in gaps.

3.3.2. TROPOMI Data Preparation

To achieve a precise observation of power plant NO2 emissions observed in TROPOMI
images, preprocessing considered the emission and wind movement speeds present in the
imagery. Clipping the images based on the latitude and longitude of each power plant was
applied, with the breeze wind speed (10–20 mph) and emission traveling speed (assumed
240–480 miles per day) as clipping bounds. If this was not done, the density of the emissions
across the images would gradually disperse and become lower with longer distances. In
order to obtain an accurate representation of TROPOMI NO2 for each power plant, the
spatial scope was essentially shrunk by 7 miles (0.1 degrees) as the height and width of the
bounding box to be utilized for clipping. This created a bounding box containing the most
affected region in each image while also reducing nearby power plants’ impact (noise).

TROPOMI NO2 value was then extracted from the raster matrix and written to
a CSV file - after rescaling the value by multiplying it by 1000 and labeling the feature
“TROPOMI*1000” to be on the same scale as EPA NO2 feature-along with the power plant
ID, coordinates, EPA NO2 (eGRID), and MERRA-2 data.

3.3.3. MCD19A2 Data Preparation

The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Aerosol Opti-
cal Depth (AOD) product is produced daily with hourly values at a 1 km pixel resolu-
tion to be utilized in this study, with its blue band (0.47 m) aerosol optical depth over
the land product collected for our first scenario power plant. Google Earth Engine was
used to obtain the power plants hourly MCD19A2 values in 2019. The image collection
“MODIS/006/MCD19A2_GRANULES” was selected and filtered by date starting from
1 January 2019 to 1 January 2020. A filter bound was then applied, based on the coordinate,
and the image collections “Optical Depth 047” band was selected.

The extracted image was fed into a reducer, which produced an hourly value after
computing the (weighted) arithmetic mean over the area of each band selected for the image.
This generated a CSV file with a timestamp and an hourly value for “Optical Depth 047”,
which was then resampled to produce a daily average output for the entire year. The
inclusion of this data source was an attempt to verify if any improvement could be applied
to the machine learning models discussed in this paper.

3.3.4. TROPOMI/EPA Value Pairs

This section discusses combining TROPOMI and EPA data as value pairs associated
with each power plant by each daily emission product for each day of the year. Iterating
through each power plant in our dataset, an EPA NO2 value was associated, based on
the selected facility id and coordinates passed to the EPA (eGRID) dataset. If data existed
for the plant and was not empty, a TROPOMI NO2 value was associated with the pair by
passing the coordinates of the power plant to TROPOMI images for clipping to obtain their
values extracted from the raster object.

Representing the data by pairs of our most impactful features simplified the reshaping
and scaling performed in preprocessing before the ML models were fed the data. Obtaining
TROPOMI values of the power plant image, the corresponding EPA data for the power
plant, monthly averaged MERRA-2 features, and the date string before separation, a CSV
file was generated that contained the six features.
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3.3.5. Dataset Preparation

Scaling was the first step taken with the data across all ML models in both scenarios.
All features in the input variables were scaled on a (0, 1) scale for consistency and perfor-
mance of the ML models. The scaling prevents giving more weight to higher-range features
while less to lower-range features. Both the independent and dependent features were
scaled. The predictors and target features for both the train and test sets were then extracted
using a 66% training split. Additionally, a datetime string was associated with the CSV file
for each day available in the dataset throughout the year. This was split into three separate
columns as the ML models cannot parse date strings as input. We transformed the date
column numerically into “dayofweek”, “dayofmonth”, and “dayofyear”.

The second scenario included an additional step in which all power plant NO2 emis-
sions were averaged by date. The models would not learn since the dates in a dataset
containing all power plants would always overlap. The best approximation of NO2 emis-
sions from all plants was produced by grouping the dataset by date. Because grouping by
facility ID removes the dataset’s time series element, resulting in an inaccurate portrayal
of emissions over time, it was not used. The final output of both scenarios’ datasets is
displayed in Tables 1 and 2. Figures 2–4 visualize the data for the first scenario. Figure 2
shows the data over time, and Figure 3 visualizes the distribution of each feature. Figure 4
visualizes the correlation between each feature of the dataset. Figure 5 displays the overall
flow of data and ML for the study.

Table 1. Statistical description for the single power plant (Alabama) dataset with the date column
split into three.

EPA_NO2/
100,000

TROPO-
MI*1000

Wind
(Daily)

Temp
(Daily)

Precip
(Daily)

Cloud
Fraction
(Daily)

day of
year

day of
week

day of
month

Optical_
Depth_047

Count 167 167 167 167 167 167 167 167 167 167
Mean 0.202 0.073 −0.002283 292.429054 0.000047 0.481267 190.892 3.023 15.640 83.401

Std 0.095 0.017 0.066753 8.760018 0.000109 0.275749 98.860 1.987 9.297 116.695
Min 0.000180 0.038 −0.248446 273.780730 0 0.000238 16.000 0 1 0
Max 0.459 0.127 0.340735 304.310400 0.000660 0.957011 339 6 31 529

Table 2. Statistical description for the All 289 coal-fired power plants scenario dataset excluding MERRA-2.

EPA_NO2/100,000 TROPOMI*1000 day of year day of week day of month

Count 8887 8887 8887 8887 8887
Mean 0.080 0.103 174.562 2.938 15.730

Std 0.116 0.076 109.798 1.986 8.682
Min 0 0.0002 1 0 1
Max 0.908 1.904 365 6 31
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Figure 2. Actual values throughout the year of different important features for the single power plant
(Alabama) dataset. (a) EPA NO2 value by day in 2019; (b) TROPOMI NO2 value by day in 2019; (c) MODIS
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MCD19A2 blue band AOD at 0.47 µm 2019 value by day in 2019; (d) MERRA-2 daily surface
temperature value by day in 2019; (e) MERRA-2 daily surface wind speed value by day in 2019;
(f) MERRA-2 daily bias-corrected precipitation value by day in 2019; (g) MERRA-2 daily cloud
fraction value by day in 2019; (h) MERRA-2 weekly surface temperature value by day in 2019;
(i) MERRA-2 weekly surface wind speed value by day in 2019; (j) MERRA-2 weekly bias-corrected
precipitation value by day in 2019; (k) MERRA-2 weekly cloud fraction value by day in 2019.

Remote Sens. 2022, 14, 729 10 of 37 
 

 

Figure 2. Actual values throughout the year of different important features for the single power 
plant (Alabama) dataset. (a) EPA NO2 value by day in 2019; (b) TROPOMI NO2 value by day in 
2019; (c) MODIS MCD19A2 blue band AOD at 0.47 µm 2019 value by day in 2019; (d) MERRA-2 
daily surface temperature value by day in 2019; (e) MERRA-2 daily surface wind speed value by 
day in 2019; (f) MERRA-2 daily bias-corrected precipitation value by day in 2019; (g) MERRA-2 daily 
cloud fraction value by day in 2019; (h) MERRA-2 weekly surface temperature value by day in 2019; 
(i) MERRA-2 weekly surface wind speed value by day in 2019; (j) MERRA-2 weekly bias-corrected 
precipitation value by day in 2019; (k) MERRA-2 weekly cloud fraction value by day in 2019. 

 
Figure 3. Distributions of each feature used for training with 10 bins for the single power plant 
(Alabama) dataset. (a) EPA NO2 distribution in 2019; (b) TROPOMI NO2 distribution in 2019; (c) 
Number of day distribution in year 2019; (d) Number of week distribution in 2019; (e) Number of 
month distribution in 2019; (f) MODIS MCD19A2 blue band AOD at 0.47 µm 2019 distribution; (g) 
MERRA-2 daily surface temperature distribution in 2019; (h) MERRA-2 daily surface wind speed 
distribution in 2019; (i) MERRA-2 daily bias-corrected precipitation distribution in 2019; (j) MERRA-
2 daily cloud fraction distribution in 2019; (k) MERRA-2 weekly surface temperature distribution in 
2019; (l) MERRA-2 weekly surface wind speed distribution in 2019; (m) MERRA-2 weekly bias-cor-
rected precipitation distribution in 2019; (n) MERRA-2 weekly cloud fraction distribution in 2019. 

Figure 3. Distributions of each feature used for training with 10 bins for the single power plant (Alabama)
dataset. (a) EPA NO2 distribution in 2019; (b) TROPOMI NO2 distribution in 2019; (c) Number of day
distribution in year 2019; (d) Number of week distribution in 2019; (e) Number of month distribution in
2019; (f) MODIS MCD19A2 blue band AOD at 0.47 µm 2019 distribution; (g) MERRA-2 daily surface
temperature distribution in 2019; (h) MERRA-2 daily surface wind speed distribution in 2019; (i) MERRA-
2 daily bias-corrected precipitation distribution in 2019; (j) MERRA-2 daily cloud fraction distribution
in 2019; (k) MERRA-2 weekly surface temperature distribution in 2019; (l) MERRA-2 weekly surface
wind speed distribution in 2019; (m) MERRA-2 weekly bias-corrected precipitation distribution in 2019;
(n) MERRA-2 weekly cloud fraction distribution in 2019.



Remote Sens. 2022, 14, 729 11 of 35Remote Sens. 2022, 14, 729 11 of 37 
 

 

 
Figure 4. Correlation plot showing the relationship between each feature for the single power plant 
(Alabama) dataset. 

Figure 4. Correlation plot showing the relationship between each feature for the single power plant
(Alabama) dataset.

Remote Sens. 2022, 14, 729 12 of 37 
 

 

 
Figure 5. Data and ML flow. 

3.4. Machine Learning Models 
3.4.1. Long Short-Term Memory (LSTM)  

This section introduces an LSTM model used for this study. This was chosen as the 
first model based on one conclusion reached. EPA NO2 target value affected subsequent 
values in the dataset due to the chronological nature of our data and the long-term effects 
of pollutants in the atmosphere. The conclusion that a current EPA NO2 value for a day is 
affected by the previous day’s NO2 value, and an LSTM models’ ability for insensitivity 
to gap duration in data with some missing days made this choice beneficial. LSTM tradi-
tionally is good with non-linear time-series data and can incorporate previous data by 
time steps, which fitted our data requirement. Three sets of input data were prepared: 

 The first set only contained two features (EPA NO2, TROPOMI). 
 The second input dataset included MERRA-2 (daily, weekly, monthly), TRO-

POMI NO2, and date features (EPA_NO2_10000, TROPOMI*1000, dayOfYear, 
dayOfWeek, dayOfMonth, MERRA-2 Wind, MERRA-2 Temp, MERRA-2 Precip, 
MERRA-2 Cloud Fraction).  

 The third input set contained previously mentioned features and MCD19A2. 
The data was then reshaped to a 3-dimensional shape (adding a time axis) required 

by an LSTM model (number of samples, time steps, number of features). Reshaping must 
set a look back value specifying how many earlier days are used to create the time series. 

Figure 5. Data and ML flow.



Remote Sens. 2022, 14, 729 12 of 35

In some cases (e.g., the LSTM model), additional steps were taken relevant to the
model setup. These are discussed in further detail in each model’s section.

3.4. Machine Learning Models
3.4.1. Long Short-Term Memory (LSTM)

This section introduces an LSTM model used for this study. This was chosen as the
first model based on one conclusion reached. EPA NO2 target value affected subsequent
values in the dataset due to the chronological nature of our data and the long-term effects
of pollutants in the atmosphere. The conclusion that a current EPA NO2 value for a day is
affected by the previous day’s NO2 value, and an LSTM models’ ability for insensitivity to
gap duration in data with some missing days made this choice beneficial. LSTM tradition-
ally is good with non-linear time-series data and can incorporate previous data by time
steps, which fitted our data requirement. Three sets of input data were prepared:

• The first set only contained two features (EPA NO2, TROPOMI).
• The second input dataset included MERRA-2 (daily, weekly, monthly), TROPOMI NO2,

and date features (EPA_NO2_10000, TROPOMI*1000, dayOfYear, dayOfWeek, dayOf-
Month, MERRA-2 Wind, MERRA-2 Temp, MERRA-2 Precip, MERRA-2 Cloud Fraction).

• The third input set contained previously mentioned features and MCD19A2.

The data was then reshaped to a 3-dimensional shape (adding a time axis) required
by an LSTM model (number of samples, time steps, number of features). Reshaping must
set a look back value specifying how many earlier days are used to create the time series.
The input data has X predictors representing feature values at a given time (t) and Y (EPA
NO2) representing the value of the next day (t + 1). The time step is measured in days and
is set to one, whereas the “look back” value is one week (each time step looks at 7 values).
The data was then split into training and testing, with a 66% training split. After scaling,
reshaping, and splitting, an LSTM model architecture was built:

The stacked LSTM architecture model comprised seven LSTM layers, each with (64,
128, 256, 128, 64, 4, 2) units and a dense layer with a single unit. Figure 6 visualizes the
architecture of the stacked LSTM model.
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The stacked LSTM model was constructed to be a deeper network topology. The
ability for the model to extract and recombine higher-order features embedded in the data
for performance improvement was one of the advantages of building a deeper network-
especially for a stacked architecture. Each layer of the model passed a recurrent sequence
to the next layer to account for the previous time step and to more accurately describe the
complex pattern in the nonlinear data at every layer. The model used a dropout setting
of 0.4 to reduce overfitting. An MSE loss function was utilized, along with an “adam”
optimizer, since it is a typical optimizer in LSTM models and outperformed “rmsprop” in
testing. A validation set was provided at training to track accuracy and loss to fine-tune
the model. This validation set was not utilized for training but rather to measure the
effectiveness of the hyperparameters provided during training.

3.4.2. Support Vector Regression (SVR)

SVR is reliable with non-linear data. As the study’s data was non-linear, an SVR model
was used to evaluate the performance capabilities of predicting EPA NO2 emissions and to
compare it to the performance of other models in this study.

A radial basis kernel function was selected for this model. The RBF kernel is typically
used to find a non-linear classifier or regression line and function for two points X1 and
X2 that computes the similarity or how close they are to each other. Separate models were
created for each scenario. Each utilized a grid search for a range of values to optimize
hyperparameters for each experiment’s scenarios and set of features.

3.4.3. Random Forest

Like the other mentioned models, random forest models can handle nonlinear data
and be utilized in regression tasks. Using random forest to build large numbers of decision
trees to solve a regression problem was a fit for our use case and prediction problem.

Compared to a decision tree model, the ability of random forest to merge multiple
decision trees produces a more accurate prediction. Because random forest is a bootstrap
resampling technique that works best with higher dimensions and volume, the result was
not exceptional with the study’s volume of data. Separate models were created for each
scenario. Each utilized a grid search for a range of values to optimize hyperparameters for
each experiments’ scenarios and set of features.

3.4.4. XGBoost

This model is known for its high-performance gradient boosting. XGBoost is highly
efficient, flexible in general, and similarly to RF, is a decision-tree-based ensemble machine
learning model.

Two different XGBoost models were built, one for the first scenario with varying
inputs of feature and one for the second scenario. To fit our non-linear data, the study
utilized an XGBoost with a regression squared error loss function. Separate models were
created for each scenario. Each utilized a grid search for a range of values to optimize
hyperparameters for each experiment’s scenarios and set of features. Because of XGBoost’s
well-known high-performance gradient boosting, this model line fit was able to capture the
data’s extreme values.

3.5. Model Training Error Metrics

Machine learning approximates a function representing the correlation between inputs
and output data. This applies to both linear and non-linear data characteristics. In this
study, we used various machine learning models to be trained on the non-linear nature of
our data and the relationships between the inputs and output. Measuring the accuracy
of the model prediction in the case of regression problems with non-linear data involves
standard metrics that measure the performance of the ML models.

Mean absolute error measures the errors between paired observations. Although it
is the least looked at metric for measurement, it is a good indicator for understanding
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the error difference between predicted and actual observations. MAE is insensitive to the
direction of errors, and lower values are better (See Equation (1)).

MAE =

(
1
n

) n

∑
i=1
|Yi − Xi| (1)

where n is the number of items, and ∑ is the summation notation, and |Yi − Xi| are the
difference of absolute errors of predicted EPA NO2 minus observed EPA NO2 values.

Mean squared error measures the average square of errors between the estimated
(predicted) values and actual values. It is a risk function that corresponds to the expected
values of the squared loss. This metric looks at how close the regression line is to actual
values, and lower values are better (See Equation (2)).

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (2)

where n is the number of items, ∑ is the summation notation, Yi is observed EPA NO2
values, and Ŷi is predicted EPA NO2 values. It is one of the primary metrics used for model
performance in this study.

Root mean squared error was utilized as an additional metric. It is a measure of the
error rate by the square root of MSE. RMSE is also insensitive to the direction of errors, and
lower values are better (See Equation (3)).

RMSE =

√(
1
n

) n

∑
i=1

(
Yi − Ŷi

)
(3)

where Ŷi is the predicted EPA NO2 values, Yi is observed EPA NO2 values, n is number of
items, and ∑ is the summation notation.

The residual standard error measures the accuracy of nonlinear regression models.
Similar to the standard deviation, it calculates the average distance of the actual values from
the regression line. Additionally, RSE is insensitive to the direction of errors. Lower RSE
values mean better results. The residual standard error is defined below (See Equation (4)).

RSE =

√√√√∑n
i=1
(
Yi − Ŷi

)2

d f
(4)

where ∑ is the summation notation. Y is the observed EPA NO2 value. Ŷ is the predicted
EPA NO2 value. df is the degrees of freedom, calculated as the total number of observations-
total number of model parameters.

The error rate was one of the primary metrics used for model performance in this study.
This metric calculates the percentage error rate for all average error distances between
actual and predicted values (See Equation (5)).

Error Rate =

(
RMSE

Y

)
(5)

where the percentage error rate is the result by dividing RMSE using Ȳ which is the mean of
target actual values for the test dataset. Error rate provides a comprehensive measurement
of predictive performance with lower values being better.

3.6. Tools and Hardware

The code for data collection, formatting, processing, and training were all written in
Python 3.6 based on pandas, scikit-learn, Keras, TensorFlow, shapefile, and H2O to create
ML models, prepare data, and train and test the models.
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We used two different computational environments over the project. Initial data
collection and processing were conducted on Microsoft Azure. The main experiment was
carried out on three Linux servers with 48 cores Intel® Xeon® Silver 4116 CPU, 128 GB
memory, and 4 NVIDIA K80 GPUs.

4. Experiments and Results
4.1. Feature Importance Results

The first stage was to understand all the input variables and their impact. Because
MCD19A2 and daily and weekly MERRA-2 were not part of the initial testing, TROPOMI
NO2, monthly average wind speed, monthly average temperature, monthly averaged
precipitation, monthly averaged cloud percentage, day of the year, day of the week, and
day of the month were all assessed without it. Their importance is shown in Figure 7.
The static features that did not change for one site, such as latitude, longitude, and site
ID, reported no significance. The highest impactful features were TROPOMI NO2, day of
the year, and the monthly averaged cloud fraction, ordered from high to low importance.
Figure 7 was generated without preprocessing, scaling, or reshaping applied to the features.
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4.2. Early Testing

The study undertook preliminary testing to determine whether such predictions could
be established for this study. The initial testing experiments involved linear regression,
random forest, multilayer perceptron, and voting ensemble. High error rates of around 50%
were observed, indicating random predictive capability, but they pointed to areas where
preprocessing, feature selection, and model selection may be improved. The second phase
of experiments utilized LSTM, support vector regression, random forest, and XGBoost
models for their ability to handle non-linear data. This resulted in a lower prediction error
rate and increased accuracy.

The early testing experiments were executed without any preprocessing, other than
combining the separate datasets and power plant information. As expected, the results
were unsatisfactory, highlighting the need for preprocessing techniques, such as feature
scaling and train and test splitting.

The results of the initial runs are shown in Table 3, and the visual results are shown
in Figure 8. Four ML models in Table 3 are presented. Of the four ML models, linear
regression had the worst performance, with the mean average error (MAE) and mean
square error (MSE) slightly higher than the other models. The other three models produced
similar results, with RF having the lowest error rate and residual standard error, making it
the best model in this first cycle of the tests.



Remote Sens. 2022, 14, 729 16 of 35

Table 3. Results of four ML models executed as initial experiments.

Models Mean
Average Error

Mean
Square Error

Root Mean
Square Error

Residual
Standard Error Error Rate

Linear Regression 0.08101 0.0111 0.1057 0.0143 0.5486
Random Forest 0.0702 0.008 0.0925 0.0125 0.4797

Multilayer Perceptron 0.0716 0.009 0.0965 0.0131 0.5005
Voting Ensemble 0.0726 0.0088 0.0938 0.0127 0.4867
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4.3. Improved ML Models
4.3.1. LSTM Results

This section introduces the results of the long short-term memory (LSTM) model.
We tested performance with many feature set variants for the LSTM models. For all the
LSTM experiments listed below, a batch size of 1 with a learning rate of 1 × 10−3, no early
stopping set, and a dropout setting of 0.4 were used as they were the most optimal values,
yielding the results shown in Tables 4–7. Figures 9–11 show the results of the stacked LSTM
models at epochs 250, 380, and 430.
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Table 4. Test set validation results of multiple stacked LSTM model experiments for a single power
plant (first scenario).

Number Experiments Mean
Average Error

Mean
Square Error

Root Mean
Square Error

Residual
Standard Error

Error
Rate

1 Stacked LSTM [Alabama Plant TROPOMI
input only] Epochs 250 0.1414 0.0424 0.2060 0.0303 0.4685

2 Stacked LSTM [Alabama Plant TROPOMI
input only] Epochs 380 0.1546 0.0443 0.2106 0.0310 0.4788

3 Stacked LSTM [Alabama Plant TROPOMI
input only] Epochs 430 0.1535 0.0491 0.2217 0.0326 0.5040

4
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Monthly/Date inputs]
Epochs 250

0.1332 0.0375 0.1938 0.0285 0.4406

5
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Monthly /Date inputs]
Epochs 380

0.1316 0.0371 0.1927 0.0284 0.4383

6
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Monthly /Date inputs]
Epochs 430

0.1450 0.0420 0.2051 0.0302 0.4663

7
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Daily/Date inputs]
Epochs 250

0.1587 0.0468 0.2164 0.0319 0.4921

8
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Daily/Date inputs]
Epochs 380

0.1415 0.0398 0.1997 0.0294 0.4541

9
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Daily/Date inputs]
Epochs 430

0.1627 0.0485 0.2203 0.0324 0.5009

10 Stacked LSTM [Alabama Plant MERRA-2
daily input only] Epochs 250 0.1300 0.0340 0.1846 0.0272 0.4197

11 Stacked LSTM [Alabama Plant MERRA-2
daily input only] Epochs 380 0.1334 0.0356 0.1888 0.0278 0.4293

12 Stacked LSTM [Alabama Plant MERRA-2
daily input only] Epochs 430 0.1396 0.0377 0.1942 0.0286 0.4415

13
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Weekly/Date inputs]
Epochs 250

0.1359 0.0355 0.1884 0.0277 0.4284

14
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Weekly/Date inputs]
Epochs 380

0.1491 0.0438 0.2094 0.0308 0.4761

15
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Weekly/Date inputs]
Epochs 430

0.1401 0.0381 0.1952 0.0287 0.4438

16
Stacked LSTM [Alabama Plant
TROPOMI/MERRA-2 Monthly

/MCD19A2/Date inputs] Epochs 250
0.1485 0.0439 0.2096 0.0309 0.4766

17
Stacked LSTM [Alabama Plant
TROPOMI/MERRA-2 Monthly

/MCD19A2/Date inputs] Epochs 380
0.1260 0.0348 0.1865 0.0275 0.4241

18
Stacked LSTM [Alabama Plant
TROPOMI/MERRA-2 Monthly

/MCD19A2/Date inputs] Epochs 430
0.1615 0.0506 0.2250 0.0331 0.5116

19
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Daily/MCD19A2/Date
inputs] Epochs 250

0.1581 0.0453 0.2128 0.0313 0.4839

20
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Daily/MCD19A2/Date
inputs] Epochs 380

0.1219 0.0308 0.1757 0.0259 0.3995

21
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2 Daily/MCD19A2/Date
inputs] Epochs 430

0.1558 0.0456 0.2137 0.0315 0.4859

22
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2
Weekly/MCD19A2/Date inputs] Epochs 250

0.1499 0.0426 0.2066 0.0304 0.4697

23
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2
Weekly/MCD19A2/Date inputs] Epochs 380

0.1607 0.0457 0.2138 0.0315 0.4863

24
Stacked LSTM [Alabama Plant

TROPOMI/MERRA-2
Weekly/MCD19A2/Date inputs] Epochs 430

0.1653 0.0496 0.2227 0.0328 0.5065
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Table 5. Actual EPA NO2 values from test set compared to predicted values from a stacked LSTM
model with 380 epochs using a single plant (Alabama) dataset including MERRA-2.

Index Actual EPA NO2 Predicted EPA NO2

0 0.569089 0.428293
1 0.492650 0.513841
2 0.454344 0.385182
3 0.556001 0.389160
4 0.463098 0.514868
5 0.461661 0.384444
6 0.474771 0.286175

. . . . . . . .
41 0.452296 0.376052
42 0.349115 0.287791
43 0.289771 0.366804
44 0.041835 0.377947
45 0.444348 0.398745
46 0.456870 0.391060

Table 6. Test set validation results of multiple stacked LSTM model experiments using all power
plant data in 2019 for the second scenario.

Number Experiments Mean Average
Error

Mean Square
Error

Root Mean
Square Error

Residual
Standard Error

Error
Rate

1
Stacked LSTM [All 289 Power

Plants Average TROPOMI/Date
inputs] 380 epochs

0.1604 0.0366 0.1914 0.0201 0.6098

2
Stacked LSTM [All 289 Power

Plants Average TROPOMI/Date
inputs] 430 epochs

0.1667 0.0400 0.2000 0.0210 0.6371

3
Stacked LSTM [All 289 Power

Plants Average TROPOMI/Date
inputs] 800 epochs

0.1465 0.0306 0.1751 0.0184 0.5579

Table 7. Test set validation results of a support vector regression model for the two study scenarios.

Results Hyperparameters

Number Experiments
Mean

Average
Error

Mean
Square
Error

Root Mean
Square
Error

Residual
Standard

Error
Error
Rate

Coefficient
(Gamma)

Regularization
Parameter (C)

Epsilon
Value

1
SVR GridSearch Best

Params [Alabama Plant
TROPOMI input only]

0.0686 0.0080 0.0896 0.0128 0.4576 0.1 10,000 0.05

2
SVR GridSearch Best

Params [Alabama Plant
TROPOMI/MERRA-

2/Date inputs]
0.0492 0.0043 0.0658 0.0094 0.3360 0.001 1 0.01

3
SVR GridSearch Best

Params [Alabama Plant
TROPOMI/MERRA-2

Daily/Date inputs]
0.0483 0.0040 0.0634 0.0090 0.3240 0.001 1 0.05

4

SVR GridSearch Best
Params [Alabama Plant
TROPOMI/MERRA-2

Daily/MCD19A2/
Date inputs]

0.0550 0.0057 0.0758 0.0108 0.3874 0.001 0.1 0.01

5

SVR GridSearch Best
Params [Alabama Plant

MERRA-2 Daily/
Date inputs]

0.0572 0.0054 0.0739 0.0105 0.3776 0.01 1 0.05

6
SVR GridSearch Best

Params [Alabama Plant
TROPOMI/MERRA-2
Weekly/Date inputs]

0.0555 0.0056 0.0750 0.0107 0.3832 0.01 0.1 0.01
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Table 7. Cont.

Results Hyperparameters

Number Experiments
Mean

Average
Error

Mean
Square
Error

Root Mean
Square
Error

Residual
Standard

Error
Error
Rate

Coefficient
(Gamma)

Regularization
Parameter (C)

Epsilon
Value

7

SVR GridSearch Best
Params [Alabama Plant
TROPOMI/MERRA-2
Weekly/MCD19A2/

Date inputs]

0.0572 0.0062 0.0792 0.0113 0.4047 0.01 0.1 0.0001

8
SVR GridSearch Best

Params [Alabama Plant
TROPOMI/MERRA-

2/MCD19A2/Date inputs]
0.0537 0.0055 0.0745 0.0106 0.3804 0.01 0.1 0.001

9
SVR GridSearch Best

Params [All 289 Power
Plants TROPOMI

input only]
0.01402 0.0003 0.0177 0.0017 0.2264 0.0001 1000 0.01

10
SVR GridSearch Best

Params [All 289 Power
Plants TROPOMI/

Date inputs]
0.0095 0.0001 0.0121 0.0012 0.1552 0.01 0.1 0.005
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Figure 11. Graph showing the LSTM model [430 epochs] capture of EPA NO2 values over the year
using a single power plant.

Figure 9 largely underestimated EPA NO2. This figure corresponds to LSTM experiment
#1 (Table 4). The error rate of 46.85% ranked best for the first three experiments using only
TROPOMI NO2 as input and 250 epochs but ranked fifth worst between all experiments and
different feature set combinations in Table 4. This was primarily due to the lack of input
features used for training. The error rate increased by increasing the epochs to 380 and 430,
which was indicative of its inability to further learn any patterns in the EPA NO2 data.

Figure 10 offers a model that is not over or underfitting while capturing some of the
actual EPA NO2 data trends (peaks, declines) during the year. This figure corresponds to
LSTM experiment #2 (Table 4).

Regarding learning patterns for extreme values found in EPA NO2 data, Figure 10’s
stacked LSTM model showed more generalization than Figures 9 and 11 based on the line
fit for training and testing sets. The evaluation performed on the train and test datasets in
Figure 10 had an error rate of 43.83% for the test set and 39.8% for the training set. These
results indicate the model is not overfitting; otherwise, the training error rate would be
much lower, and the test set larger.

Figure 11 corresponds to LSTM experiment #3 (Table 4). The error rate increased
to 50.4% since the increase in epochs with only one feature (TROPOMI) did not serve as
sufficient predictors. Despite having the largest error rate, the MAE was slightly lower than
LSTM experiment #2 (most optimal) in Table 4, indicating that individual predictions were
closer to actual EPA NO2 on average.

Table 5 lists the actual EPA NO2 values from the test set compared to predicted values
for LSTM experiment #5 (Table 4).

Figure 12 shows the model loss for the 6th experiment with 430 epochs. It revealed
certain converging points around 250 and 380 epochs, prompting additional experiments
for the various feature sets listed in Table 4 with corresponding epochs. These epoch tests
revealed that 380 was optimal across all experiments.
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Figure 12. Graph of model loss through a 430-epoch training cycle for the stacked LSTM model using
a single power plant.

A correlation plot of actual vs. predicted EPA NO2 values is shown in Figures 13
and 14. Figure 13 shows a weak negative correlation for the first study scenario, whereas
Figure 14 shows a weak positive correlation for the second scenario. This is due to the
LSTM model’s significant error rate in most tests and seeing a plot with any correlation
suggests the LSTM model can at least predict, but erroneously. Figure 13 is based on LSTM
experiment #5 (Table 4), whereas Figure 14 is based on LSTM experiment #3 (Table 6).
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LSTM experiment #20 (Table 4) produced the best results in this section based on
the error rate for the first scenario. The addition of daily MERRA-2 and MCD19A2, as
correlated predictors with the most optimal epoch, reduced the error rate to 39.9% average
prediction error. Although this experiment produced the best results, LSTM experiment #10
(Table 4) came in a close second with an error rate of 41.9%. The tenth experiment utilized
the same setup as the 20th experiment but without MCD19A2 and TROPOMI, indicating
that these datasets only offered a slight performance boost with this model.

The same experiments were applied for the second scenario. Figure 15 corresponds to
LSTM experiment #2 (Table 6). It displays the second scenario’s train and test predictions
over actual EPA NO2 averaged by date. The experiment had a 63.71 % error rate, which
is quite high and indicative of poor predictive ability. Despite the fact that the model in
Figure 15 had been tested with various tunings and epochs, the LSTM model failed to
predict EPA NO2 in this scenario adequately. Additionally, due to the averaging necessary
to avoid EPA NO2 data overlap across date features, this model was biased toward a narrow
range of EPA NO2 values between 0.08 and 0.10.
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Figure 16 shows the model loss over 1000 epochs. This was conducted to verify if the
model had any further convergence points. This figure represents the lack of convergence
points and shows that the model achieved the lowest error on a single sample of the data at
800 epochs. This led to an 800 epochs test in Table 6 that yielded the lowest error rate of
55.79% in the second scenario of the experiments.
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4.3.2. SVR Results

This section introduces the results of the support vector regression model. Table 7
shows the performance metrics of experiments. Compared to the early testing results,
utilizing an SVR model resulted in a considerable increase in model prediction accuracy.
The hyperparameters are included for each experiment in Table 7.

Figure 17 corresponds to SVR experiment #2 (Table 7). Although most extreme values
are underestimated, the error rate of 33.6% is a significant improvement over the LSTM
model in a similar experiment.
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Figure 17. SVR model fit over actual EPA NO2 actual values throughout the year using a single
power plant.

Figure 18 corresponds to SVR experiment #10 (Table 7). This model averaged EPA NO2
across all power plants, introducing bias as most of the averaged EPA NO2 was around
0.08 to 0.10. Still, the model was not overtly overfitting and captured the trend mainly, but
the low error rate of 15.52% was influenced by the bias towards the concentrated range of
EPA NO2 averaged values.

Remote Sens. 2022, 14, 729 25 of 37 
 

 

 
Figure 17. SVR model fit over actual EPA NO2 actual values throughout the year using a single 
power plant. 

 
Figure 18. SVR model fit over actual EPA NO2 values for training/testing sets throughout the year 
using TROPOMI/Date features for all coal-fired power plants second scenario. 

 
Figure 19. SVR actual vs. predicted EPA NO2 correlation plot using TROPOMI and date features for 

the study’s first scenario.  

Figure 18. SVR model fit over actual EPA NO2 values for training/testing sets throughout the year
using TROPOMI/Date features for all coal-fired power plants second scenario.

Figure 19 shows a correlation plot of the predicted vs. actual EPA NO2 for SVR
experiment #2 (Table 7). The graph depicts a moderate positive relationship. The regression
line is fitted around the cluster of points, indicating a good model fit.
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Figure 19. SVR actual vs. predicted EPA NO2 correlation plot using TROPOMI and date features for
the study’s first scenario.

Figure 20 is similar and was generated from SVR experiment #10 (Table 7). It shows
a strong positive correlation between actual and predicted EPA NO2 values, with the
regression line fitted around the cluster of points.
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SVR experiment #3 (Table 7) utilized TROPOMI, MERRA-2 daily, and date features. It
resulted in the lowest error rate for the study’s first scenario. This experiment resulted in a
13.36% improvement in the error rate in comparison to SVR experiment #1 (Table 7) using
TROPOMI NO2 input only. The MAE listed for the third experiment confirm its predictive
ability by producing an MAE of 0.0483, indicating a slight difference observed between
actual and predicted EPA NO2 values.

The SVR model had the best results across both study scenarios for the lowest error
rates of 32.4% (SVR experiment #3) for the first scenario and 15.52% (SVR experiment #10)
for the second scenario.

4.3.3. RF Results

The study experimented with random forest for both scenarios and the results are
shown in Table 8. The results were comparable to the SVR and XGBoost models while
training significantly faster than both. A randomized grid search was used to optimize the
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hyperparameters for the scenario and set of features used in each experiment. Table 8 lists
the settings for different experiments.

Table 8. Test set validation results of a random forest model for the two study scenarios.

Results Hyperparameters

Number Experiments
Mean

Average
Error

Mean
Square
Error

Root Mean
Square
Error

Residual
Standard

Error
Error
Rate Trees Max

Depth
Min

Samples

1 RF [Alabama Power Plant
TROPOMI input only] 0.0795 0.0110 0.1050 0.0150 0.5361 1000 20 2

2 RF [Alabama Power Plant
TROPOMI/MERRA-2/Date inputs] 0.0525 0.0050 0.0711 0.0101 0.3632 1000 15 2

3
RF GridSearch Best Params

[Alabama Power Plant TROPOMI
input only]

0.0484 0.0044 0.0666 0.0095 0.3401 1000 20 2

4
RF GridSearch Best Params

[Alabama Power Plant
TROPOMI/MERRA-2
Monthly/Date inputs]

0.0488 0.0044 0.0667 0.0095 0.3410 1000 110 2

5
RF GridSearch Best Params

[Alabama Power Plant
TROPOMI/MERRA-2

Monthly/MCD19A2/Date inputs]
0.0509 0.0049 0.0705 0.0100 0.3604 1000 70 10

6

RF GridSearch Best Params
[Alabama Power Plant

TROPOMI/MERRA-2 Daily/
Date inputs]

0.0582 0.006 0.077 0.011 0.396 800 100 2

7
RF GridSearch Best Params

[Alabama Power Plant
TROPOMI/MERRA-2

Daily/MCD19A2/Date inputs]
0.059 0.006 0.078 0.011 0.399 800 30 5

8
RF GridSearch Best Params

[Alabama Power Plant MERRA-2
Daily/Date inputs]

0.058 0.006 0.077 0.011 0.396 800 80 5

9

RF GridSearch Best Params
[Alabama Power Plant

TROPOMI/MERRA-2 Weekly/
Date inputs]

0.064 0.007 0.085 0.012 0.436 800 10 2

10
RF GridSearch Best Params

[Alabama Power Plant
TROPOMI/MERRA-2

Weekly/MCD19A2/Date inputs]
0.064 0.007 0.085 0.012 0.438 800 90 2

11
RF GridSearch Best Params [All 289

Power Plants Average
TROPOMI only]

0.0157 0.0003 0.0198 0.0021 0.2530 400 80 2

12
RF GridSearch Best Params [All 289

Power Plants Average
TROPOMI/Date inputs]

0.0099 0.0001 0.0125 0.0013 0.1592 1800 80 2

Figure 21 displays the decision tree generated from RF experiment #2 (Table 8). The
tree split started with the “dayofyear” feature by taking the middle point value of the year.
TROPOMI NO2 and date features split all subsequent nodes. Each split was performed
with values higher than a threshold the model set. A sample was taken from the dataset to
calculate the MSE of the predicted EPA NO2 error distance from the regression line until
a leaf (terminal) node was constructed, determining the optimal EPA NO2 prediction.

Figure 22 corresponds to RF experiment #4 (Table 8). The plot mostly shows un-
derestimation for the test set line over actual values. The feature set utilized resulted in
performance slightly behind RF experiment #3. The figure showcases the model’s inability
to learn the patterns even with different feature sets listed in Table 8.

Figure 23 corresponds to RF experiment #12 (Table 8). The plot graphs the second-best
result behind SVR’s similar experimental setup for the study’s second scenario to show
a good prediction fit over actual EPA NO2. Specific points in the yellow line pick up some
extreme values, while others are estimates.



Remote Sens. 2022, 14, 729 26 of 35
Remote Sens. 2022, 14, 729 28 of 37 
 

 

 
Figure 21. Graph showing the random forest decision tree nodes and splits. 

 
Figure 22. Random forest model fit over actual EPA NO2 values for training/testing sets throughout 
the year using all features of a single power plant (Alabama) dataset. 

 
Figure 23. Random forest model fit over actual EPA NO2 values for training/testing sets throughout 
the year using all features for all coal-fired power plants second scenario. 

Figure 21. Graph showing the random forest decision tree nodes and splits.

Remote Sens. 2022, 14, 729 28 of 37 
 

 

 
Figure 21. Graph showing the random forest decision tree nodes and splits. 

 
Figure 22. Random forest model fit over actual EPA NO2 values for training/testing sets throughout 
the year using all features of a single power plant (Alabama) dataset. 

 
Figure 23. Random forest model fit over actual EPA NO2 values for training/testing sets throughout 
the year using all features for all coal-fired power plants second scenario. 

Figure 22. Random forest model fit over actual EPA NO2 values for training/testing sets throughout
the year using all features of a single power plant (Alabama) dataset.

Remote Sens. 2022, 14, 729 28 of 37 
 

 

 
Figure 21. Graph showing the random forest decision tree nodes and splits. 

 
Figure 22. Random forest model fit over actual EPA NO2 values for training/testing sets throughout 
the year using all features of a single power plant (Alabama) dataset. 

 
Figure 23. Random forest model fit over actual EPA NO2 values for training/testing sets throughout 
the year using all features for all coal-fired power plants second scenario. 
Figure 23. Random forest model fit over actual EPA NO2 values for training/testing sets throughout
the year using all features for all coal-fired power plants second scenario.

Figure 24 is generated from the results of the RF experiment #4 (Table 8) and depicts
a moderate positive relationship. The regression line is fitted around the cluster of points,
indicating a good model fit.
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Figure 24. Random forest actual vs. predicted EPA NO2 correlation plot using TROPOMI and date
features for the study’s first scenario.

Figure 25 is generated from the last experiment in Table 7 and shows a strong positive
correlation between actual and predicted EPA NO2 values indicating a good model fit.
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Figure 25. Random forest actual vs. predicted EPA NO2 correlation plot using TROPOMI and date
features for the study’s second scenario.

Figure 26 displays a feature importance graph that the random forest model deemed the
most important based on the feature’s correlation score with EPA NO2. It ranked “dayofyear”
as the most important due to the trend associated with the time axis and the correlation this
feature has with the other input variables. TROPOMI NO2 came second, while another time
feature, “dayofmonth” came third. This model determined that MERRA-2 features were not
significantly correlated with EPA NO2 and thus has ranked them last.
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Different MERRA-2 temporal datasets were used in Experiments #6 through #10. With
daily or weekly MERRA-2 data, this model did not produce greater benefits. The results of
the daily MERRA-2 experiments were close to those of the monthly MERRA-2 experiments,
however, they were a little behind. This is attributable to the model’s low correlation with
the target EPA NO2, which resulted in little performance improvement.

RF experiment #4 (Table 8) lists the error rate of 34.10%, with the MSE being identical
to experiment #3 (Table 8) using TROPOMI NO2 feature only. The inclusion of MERRA-2
and date features for this model had little performance boost.

RF experiment #12 (Table 8) produced a low error rate of 15.92% by utilizing a grid
search to tune the hyperparameters. Similar to the LSTM model, it is worth noting that this
model was somewhat biased toward a narrow range of EPA NO2 values, between 0.08 and
0.10, due to the averaging required to avoid EPA NO2 data overlap across date features.

4.3.4. XGBoost Results

This section introduces the XGBoost model results. Several hyperparameters were set
across all experiments listed in Table 9. A maximum depth of 15 to minimize overfitting
and 1000 estimators to boost the model’s learning complexity were set. A subsample of
0.7 to sample 70% of the training data before growing additional trees and an “eta” value of
0.1 to minimize the default step size shrinkage and avoid overfitting were used. A repeated
K-Fold was used to find the best performance for each experiment. Three folds were
provided for the cross validator to resample, each with three repetitions.

Table 9. Test set validation results of an XGBoost model for the two study scenarios.

Number Experiments Mean
Average Error

Mean
Square Error

Root Mean
Square Error

Residual
Standard Error Error Rate

1 XGBoost [Alabama Plant
TROPOMI input only] 0.0933 0.0159 0.1262 0.0180 0.6445

2
XGBoost [Alabama Plant

TROPOMI/MERRA-2
Monthly/Date inputs]

0.0542 0.0051 0.0718 0.0102 0.3669

3

XGBoost [Alabama Plant
TROPOMI/MERRA-2
Monthly /MCD19A2/

Date inputs]

0.0587 0.0060 0.0778 0.0111 0.3974

4
XGBoost [Alabama Plant

TROPOMI/MERRA-2
Daily/Date inputs]

0.071 0.008 0.094 0.013 0.484

5

XGBoost [Alabama Plant
TROPOMI/MERRA-2

Daily/MCD19A2/
Date inputs]

0.0726 0.009 0.096 0.013 0.493

6
XGBoost [Alabama Plant

MERRA-2 Daily/
Date inputs]

0.071 0.008 0.093 0.013 0.479
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Table 9. Cont.

Number Experiments Mean
Average Error

Mean
Square Error

Root Mean
Square Error

Residual
Standard Error Error Rate

7
XGBoost [Alabama Plant

TROPOMI/MERRA-2
Weekly/Date inputs]

0.063 0.006 0.082 0.011 0.421

8

XGBoost [Alabama Plant
TROPOMI/MERRA-2
Weekly/MCD19A2/

Date inputs]

0.067 0.007 0.088 0.012 0.450

9
XGBoost [All 289 Power

Plants Average
TROPOMI/Date inputs]

0.0112 0.0001 0.0140 0.0014 0.1793

Figure 27 represents XGBoost experiment #2 (Table 9) and shows that the test set was
overestimated (yellow line). The model captured some minor peaks and drops rather well
(days 125–130) with an error rate comparable to the same feature combination for the RF
model and 3% higher than the SVR model. The combination of TROPOMI NO2, MERRA-2
features, and date features resulted in the lowest error rate for this model.
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Figure 27. XGBoost model fit over actual EPA NO2 values for training/testing sets throughout the
year using a single power plant (Alabama) dataset.

The correlation plot of actual and predicted EPA NO2 values are shown in Figures 28 and 29.
Both graphs reveal a moderately positive relationship, indicating a good line fit between
actual and predicted values in Table 9’s #2 and #9 experiments.

Figure 30 displays the averaged EPA NO2 by day across all 289 power plants in the U.S.
Although the test set line generally matched the overall trend of actual values, there was much
over and underestimation in the predicted testing values. The model underestimated certain
days (day 160), but values not as extreme were captured well across the overall EPA NO2 trend.
This model was biased toward a certain range of EPA NO2 values between 0.08 and 0.10.

Figure 31 displays a feature importance graph that the XGBoost model deemed the
most important based on the feature’s correlation score with EPA NO2. This model had dif-
ferent feature importance than RF and ranked MERRA-2 predictors as the most important,
TROPOMI, and time features the least. This model determined that MERRA-2 features
were significantly correlated with EPA NO2. Figure 31 represents experiment #2 (Table 9).
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The impact of having either daily or weekly MERRA-2 data are seen in Experiments
#4 through #8 (Table 9). Using weekly MERRA-2 data, the correlation between MERRA-2
and EPA NO2 improved slightly. When compared to the monthly MERRA-2 experiments,
which performed significantly better, this model did not benefit from including the different
MERRA-2 weekly and daily datasets.

The study’s first scenario is represented by XGBoost experiments #1, #2, and #3
(Table 9). Different feature sets produced a significant variance in MSE and error rate.
Experiment #2 performed considerably better due to the inclusion of monthly MERRA-2,
date features, and TROPOMI NO2. These predictors helped experiment #2 estimate EPA
NO2 values 27.76% better than experiment #1 and 3.05% better than experiment #3. The
second scenario findings are listed in Experiment #9 (Table 9), with the model correctly
predicting 82.07% based on the error rate.

5. Discussion
5.1. Ability Assessment of ML and Remote Sensing on Predicting Single Source Emission

Most existing RS-ML research focuses on the general large-scale spatial distribution of
NO2 concentration and did not explore micro-resolution single-point emission for several
reasons [33]. ML can address these concerns by directly simulating the relationships
between remotely sensed data and accurate ground emission sources. As shown in Section 4,
at most times there was a significant correlation between TROPOMI and EPA ground
observations which indicates that the relationship is very likely to help inferences from one
to another. Even though the curve of TROPOMI was relatively flat compared to the EPA
observations, the ups and downs in both time series resonated with each other. Regarding
the emission transportation, normally the operational power plants are running constantly
with short occasional breaks (e.g., EPA orders shutdown after exceeding an emission
threshold), the NO2 plume should be close to the power plants and can be captured by the
imagery grids even though its spatiotemporal resolution is coarse. The experiment results
have validated that ML could overcome the challenges at some level and produce a reliable
estimate on specific emission sources. However, certain conditions are required to allow
the ML models to work in their best mode. There should be no other major second source
of NO2 close by, e.g., metropolitan cities or other massive-emitter facilities. We have not
experimented on the boundary of the noise sources and temporarily recommend using
100 miles to single out power plant emissions and clean the training data. In the future,
with more availability of higher resolution satellite products, we will be able to use ML to
predict all power plant emissions without such spatial restraint.

5.2. Spatiotemporal Pattern Discovery Using ML

Pattern recognition and generalization is a key challenge in ML application. Usually,
one model working for a single power plant should be re-trained and calibrated before
being applied to another power plant, because the patterns and atmosphere context are
different. Observing the results in Section 4, the emission of power plants was highly
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correlated to the day of the year in ML model training, which is reasonable as the summer
and winter are the highest peak of electricity demands and require the plants to operate for
longer hours. ML captured that correlation and memorized it in its weight/decision trees.
Considering the spatial variances, we also trained the models on all the power plants and
compared them to the model trained only on one plant. The performance of the models
trained on all power plants was relatively lower than the models trained on single plants.
This means that the ML was struggling to fit on all the plants and made compromises
to maintain a relatively higher accuracy on every plant. This is reasonable as at some
power plants the NO2 was very high in TROPOMI, but EPA observations was lower than
other plants, or vice versa. Therefore, at present, we recommend training and testing the
approach on a single plant and retraining the models when transferring to a new plant.
Meanwhile, it is possible to directly reuse trained models if the atmosphere context and
the power plant capacity are similar, for example, two power plants located in the rural
mid-west region with 3000 MWh (megawatt hour) net generation.

5.3. Long-Term Operational Capability

The stability of ML has been tested in many other applied cases and is considered
trustworthy. In this study, we sought to operationalize the trained model to estimate
routine emissions of all power plants as a third-party information source to help regulators
to formalize and enforce environment policy. The trained model should be deployed as
a service to take the newly observed TROPOMI and other input variables and output
a predicted value for each power plant NO2 emission every day. The near-real-time
TROPOMI products are normally ready with an average time lag of three hours after
acquisition. The computation of converting format and projection, extracting values,
triggering the model, and outputting the values normally takes less than ten minutes.
Theoretically, the approach can refresh the NO2 estimate of the power plants within less
than one day as long as TROPOMI captures a valid value on that day for the power plant
location. There will be gaps due to clouds and maintenance of the satellite, which should be
notified to the stakeholders via email or network platforms. Gaps of one or two days should
have trivial impacts on the regular enforcement of the environmental policy. However, long
gaps will have impacts which might, unfortunately, create opportunities for big emitters to
violate the rules. This is an existing problem and will be further discussed in the future.
Potential solutions include developing NO2 products from more reliable spectral bands
that can spear through the clouds or to use third-party data sources, such as on-demand
aerial-borne observations. In other words, once satellites fly over the power plants on
a clear-sky day, the ML-derived NO2 emission estimates will be calculated and contained
in a report and sent to environment enforcement agencies within as little as four hours.

5.4. Bias and Uncertainty

There has been much discussion and argument about the underfitting and overfitting
of ML when applied to datasets with many noise sources and uncertainties, especially
in high spectral passive remote sensing imagery containing noise coming from sensors
or diffuse radiation. Overfitting means the model learned from noise while underfitting
means the model has not fully learned the real data patterns. Unfortunately, the noise in
remotely sensed data is unavoidable and sometimes cumulative in time series prediction.
Many methods and calibration models have been developed for both sensor error correction
and atmospheric calibration. All the remote sensing products have gone through quality
control and maturity assessment. TROPOMI NRT products are processed based on the
3-dimensional global chemistry transport model and the configuration might also result in
uncertainties in different locations. During operation, ESA usually upgrades their workflow
occasionally and causes systematic changes in the tropospheric NO2 columns under various
conditions, such as cloud-free or seriously polluted areas with small fractions. The changes
will have non-trivial impacts on the ML learning process and may lead to non-usable biased
estimation. It is recommended that after every major upgrade, the ML model should be
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re-trained on the new training data including the observations after the upgrade. The
single-time-frame models, such as random forest and SVM usually do not need additional
adjustments during use as the errors do not accumulate. Time series models, such as
the LSTM model, do need to be adjusted or aligned after a period running to offset the
accumulated biases and to bring the model status back to the correct track.

An additional cause of uncertainty is that ML models are fundamentally algorithms
composed of a set of rules which involve random number generation and optimization
to determine model parameters. Therefore, ML models developed on the same dataset
are almost always different. The uncertainty of ML applications is a combination of
uncertainties from two sources: data and knowledge.

5.5. Study and ML limitations

The findings of this study should be considered in light of some limitations:

• The data collected in this study mostly covered the essential sources for predicting
NO2 emissions.

• More data volume for all data sources would have enhanced performance. The data
collected was just for the year 2019, and it would have been beneficial to increase the
sample size for all datasets.

• Sensor calibration and validation are integral for reliable remote sensing and proper
quality of the derived variables/data. This study has ensured extraction of validated
and filtered data to retrieve higher quality images of remotely sensed data. These
processes are essential for better predictive modeling and, if lacking, can provide
incorrect results.

• Passive remote sensing techniques (such as TROPOMI) record solar radiation re-
flected and emitted from Earth which can be sensitive to weather conditions, lowering
their accuracy.

• The ML models and their predictive ability are the second main area of limitation.
• For our first experimental scenario, the LSTM model captured extreme values well.

However, it lacked low error rate results and had weak predictive ability, similar to
our early testing models.

• The inclusion of a different LSTM architecture was a response to the unsatisfactory
results of the original LSTM model tested, and the stacked architecture improved the
results for the most part, but not significantly.

• The nonlinear nature of the data, along with the time series element, has traditionally
been a complex problem to solve due primarily to random outcomes. The study’s
main goal was to take a sample of results from multiple machine learning algorithms
to draw conclusions and show that estimating NO2 emissions for power plants using
remote sensing data was feasible.

• The study’s experiments were rigorously conducted and validated, but they were ulti-
mately constrained by the volume of data and the predictive performance of our models.

• Additional data sources correlated with NO2 emissions and better remote sensing
resolution could considerably improve the results in the future.

6. Conclusions and Future Work

This paper utilized ML to simulate the non-linear relationships and memorize the
hidden patterns between remote sensing data and EPA ground observation to estimate
emissions from power plants. Several representative ML algorithms have been tested.
Compared to traditional techniques, such as numeric modeling and rule-based workflow
processing systems, ML has fewer restrictions, such as requiring no initial field condi-
tions, equation coefficient adjustments, expensive computation costs, and no unrealistic
assumptions. Future iterations of this study can better use ML models rather than linear
regression as their baseline models to achieve higher accuracy and better reliability. This
study collected data from multiple data sources including TROPOMI NRT NO2 products,
EPA eGRID ground monitoring network data, and NASA MERRA weather data. The
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training data used TROPOMI and MERRA variables as inputs and EPA emission data
as outputs. It covered more than two hundred power plants across the United States.
However, due to the relatively coarse spatial resolution of remote sensing data at present
(TROPOMI has 7 × 3.5 km before August 2019 and a higher resolution of 3.5 × 5.5 km
currently), the NO2 reflected in remote sensing data possibly did not exclusively come
from power plants, especially in urban regions. To exclude impacts from other emission
sources, we initially chose those power plants located in the rural regions for initial tests.
The results showed that ML is capable of correctly detecting the changing trends of NO2
emission by power plants. They confirm that ML is very promising in identifying a reliable
value range for specific ground emission sources simply based on remotely sensed daily
data (if the remote sensing data has no gaps, such as clouds).

In the future, we will continue to explore different combinations of input variables
and tune hyperparameters to improve the accuracy of the trained ML models. More
data sources, such as new satellite observations, will enable experiments to increase the
spatiotemporal coverage of remote sensing to refine prediction. Right now, the model is
not spatially reusable, and we will explore the options to transfer and reuse the models
in new power plants in other regions or countries. Another important focus of research
is to deploy the model into cloud servers and to start to provide operational services to
stakeholders as an alternative information source to monitor coal-fired power plants.
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