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Abstract: There is high demand for complete satellite SST maps (or L4 SST analyses) of the Arctic
regions to monitor the rapid environmental changes occurring at high latitudes. Although there
are a plethora of L4 SST products to choose from, satellite-based products evolve constantly with
the advent of new satellites and frequent changes in SST algorithms, with the intent of improving
absolute accuracies. The constant change of these products, as reflected by the version product, make
it necessary to do periodic validations against in situ data. Eight of these L4 products are compared
here against saildrone data from two 2019 campaigns in the western Arctic, as part of the MISST
project. The accuracy of the different products is estimated using different statistical methods, from
standard and robust statistics to Taylor diagrams. Results are also examined in terms of spatial scales
of variability using auto- and cross-spectral analysis. The three products with the best performance,
at this point and time, are used in a case study of the thermal features of the Yukon–Kuskokwim
delta. The statistical analyses show that two L4 SST products had consistently better relative accuracy
when compared to the saildrone subsurface temperatures. Those are the NOAA/NCEI DOISST and
the RSS MWOI SSTs. In terms of the spectral variance and feature resolution, the UK Met Office
OSTIA product appears to outperform all others at reproducing the fine scale features, especially
in areas of high spatial variability, such as the Alaska coast. It is known that L4 analyses generate
small-scale features that get smoothed out as the SSTs are interpolated onto spatially complete grids.
However, when the high-resolution satellite coverage is sparse, which is the case in the Arctic regions,
the analyses tend to produce more spurious small-scale features. The analyses here indicate that the
high-resolution coverage, attainable with current satellite infrared technology, is too sparse, due to
cloud cover to support very high resolution L4 SST products in high latitudinal regions. Only for
grid resolutions of ~9–10 km or greater does the smoothing of the gridding process balance out the
small-scale noise resulting from the lack of high-resolution infrared data. This scale, incidentally,
agrees with the Rossby deformation radius in the Arctic Ocean (~10 km).

Keywords: sea surface temperature; validation; coastal; arctic satellite sea surface temperature products

1. Introduction

Warming sea surface temperatures in the Arctic Seas have resulted from several factors,
including earlier sea ice retreat in the presence of downward atmospheric heat fluxes [1].
This heat is then released to the lower atmosphere in the fall [2], although some of it can
remain below the deepening winter mixed layer and influence surface conditions through
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the following months [2–4]. Warming in the cold Arctic Seas has even started to impact the
density structure of the oceanic mixed layer, with a potential impact on ocean circulation [5].
Finally, ocean surface warming affects ecosystems in profound ways [6]. Work performed
by [7] has shown that discharge from the six largest Eurasian rivers that enter the Arctic
Ocean increased by 7% from 1936 to 1999. Such an increase has had a substantial impact on
coastal ecosystems and biodiversity in the polar coastal regions. Thus, there is a substantial
need for accurate and precise satellite-derived SST products in this critical part of the
world’s oceans.

The Arctic, however, is also one of the most challenging areas for monitoring and vali-
dating remote sensing data. Within the Group for High-Resolution Sea Surface Temperature
(GHRSST), a significant number of Level 4 (analyzed, gap-free, and gridded) SST products
include coverage of the Arctic Ocean. These products are able to provide full SST maps by
combining data from multiple satellites, with sensors operating at multiple frequencies,
such as the infrared and microwave. Studies [8,9] found negligible differences among the
L4 global statistics but substantial differences (>1 K) for coastal and polar regions. Castro
et al. [10] evaluated the performance of various L4 SST products in the Arctic Ocean by
comparing them against in situ SST observations collected by UpTempO buoys. At the time
of that study, even greater differences existed among the L4s in the polar regions because
the study period coincided with the loss of the only microwave satellite operating at the
time that had high latitudinal coverage, AMSR-E. The loss of AMSR-E severely impacted
SST product performance, especially in the Arctic Ocean, as microwave radiometers are “all
weather” sensors, whereas their counterpart, infrared sensors, is “good weather” sensors
only. Since then, new satellite sensors that have improved the resolution of SST products
have been launched. These are the Advanced Microwave Scanning Radiometer 2 (AMSR2)
onboard the Global Change Observation Mission-Water (GCOM-W) and the Visible In-
frared Imaging Radiometer Suite (VIIRS) on Suomi National Polar-Orbiting Partnership
(Suomi NPP) and National Oceanic and Atmospheric Administration-20 (NOAA-20). It is
advisable to revise the performance of the L4 products periodically, as changes in satellite
instruments over time have substantial impacts on the SST analyses.

Level 4 satellite SST products are used in this comparison because they are the most
used among the research and applications community, based on usage metrics at the Jet
Propulsion Laboratory’s (JPL) Physical Oceanography Distributed Active Archive Center
(PO.DAAC). The fact that they are provided in spatially complete (gap-free) grids or maps
makes them particularly user-friendly.

Many of these products provide SST as a “foundation temperature”, the value at
the base of the diurnal thermocline, which should be free of diurnal variability. This is
estimated operationally by different methods such as using nighttime data only, or by
ingesting day and night data, but excluding daytime SSTs retrieved at low winds (<6 m/s),
when diurnal heating is likely to occur. Another method uses a diurnal warming model
to bring satellite SST retrievals from different wavelengths and penetration depths to a
common depth.

One of the questions we attempt to answer here is: what is the impact of using in
situ SST-at-depth references that might be subject to diurnal warming in validating a
foundation L4 SST analysis? A previous high-latitude SST study, using UpTempO buoys
with multiple thermistors at different depths spanning two consecutive Arctic summers
(2012–2013) [10], found that the ocean surface was mostly isothermal in the top 10 m, and
the only evidence of diurnal heating detected from these buoys was during the melting
season near the ice-edge. Castro et al. [11] compared estimates of diurnal warming from
the Argo array, with satellite estimates derived from the SEVIRI geostationary platform
and found diurnal warming to be commonly present to depths of 5 m. Another study using
satellite and moored buoy data found significant diurnal warming events in June and July,
more frequently in shallow waters than deep waters [12]. However, if more observations
indicate the presence of shallow summertime thermal stratification, then this might cause a
problem, as there is only a very small diurnal cycle to reset the foundation temperature.



Remote Sens. 2022, 14, 692 3 of 24

In this paper, two specific objectives are pursued: (1) the validation and comparison
of GHRSST L4 SST products in the Arctic Ocean against saildrone-derived SSTs from an
onboard SBE37 CTD sensor; and (2) the development of a set of recommendations for
future improvements on high latitude characterization of satellite-derived SST analyses.
We will use two NASA saildrone deployments off Alaska’s western and northern coastlines
in 2019 to examine the performance of eight L4 SST products in the Alaskan Arctic Seas
(i.e., the Bering, Chukchi, and Beaufort Seas). These are described in Section 2. Valida-
tion methodologies, described in Section 3, include computation of standard and robust
statistics of the satellite SST differences, with respect to the saildrone. Taylor diagrams and
wavenumber spectra are also evaluated to highlight differences in performance among
the satellite products. Specific attention will be focused on the possible impact, due to the
type of SST they represent, i.e., a diurnally varying value or a true foundation temperature.
We then apply the statistical analysis of the GRHSST L4s to make an informed decision
about the most relevant products to choose from, in order to study river discharge into the
Arctic Ocean. This study case is presented in Section 4. We focus on the Yukon–Kuskokwim
(Y–K) delta region, given its importance to the marine environment and its rapid change.
In a previous study using the same saildrones employed here, [13] were able to establish
a connection between satellite-derived sea surface salinity (SSS) and the freshening from
Yukon–Kuskokwim rivers. In this latest iteration, we focus on the thermal signal associated
with the Y–K river delta and examine climatologies for SST and SSS to determine if both
signals are consistent with the river discharge. The major point of the paper includes
correlations of approximately 0.90, which indicate the satellite products perform fairly well
at high latitudes, except in coastal regions, where substantial differences still exist. Along
the coast, CMC and OSTIA products showed warmer temperatures. Spectral slopes, of
approximately-2.0, were consistent with mesoscale–submesoscale variability.

The paper is organized as follows. Section 2 presents an overview of the data sets
used, followed by a description of the methodology used in application of robust statistics.
Section 3 presents the results of the application of the statistics, as well as also the Fourier
spectra. Section 4 discusses a case study applied to the Y–K delta. We conclude with a
discussion and summary Section 5, where we provide some recommendations for future
improvements in Arctic SST analyses from the lessons learned in this study.

2. Materials and Methods
2.1. Data Sets

Eight GHRSST L4 products were compared directly with SSTs measured by the tem-
perature sensor (Sea-Bird Scientific 37 or SBE37) that is part of a conductivity–temperature–
pressure (CTD) instrument onboard the two 2019 NASA saildrone (SD1036 and SD1037)
vehicles deployed to the Arctic. All the data sets are available through PO.DAAC. Co-
locations between the saildrone derived SST and the GHRSST L4 products applied the
same algorithm as that used in [13]. Each co-located value is an average of all the saildrone
values within the GHRSST L4 pixel. Spatial and temporal values were then assigned based
on the mean saildrone values.

The eight SST products used in the study are: (1) the Canadian Meteorological Center
(CMC), (2) the Danish Meteorological Institute (DMI), (3) the Operational Sea Surface
Temperature and Sea Ice Analysis (OSTIA), (4) the K10 SST, produced by the Naval Oceano-
graphic Office (NAVO), (5) the microwave-infrared optimally interpolated (MWIR OI)
SST product by REMSS, (6) the Daily Optimally Interpolated (OI) AVHRR SST product
(DOISST), produced by the National Centers for Environmental Prediction (NCEI), (7) the
Multi-Scale Ultra-High Resolution Sea Surface Temperature (MUR), produced by NASA,
and (8) the GHRSST Median Product Ensemble (GMPE), produced by the UK Met Office.
Table 1 summarizes links to additional information on data access.
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Table 1. Characteristics of GHRSST L4 data sets used in the study.

L4 Data Availability PO.DAAC Reference URL

CMC 1 January 2016-present https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0?ids=
&values=&search=CMC&provider=PODAAC (accessed on 1 December 2021)

DMI 30 April 2013-present https://podaac.jpl.nasa.gov/dataset/DMI_OI-DMI-L4-GLOB-v1.0?ids=&values=
&search=DMI&provider=PODAAC (accessed on 1 December 2021)

OSTIA 31 December 2006-present https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-v2.0?ids=&values=
&search=OSTIA&provider=PODAAC (accessed on 1 December 2021)

K10 1 October 2018-present https://podaac.jpl.nasa.gov/dataset/K10_SST-NAVO-L4-GLOB-v01?ids=&values=
&search=NAVO&provider=PODAAC (accessed on 1 December 2021)

MWIR 1 June 2002-present https://podaac.jpl.nasa.gov/dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0?ids=
&values=&search=REMSS&provider=PODAAC (accessed on 1 December 2021)

DOISST 1 September 1981-present https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.1?ids=
&values=&search=avhrr_oi&provider=PODAAC (accessed on 1 December 2021)

MUR 1 June 2002-present https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1?ids=&values=
&search=MUR&provider=PODAAC (accessed on 1 December 2021)

GMPE 16 September 2017-present https://www.copernicus.eu/en/access-data/copernicus-services-catalogue/global-
ocean-sea-surface-temperature-multi-product (accessed on 1 December 2021)

2.1.1. CMC

This SST product is produced daily on an operational basis at the Canadian Meteo-
rological Center (CMC). This product merges infrared (IR) and microwave (MW) satellite
SSTs in its analysis system via an optimal interpolation (OI) scheme. IR sensors included in
the OI are the Advanced Very High-Resolution Radiometer (AVHRR), onboard NOAA-18
and 19, the European Meteorological Operational-A (METOP-A), and the Operational-B
(METOP-B). MW SSTs are taken from AMSR2. Additionally, in-situ SST observations are
used from both drifting buoys and ships from the International Comprehensive Ocean
Atmosphere Data Set (ICOADS). The latest version of the CMC was produced on a global
0.01◦ latitude–longitude grid (there is also a 0.02◦ grid version not used in this analysis)
and is consistent with a foundation SST. This is not based on the exclusion of nighttime
data but the integration of in-situ data. Thus, the definition of being free from diurnal
signal modeling does not imply the SST is referenced to a particular depth; however, that is
not influenced by diurnal changes. An L4 ice mask from CMC is provided, together with
the SSTs. More details on the CMC product may be found in [14].

2.1.2. DMI

This product is produced daily by the Danish Meteorological Institute (DMI). The
satellite sensors used in the analysis include nighttime-only SSTs, i.e., it is a foundation
SST product, from AVHRR, AMSR2, the Spinning Enhanced Visible and Infrared Imager
(SEVIRI), the VIIRS, and the moderate resolution imaging spectroradiometer (MODIS)
on the NASA Aqua satellite. An ice field, generated by EUMETSAT Ocean and Sea Ice
Satellite Application Facility (OSI SAF), is provided to mask out the presence of ice. The
final optimally interpolated foundation SST analysis is provided on a global 0.05◦ grid.
More details on the product may be found in [15].

2.1.3. OSTIA

The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) product is
produced, operationally, at the UK Met Office. The sensors used in the analysis include
the AVHRR, VIIRS, SEVIRI, the Geostationary Operational Environmental Satellite (GOES)
West Advanced Baseline Imager (ABI), AMSR2, and in situ data from ships, drifting, and
moored buoys. This analysis used OI until recently, but it currently uses the NEMOVAR
data assimilation scheme [16]. The final product is gridded onto a global 1/20◦ (~6 km) grid.
The SST retrievals are filtered based on wind speed to guarantee a product representative
of the foundation temperature. More information on this product may be found at [17].

https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0?ids=&values=&search=CMC&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-v3.0?ids=&values=&search=CMC&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/DMI_OI-DMI-L4-GLOB-v1.0?ids=&values=&search=DMI&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/DMI_OI-DMI-L4-GLOB-v1.0?ids=&values=&search=DMI&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-v2.0?ids=&values=&search=OSTIA&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/OSTIA-UKMO-L4-GLOB-v2.0?ids=&values=&search=OSTIA&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/K10_SST-NAVO-L4-GLOB-v01?ids=&values=&search=NAVO&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/K10_SST-NAVO-L4-GLOB-v01?ids=&values=&search=NAVO&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0?ids=&values=&search=REMSS&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0?ids=&values=&search=REMSS&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.1?ids=&values=&search=avhrr_oi&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.1?ids=&values=&search=avhrr_oi&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1?ids=&values=&search=MUR&provider=PODAAC
https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1?ids=&values=&search=MUR&provider=PODAAC
https://www.copernicus.eu/en/access-data/copernicus-services-catalogue/global-ocean-sea-surface-temperature-multi-product
https://www.copernicus.eu/en/access-data/copernicus-services-catalogue/global-ocean-sea-surface-temperature-multi-product
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2.1.4. K10

This data set (K10) is produced operationally daily by the Naval Oceanographic
Office (NAVO). The analysis uses SST observations from AVHRR, VIIRS, and SEVIRI. The
AVHRR data ingested in this analysis comes from the MetOp-A, MetOp-B, and NOAA-19
satellites; VIIRS data are sourced from the Suomi NPP satellite; SEVIRI data comes from
the Meteosat-8 and -11 satellites. The SST product is tuned to be representative of the
temperatures at 1-m depth (SST-at-1 m); however, unlike the other products considered
here, it uses day and night SST retrievals, so it may be affected by diurnal warming. The
final product is distributed on a global 0.1◦ grid. More information on the product may
be found at [10]. There is no ice mask provided with this product. High latitude SSTs are
retrieved based on ice extent climatologies.

2.1.5. MWIR OI

The MWIR OI SST product is produced operationally at REMSS. As the name indicates,
the product uses OI to merge data from both MW and IR sensors. The former includes,
besides TMI and AMSR2, the global precipitation measurement (GPM) microwave imager
(GMI), the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), and the US
Navy WindSat on the Coriolis satellite. The latter sensors are MODIS on the NASA Aqua
and Terra platforms and VIIRS. A diurnal warming model is applied to adjust observations
to a foundation temperature. The final product is provided on a global 0.09◦-resolution
grid. More details on this product, as well as the application of the diurnal model, may
be found at the REMSS website: https://www.remss.com/measurements/sea-surface-
temperature/oisst-description/ (9 December 2021).

2.1.6. DOISST

This data set is produced operationally at the National Centers for Environmental
Prediction (NCEI). Data are optimally interpolated from the AVHRR IR sensor and in situ
observations (i.e., ICOADS ships and buoys, as well as Argo float SSTs above 5 m-depth).
There is no ice mask provided; however, in the regions with sea-ice concentrations higher
than 30%, the freezing point of seawater is used to generate a proxy SST. A preliminary
version of this data set is produced in near-real-time (1-day latency) and then replaced with
a final version after 2 weeks. The final product is distributed on a global 0.25◦-resolution
grid. This product ingests day and night satellite SST retrievals, bias-adjusted to represent
the in situ SSTs at 0.2-m nominal depth; thus, the product represents a daily mean (uses
day and night data) SST and may be affected by diurnal variability. More details may be
found at [18].

2.1.7. MUR

NASA’s Multi-Scale Ultra-High Resolution Sea Surface Temperature product (MUR)
is processed at JPL and distributed through PO.DAAC. A near-real-time version of this
product is produced at 1-day latency, as well as a retrospective version at 4-day latency.
Measurements are combined from GHRSST L2P skin and subskin SST observations from
instruments including AMSR-E, AMSR2, MODIS on the NASA Aqua and Terra platforms,
WindSat AVHRR on several NOAA satellites, and in-situ SST observations from the NOAA
iQuam project [19]. Only nighttime data are used to ensure a foundation temperature. A
sea ice concentration product from the EUMETSAT OSI SAF is incorporated with the SSTs.
The final product is distributed on global 0.01◦ and 0.25◦ resolution grids. In this study, we
use the 0.01◦ resolution product. More information on MUR may be found at [20].

2.1.8. GMPE

The GHRSST Multi-Product Ensemble (GMPE) is produced by the UK Met Office. The
product consists of the median ensemble of SST from OSTIA (UK), CMC (Canada), FNMOC
(USA), GAMSSA (Australia), MGDSST (Japan), K10 (USA), MWIR OI (USA), and MW OI
(USA), RTG (USA), DMI (Denmark), and MUR (USA), all regridded to 0.25◦-resolution.

https://www.remss.com/measurements/sea-surface-temperature/oisst-description/
https://www.remss.com/measurements/sea-surface-temperature/oisst-description/
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The GMPE standard deviation (SD) is also evaluated and distributed daily with the global
median ensemble. The final products are provided for ice-free pixels only. Although most
of the L4 products that enter into the GMPE ensemble are foundation SSTs, there are
exceptions, such as K10. Although no specific type of SST should be attached to this
product, it is usually interpreted as an unbiased estimate of the foundation SST. However,
this must be interpreted with caution, as it is an unbiased estimate based on the input
products. The GMPE products are designed to assess the uncertainty of the L4 GHRSST
products, as the ensemble median tends to give a more accurate, unbiased estimate of the
SST at global scales, more so than the individual contributing analyses. More information
on the GMPE product set can be found at [8,21].

2.2. Saildrone

Saildrones SD1036 and SD1037 were deployed from 13 May–11 October 2019 (DOY
133–284). As described in [13], the vehicles were deployed from Dutch Harbor, AK, and
sailed through the Bering Sea, heading through the Bering Strait, and continuing into the
Chukchi and Beaufort Seas. Both deployments were carried out simultaneously but did not
necessarily follow identical tracks. An important difference between saildrones and drifting
buoys is the capability to guide them from land. This is critical for sampling fronts, which
can move on sub-daily time scales. As the sea ice edge retreated northward, the vehicles
explored the Beaufort Sea, until decreasing light (saildrone sensors are solar-powered)
forced a return to Dutch Harbor. The vehicles had an assortment of instruments onboard;
here, we focus on the temperature measured by the SBE37, which recorded data at 1-min
intervals. The saildrones also had four RBR temperature data loggers (installed along the
keel) and IR radiometers (mounted on the hull and wing). Data from these other sensors
were not used, owing to calibration issues. For more details on the saildrone vehicle, this
campaign, and validation results, please refer to [22].

The SBE37 SST measurements correspond to a depth of approximately 0.6 m below
the surface (SST-at-0.6 m), where saildrone diurnal heating may occur. Diurnal warming is
often associated with clear skies and low winds, conditions rarely found in the generally
cloudy Arctic summer. The critical point is that saildrone measures the SST at one depth
0.6 m and, thus, is not guaranteed of measuring a foundation temperature.

2.3. Co-Location Methodology and Measures of Accuracy

Since there is only one L4 SST image per day, but the CTD sampling rate is 1 min, all
SBE37 observations co-located with the same L4 pixel were then averaged to derive the
mean daily value for that pixel [13]. Thus, the number of co-locations varied with the grid
resolution of the particular L4 product. For example, the DOISST and GMPE products
with a 0.25◦-resolution grid would have the fewest number of co-locations (averaging over
more saildrone points), whereas the 0.01◦ MUR product would have the highest number of
co-locations.

Comparisons were then done using standard statistics (mean and SD) and robust
statistics (median and robust deviation (RD)), corresponding to various measures of accu-
racy, such as the bias, root-mean-square error (RMSE), correlation, and signal-to-noise ratio
(SNR).

The bias was simply defined as the mean residual difference (i.e., the difference
between the satellite-derived SST and the matching saildrone SBE temperatures) (SSTSAIL):

BIAS = 1/N
N

∑
1
(SSTSAT− SSTSAIL), (1)

where SSTSAT is one of the eight GHRSST L4 products, and SSTSAIL is the co-located
SBE37 SST from the saildrone. N is the number of co-located pairs for each L4 product.
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To characterize the variability in the differences, we use the root-mean-square error
(RMSE) of the average difference between the two-time series, which is defined as: (2)

RMSE =

√√√√1/N
N

∑
1
(SSTSAT− SSTSAIL)2 (2)

and the standard deviation of the errors or residual differences (SDE), defined as:

SDE =

√√√√1/N
N

∑
1
(SSTSAT− SSTSAIL− BIAS)2 (3)

Note that, while the SDE has the mean bias error (i.e., the systematic errors in the
satellite retrievals) removed, the RMSE does not. Thus, the SDE is usually taken as the
benchmark for the RMSE, when the bias is 0.

The SNR for a particular L4 gives information on how the satellite-derived SSTs are
measured in relation to the natural variations of the satellite systems. It is expressed by:

SNR =
SDSAT

SDE
(4)

with

SDSAT =

√√√√1/N
N

∑
1
(SSTSAT− SSTMEAN)2 (5)

where the actual signal component defined in (5) is taken as the SD of the individual
satellite products (SDSAT). The SST MEAN is the mean of SSTSAT. The noise metric is
taken by the SD of the errors, relative to the saildrone defined in Equation (3).

In terms of robust statistics, RD is defined here in terms of the median absolute
deviation (MAD) estimator, which is very resistant to outliers:

RD = k ×MAD

and
MAD =

√
median(|SSTSAT− SSTSAIL|)2 (6)

where k is a scale factor that depends on the statistical distribution of the co-locations
(e.g., the inverse of the cumulative distribution function evaluated between 1/4 and 3/4, so
that it covers 50% around the median breaking point). Assuming that the matchups are
normally distributed, k = 1/0.6745 = 1.4826 [23]. The median is an unbiased estimate of the
“typical error” in the L4 SST estimates, given by the middle value of the ordered satellite
SST residuals, with respect to the saildrone SSTs.

The statistics are evaluated for the period in which all the L4s had a matchup with
the saildrone. Because the beginning and end times of the time series of co-located pairs
vary by a day or two, among all the products, the time series were trimmed to be within
the common period of 15 May 2019 (DOY 135) and 10 October 2019 (DOY 283) prior to
computing the statistics. In addition to the above metrics, normalized statistics will be
used, via Taylor diagrams, to facilitate comparisons between the saildrone and satellite
products, all of which have different spatial resolutions and noise characteristics. From a
methodological standpoint, the spectral analysis will be performed to compare the spectral
slopes of the different data sets. These comparisons reveal possible differences in the
different data sets’ resolvability, which depends on the analysis’ spatial resolution and
degree of smoothing.
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3. Results

The tracks of the SD1036 and the SD1037 are shown in Figure 1a,b, respectively, color-
coded by the SBE37 SSTs. The wide temperature range for both deployments is visible,
with warmer temperatures detected off the northwestern coast of Alaska. Additionally, a
spot of warmer temperatures is also detected as the saildrone deployment crosses to the
west of the Y–K delta.
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Figure 2a,b shows the time series for the co-located GHRSST L4 SSTs, with the sail-
drone SBE37 SSTs for both the SD1036 and the SD1037 deployments. A distinctive feature 
seen in the time series of collocated SSTs is that there are periods for which all the L4 

Figure 1. SST, derived from SBE37, along with the saildrone track for SD1036 (a) and SD1037 (b). The
location of Y–K delta and rivers are shown in (c).

Figure 2a,b shows the time series for the co-located GHRSST L4 SSTs, with the saildrone
SBE37 SSTs for both the SD1036 and the SD1037 deployments. A distinctive feature seen
in the time series of collocated SSTs is that there are periods for which all the L4 products
agree quite well amongst each other, especially during the second half of the field campaign;
however, there are also periods of extreme variability, mainly during the first half. Here,
we focus our attention on the three-day peak, during which the saildrones crossed the Y–K
delta (DOY 150–153), although other peaks exist in the time series saildrone.

Figure 3 zooms in on the time series of SST matches for these 3 days. Panel 3a indicates
warming temperatures as the saildrones approach the Y–K delta. Most of the GHRSST L4
products reproduce the peak, but with different amplitudes. In fact, Figure 3b indicates
saildrone residual differences from about −8 ◦C for DMI to −5 ◦C for MUR and K10
to −2 ◦C for GMPE and DOISST, to practically no noticeable differences for CMC and
MWIR. These differences might arise from spatial and feature resolution in the L4 data
sets, differing degrees of smoothing, differences in the type of SST resolved (i.e., skin,
foundation, and SST-at-depth), and, finally, uncertainties in the retrievals.
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Figure 4 shows images extracted from the different L4 products for the Y–K delta,
corresponding to DOY 151. It is notable how the satellite products show substantial
differences in the amount of warming near the coast, as well as in the location of these
warm features. The coastal variability in SSTs, revealed in Figure 4, is substantial, and it
is hard to say which product is more realistic. Relative to the median temperature given
by GMPE (Figure 4h), the DOISST, MWIR, OSTIA, and, especially, CMC, retrieve coastal
SSTs substantially warmer than the average, whereas MUR, DMI, and K10 are substantially
underestimating the warming.
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Figure 4. (a–h) L4 SST images around the Y–K delta for DOY 151 (31 May 2019) for: (a) MUR,
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shows the transect of SD1036 for the same day. The green dotted line shows the corresponding track
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For identification of the Yukon river in the image, see Figure 1c.

It can be seen that the saildrones navigate across the warm water intrusion that exists
between the St. Lawrence Island and the Y–K delta. To get the exact position of thermal
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fronts from satellite imagery is still very challenging, as the resolution of the L4 grid smears
the position of the front. The mesoscale feature, associated with the coastal warmer water,
is absent in DMI; it is in a different location in K10 but, as the maps indicate, the saildrones
were far enough from the shallow coastal waters of the Y–K delta, missing the highly
variable area in the L4 products.

3.1. Statistics

The statistics for the differences between the satellite SST retrievals and SBE tempera-
tures, measured from both saildrone deployments (SD1036 and SD1037), are summarized
in Tables 2 and 3, respectively. The MUR product showed large negative biases for a
substantial period of time (DOY 156–212), likely because, in order to produce a foundation
SST, this analysis uses satellite nighttime data only, which is a limiting factor during the
Arctic summer, as the sun is often above the horizon and nights are often nonexistent. We
opted to include another entry in the tables, corresponding to the statistics from the time,
where MUR worked well and nighttime data were available. Both time series are used in
different comparisons. In those where the trimmed series is used (Taylor diagrams), we
will emphasize that the results are for a shorter duration.

Table 2. Statistics for GHRSST L4 vs. saildrone SBE37 on SD1036 deployment.

SD1036
L4 vs. SBE37 No. Days No. Cnts Bias ◦C Media ◦C SDE ◦C RD ◦C RMSE ◦C SNR Corr

MUR
(1 km) 134 19359 −1.57 −0.59 2.56 2.29 9.03 1.17 0.57

MUR
(trim) 78 12896 −0.04 −0.14 1.07 1.12 1.15 2.41 0.92

DMI
(5 km) 134 4039 −0.34 −0.14 1.36 1.52 1.97 1.94 0.86

OSTIA
(6 km) 134 4063 −0.37 −0.18 1.01 0.72 1.15 2.43 0.91

MWIR
(9 km) 134 2455 0.05 0.08 0.77 0.89 0.60 2.98 0.95

CMC
(10 km) 134 2299 −0.13 −0.19 0.85 0.80 0.74 2.81 0.94

K10
(10 km) 125 1351 −0.11 −0.15 1.06 1.08 1.13 2.05 0.89

DOISST
(25 km) 134 1023 −0.12 −0.03 0.74 0.73 0.56 3.29 0.96

GMPE
(25 km) 132 1008 −0.59 −0.32 0.91 0.84 1.16 2.84 0.94

The smallest negative biases in Tables 2 and 3 are observed with the non-foundation
products, with the DOISST showing the smallest bias (−0.08 ◦C) for SD1037, with the second
smallest for SD1036 (−0.12 ◦C) and smallest negative bias with K10 ((−0.11 ◦C) for SD1036).
The DOISST also has the smallest robust unbiased SST estimates (median of the residuals),
relative to both saildrone deployments (−0.03 ◦C and −0.05 ◦C, respectively). The MWIR
OI SSTs also have small residual differences (biased and unbiased (median)), but they are
of the opposite sign, suggesting that these MWIR foundation SSTs are slightly warmer than
the saildrone measurements (mean biases of 0.05 ◦C and 0.11 ◦C, for SD1037 and SD1037,
and a median of 0.08 ◦C and 0.09 ◦C, respectively). Of the foundation SST products, CMC
has the next smallest negative bias (−0.13 ◦C) for both saildrone deployments. Surprisingly,
the GMPE median, established to be a more accurate unbiased estimate of foundation SST
than the individual L4 foundation ensemble members (global bias = 0.03 K and SD = 0.4 K
relative to Argo floats [8]), had some of the largest mean and median differences, relative
to the saildrone observations. This could be due to several factors, which will be discussed
later.
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Table 3. Statistics for GHRSST L4 vs. saildrone SBE37 on SD1037 deployment.

SD1037
L4 vs. SBE37 No. Days No. Cnts Bias ◦C Median ◦C SDE ◦C RD ◦C RMSE ◦C SNR Corr

MUR
(1 km) 148 21277 −1.43 −0.51 2.37 2.35 7.65 1.38 0.70

MUR
(trim) 92 15491 −0.22 −0.19 1.02 1.27 1.08 2.99 0.95

DMI
(5 km) 148 4467 −0.63 −0.49 1.50 1.78 2.64 2.12 0.88

OSTIA
(6 km) 148 4369 −0.39 −0.16 1.08 0.80 1.33 2.64 0.93

MWIR
(9 km) 148 2675 0.11 0.09 0.84 0.94 0.72 3.03 0.95

CMC
(10 km) 148 2405 −0.13 −0.16 0.92 0.87 0.87 2.93 0.94

K10
(10 km) 140 1526 −0.21 −0.30 1.01 1.03 1.06 2.62 0.93

DOISST
(25 km) 148 1070 −0.08 −0.05 0.88 0.87 0.78 3.15 0.95

GMPE
(25 km) 148 1064 −0.58 −0.45 0.99 1.00 1.32 3.02 0.94

It is interesting to note that, despite the fact that all the L4s used in this study are part
of the global ensemble (GMPE), the smallest and the largest median error are both observed
for SST analyses at the same 0.25◦-resolution grid. The large distance between the median
DOISST error, with respect to the saildrone and the middle value of the ordered statistics
given by GMPE, suggests that the DOISST is more of an outlier in the ensemble. This was
quite often the case for DOISST version 2.01, where there was a consistent cold bias for
global SSTs and a warm bias for Arctic SSTs; however, existing biases in v.2.0 have been
substantially reduced in DOISST v2.1 [18]. The large difference between the DOISST and
GMPE might be more in line with the fact that GMPE is an estimator of the foundation
whereas the DOISST is a daily mean SST.

The DOISST minus saildrone SST differences have the smallest variation (SD = 0.74 ◦C)
for SD1036 and the second smallest (SD = 0.88 ◦C), after the MWIR (SD = 0.84 ◦C), for
SD1037. The SD of the foundation products tends to decrease as the spatial scale (pixel
length or/grid spacing) increases (or equivalently, as the sample size/number of co-located
pairs decreases with finer product resolution), up to about 9 km, when the SD increases
again, as the spatial scale continues to increase (and the sample size continues to decrease),
albeit at a slower rate. This issue is illustrated in Figure 5, where the SDs for MUR (1 km),
DMI (5 km), and OSTIA (6 km) decrease with scale up to the MWIR 9-km resolution,
followed by an increase in SD for CMC, K10 (10 km), and GMPE (25 km). Interestingly, a
scale of 9 km is comparable to the local internal Rossby radius of deformation [24]. In the
Arctic Ocean, the first Rossby radius increases from ~5–15 km for deep ocean basins, with a
typical value of 9–10 km and ~1–7 km for shallow shelf seas [24].

The analyzed pairs incorporate point-to-pixel differences that are influenced by multi-
ple factors. While point to pixel differences can be larger for coarser scales, there is more
inherent natural variability at finer spatial scales. It is known that the signal detected from
the satellite corresponds to an integration of the surface-emitted radiation over the spatial
domain, as determined by the product’s spatial resolution. The signal integration over
larger spatial domains/coarser grids smooths out some of the natural variability within the
pixel. As the SDE vs. scale trend, shown in Figure 5, suggests, more is not necessarily better
for scales < 9 km, as better precision in the estimates (L4 with smaller SDEs) are achieved
with smaller sample sizes. This point suggests that caution must be used in interpreting
variability at scales less than 10 km, as the noise could be the dominant factor. It is also
important to mention that it could also be a natural consequence of increased averaging
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over the larger spatial scales and thus smoother results. The effects of natural variability
and sample variability (sample size) reach a balance at about 9–10 km-spatial resolutions.
For scales greater than 9–10 km, the natural smoothing of the gridding process dampens
some of the variability and ‘less becomes more’ or at least enough, as the SDEs increase
again but at a much slower rate.
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The SDE is particularly sensitive to outliers, as large errors are amplified when they
are squared in the SDE computation. This tendency is not present in the RD, which is
expected, given that this parameter is more effective at handling variability. It is interesting
to note that for spatial scales greater than or equal than 10 km, the difference between the
SDE and the RD gets smaller (see Table 3). Once again, the convergence of the SDE and
the RD at larger scales suggests that the spatial averaging that occurs from increasing the
spatial domain/grid resolution of the L4 SSTs is effective at damping the noise (outliers)
resulting from natural variability. However, it is important that footprint size alone is not
a determining factor in the noise level of satellite products. Other sources of errors exist,
including cloud cover, ice contamination (for the Arctic), and possible land contamination
in the passive microwave. The L4s with the smallest RD are OSTIA, DOISST, and CMC
(with RD of 0.72 ◦C, 0.73 ◦C, and 0.80 ◦C, respectively, for SD1036 and 0.80 ◦C, 0.87 ◦C,
0.87 ◦C, respectively, for SD1037).

The RMSE, while conceptually similar to the SDE, removes some of the randomness
in the error estimates and is the standard measure of the accuracy of satellite SST products.
Once again, DOISST, MWIR, and CMC are among the products with the smallest RMSE
(DOISST: 0.56, MWIR: 0.60, CMC: 0.74 for SD1036, and MWIR: 0.72, DOISST: 0.78, CMC:
0.87 for SD1037). Note that the two products with the better accuracies, DOISST and
MWIR, correspond to an SST-at-Depth product and a foundation SST product, respectively.
This point suggests that a good precision foundation SST product can perform similarly
to a daily mean SST-at-depth product when estimating the Arctic summer SST-at-depth
observed from the saildrone.

This result suggests that diurnal variability, although a source of uncertainty, must
be considered carefully with respect to other sources of error. Spatial variability, however,
seems to have a more substantial effect on L4 foundation accuracy, as the RMSE gets smaller
with increasing product spatial resolution, up to a scale of ~9–10 km, after which the RMSE
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increases, but at a slower rate (see Figure 5). The curves for the two saildrone deployments
seem to converge for spatial scales of ~6 km. The separation in mean RMSE amplitudes
barely changes as the sample size diminishes from spatial lengths of 10 to 25 km, suggesting
that there is a critical scale where the statistical power is associated with the variability of
the data and the sample density balances out. The accuracy of the non-foundation products
(i.e., DOISST and K10) does seem to follow this trend, as well. This trend is not surprising
after the similar behavior observed with the SDs and the known fact that the RMSE is
dependent on the scale of the values used. However, Figure 5 shows that, while the SDE
dependence on scale appears linear for scales < 10 km, the RMSE dependence, over the
same scales, seems to be non-linear convex in shape. Recall from Equations (2) and (3) that
the SDE has the mean bias error removed, but the RMSE does not. The nonlinearity of the
RMSE curve in Figure 5, hence, is capturing the portion corresponding to the systematic
error that is excluded from the SDE and, as is evident in this figure, the RMSE is giving
more weight to the largest errors observed at the finest scales. While this newly identified
dependence has important implications for gridded satellite products, it remains to be
proven that it is universal and is upheld for other products and conditions.

Except for those with the finest resolution, most SST products have an SNR > 2.5.
The L4 with the largest SNR is DOISST, with SNR = 3.29 and 3.15 for SD1036 and SD1037,
respectively. The statistical correlation between the time series of L4 and saildrone SSTs
(final column in Tables 2 and 3) is very high for all products (>0.90), i.e., the L4 SST products
are performing quite well in this region but, once again, the DOISST seems to slightly
outperform the others, when it comes to estimating saildrone SSTs.

A possible explanation for the good agreement between the Arctic saildrone-borne
SSTs and DOISST retrievals is that the DOISST is highly tied to the available buoy data,
which serves as the primary bias correction and calibration of this product. This was made
evident, displayed by the DOISST version 2.10, when they stopped feeding a significant
percentage of drifting buoys into their system, as the buoy transmissions changed from
alpha-numerical to binary form [18]. In-situ measurements, while ingested in some of
the other L4 analyses, potentially do not play as critical a role, as they rely more on the
multisensor blending aspect of the satellite retrievals.

The DOISST implicitly adjusts all the input data streams that enter into their OI system
to coincide with the buoy measurements at approximately 20 cm-depth. It is important to
point out, however, that the saildrone is not incorporated in the DOISST correction and,
thus, these are truly independent measurements. Both the saildrone and the buoys use sea
bird-type thermistors to measure the SST-at-depth.

3.2. Taylor Diagrams

It is clear from the above analysis that the statistics in Tables 2 and 3 are simultaneously
constrained by both the disparity in sample sizes of the L4 vs. saildrone SST matchups
and the variability of the data itself. In order to facilitate comparisons of L4 products with
different scales, normalized statistics were computed using the background variability
or SD of the reference SST (i.e., the SDSAIL) as the normalization variable. By using the
SDSAIL (via Equation (5)) as the standardizing criterion, we are removing the impact of the
variability in the saildrone observations from the interdependence of the statistical measures.
We then looked at the simultaneous behavior of the normalized SDs, from both the L4
and observations (i.e., NSDSAT = SDSAT/SDSAIL; NSDSAIL = SDSAIL/SDSAIL = 1), the
normalized RMSE (i.e., NRMSE = RMSE/SDSAIL), and their serial correlation, through
a normalized Taylor diagram. These are shown in Figure 6a,b for SD1036 and SD1037,
respectively. A detailed explanation of how to interpret these diagrams for comparing the
performance of different L4 SST products can be found at [10].
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Figure 6. Normalized Taylor diagram showing differences for GHRSST L4 SST products (used as
reference), relative to the SBE37 SSTs on (a) SD1036 and (b) SD1037. The trimmed MUR is used in
these comparisons.

The normalized standard deviation (NSD) of the observations is represented in the
diagram by the point where the x-axis equals 1, labeled “observed.”. The NSDSAT for the
different L4s is given in the y-axis. The dashed circle of unit radius also gives an indication
of where the products being compared stand, in relation to the ‘denoised’ observations. The
NRMSE is represented by the concentric circles, centered at the observation point (x = 1).
The correlations are given by the radial lines departing from the origin (x = 0). The objective
is to quickly determine which products, represented by the dots labeled A through H, are
closer to the point/dash circle representing the observations. The closer an L4 is to the
observations, the smaller the SD and the RMSE and the higher the correlation.

As it can be seen from these diagrams that all the L4 products, represented by the dots,
labeled A: CMC, B: DMI, C: GMPE, D: trimmed MUR, E: K10, F: OSTIA, and G: MWIR,
H: DOISST, have similar performances and are in overall good agreement with the saildrone,
given that all the dots cluster together close to the observations and there is no spread in
the radial direction. The products less affected by the variability/noise in the observations,
i.e., closer to the dashed circle of the denoised observations, are GMPE, trimmed MUR,
and DMI (C, D, and B). Products more affected by systematic errors (i.e., farther from the
unit circle) are K10 and MWIR (E and G). The products with better accuracy (closer to the
smallest NRMSE circle), and the highest correlations (smallest azimuthal angle between the
L4 dot and the x-axis), are the DOISST and the trimmed MUR (H and D) for SD1036 and
DOISST and GMPE (H and C) for SD1037. The products with degraded accuracy are K10
for SD1036 and DMI for SD1036 and SD1037. The fact that DMI is closest to the dashed unit
circle but has the largest azimuthal spread (correlation less than 0.9) suggests the product
is getting the right SST amplitudes but has issues with the phasing of the SST patterns.

The products that have the best overall performance, based on the smallest absolute
distance to the observations, are GMPE, DOISST, and the trimmed MUR (C, D, and H).
As the Taylor diagram illustrates, the DOISST remains a top performer, regardless of
the normalization of the statistics, but two of the L4 products that were more impacted
by noise in the saildrone observations before (e.g., GMPE and the untrimmed MUR in
Tables 2 and 3), perform substantially better relative to the saildrone observations. The
GMPE result confirms previous analyses reported in the literature [8], indicating that it was
the noise in the saildrone observations driving the spread in the statistics. When nighttime
data are available, the MUR L4 could be a leading performer. The MUR product is currently
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being analyzed to include daytime observations for the estimation of the foundation SST,
which will take effect in the next version of MUR (M. Chin, personal communication, 2021).

Among the products with slightly diminished skill after the normalization are DMI,
K10, and MWIR (C, E, and G). After taking the saildrone variability out, the K10 and the
MWIR, which had a leading edge according to the statistics of Tables 2 and 3, are now
further to the left from the actual SD given by the unit circle, NSDSAIL = 1. In other
words, the NSD is decreasing with noise in these two products, which suggests that they
are under-predicting the observed saildrone variability (i.e., they are a bit smooth). The
K10 in particular was singled out before as being the same type of SST as the SBE37 SST,
which was thought to be advantageous for comparisons with the saildrone. It is known that
the lack of an ice mask slightly undermines the K10 predictions, when in close proximity
to the ice edge. The K10 product is currently being modified to include an ice mask in a
new future version [J.F. Cayula, personal communication, 2021]. In previous comparisons
involving the MWIR SST, the product appeared to have too much small-scale noise [10].
In its current version (version 5), however, Figure 6 suggests that this analysis is under-
predicting the actual saildrone variability. The NRMSE and correlation, however, are not
perturbed enough by the noise, since the MWIR dot is part of the general cluster.

3.3. Wavelength Spectra

In order to further explore the dependence of spatial variability on spatial scales, spec-
tral analysis was performed on each of the L4 products and the saildrone SSTs. Wavelength
spectra were calculated based on the co-located data, which means that there is a saildrone
power spectrum for each of the satellite products (only the grid resolution varies). The
entire time series of the products were used, DOY 135–283. Thus, the saildrone power
spectra are reflective of the resolution of the GHRSST L4 product. For the MUR product, the
whole length of the time series was considered in the spectral analysis. The resulting plots
are shown in Figure 7 for both SD1036 and SD1037 with the saildrone Fourier autospectra
on the left panel, and the L4 SST on the right.

The saildrone SST spectra shown on the left were computed from the SBE37 colloca-
tions with the different SST analyses. That is, the only thing that is changing is the spatial
resolution of the subsampling of the saildrone SBE37 SSTs. The spectra are plotted only
for wavelengths greater than 50 km to reflect the Nyquist wavelength associated with the
DOISST and GMPE products, which have the coarser spatial resolution of the L4s used in
this spectral analysis. The saildrone-derived power spectral density, shown in black with
the L4 autospectra of Figure 7b,d, is based on the co-locations with OSTIA. This particular
subsampling of the saildrone spectrum was chosen because, as it will be explained in more
detail in the analysis of spectral slope below, only OSTIA appears to have the same scaling
relation observed with the saildrone-derived SSTs.

The most visible feature of the spectra shown in Figure 7 is the power law behavior
(i.e., the log-log linearity as the log of the spectral power decreases with the log of the
decreasing wavelength) exhibited by all the autospectra over the whole range of measure-
ment scales (between 2000 km and 50 km). Additionally, the rate of decrease (given by the
spectral slope or, in this case, the scaling exponent) appears quite similar for the individual
autospectra, suggesting scale invariance. The saildrone spectra in Figure 7a,c show peaks at
approximately 1000 and 500 km. One possible explanation is these arise when a saildrone
changes trajectory. However, this would require further research to confirm and is only
speculative.

Overall, for wavelengths < 100 km, the spectral densities of the L4s are lower than
those derived from the SBE37 SSTs, reflective of the higher spatial sampling of the in-situ
instruments deployed on the saildrone. It is important to note that spectra < 100 km were
found to be statistically different from zero, based on the derivation of error bars. Note that
for this mesoscale regime, only OSTIA matches saildrone, with the others showing a slight
drop in power density.
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and (d) SD1037. The density spectrum of the SBE37 on the OSTIA grid is also included with the L4
autospectra (panels (b,d)) for comparison purposes.

For scales > 200 km, the saildrone spectra flattened slightly, indicating white noise.
The saildrone deployment takes place over several months and, thus, over the larger spatial
scales the assumption of a synoptic scale is not valid. The L4 power density spectra in
general show increasing power for scales > 200 km, indicating that the satellite products
are resolving the large-scale fluctuations better than saildrone. However, this must be
interpreted with caution as the spectra were derived assuming a synoptic-scale over the
entire saildrone deployment. Overall, results are encouraging indicating that the GHRSST
L4 SST products are replicating the power spectral density associated with the saildrone
SBE37 SSTs.

3.4. Spectral Slopes

The power spectral density slopes (or scaling exponent of the power-law suggested
by the log-log linearity of the Fourier power spectra) were determined for each of the
individual autospectrum shown in Figure 7. The slope was determined by a simple linear
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regression fit to the log(power spectral density) versus the log(wavelengths). Slopes for the
SBE37 SST autospectra from both the SD1036 and the SD1037, sampled on the different L4
grids, are shown on the left column of Table 4. Slopes for the GHRSST L4 autospectra are
shown on the right.

Table 4. Spectral slopes for the GHRSST L4 data and the corresponding sensor on saildrone 1036 and
1037.

SD1036 Slope SBE37 Slope L4

MUR (1 km) −1.83 −2.27
DMI (5 km) −1.85 −2.00

OSTIA (6 km) −1.79 −1.78
MWIR (9 km) −1.88 −2.22
CMC (10 km) −1.81 −2.14
K10 (10 km) −1.78 −2.06

DOISST (25 km) −1.90 −2.28
GMPE (25 km) −1.86 −2.19

SD1037 Slope SBE37 Slope L4
MUR (1 km) −1.75 −2.34
DMI (5 km) −1.81 −2.35

OSTIA (6 km) −1.77 −1.82
MWIR (9 km) −1.81 −2.26
CMC (10 km) −1.87 −2.17
K10 (10 km) −1.86 −2.19

DOISST (25 km) −1.93 −2.39
GMPE (25 km) −1.94 −2.29

Spectral slopes are tabulated and sorted by the size of the L4 grid. It can be seen
from Table 4 that the saildrone slope becomes increasingly negative (i.e., the drop in power
becomes slightly steeper) with increasing spatial resolution of the L4 product in which
it is subsampled. In fact, the increase in negative slope appears to be roughly 0.01 ◦C
2 km−1 per kilometer increase in satellite grid length used to subsample the saildrone-
derived SSTs. This appears to be the case for both saildrone deployments, but with SD1037
showing more transparently the dependence just described. Taking DMI as the reference,
L4 slope = −1.76 + 0.01 × (5 km − grid size [in km]).

Overall, the log-log negative slopes associated with the co-located saildrone data are
less negative (shallower) than those associated with the GHRSST L4 SST products, with an
average slope of −1.84 (Table 4, left column). This is in very good agreement with the SST
scaling exponent of −1.80 reported by [25] using a 2-D power spectrum and a direct scaling
moment function on MODIS Aqua SST images to characterize fluctuations of velocity and
SST [25]. The log-log slopes of the different L4 wavelength spectra (Table 4, right column),
on the other hand, vary approximately between −2.12 for SD1036 and −2.23 for SD1037.
These values are also in good agreement with previous slopes of Fourier power spectrum of
satellite-derived SSTs reported in the literature. [25,26] reported a slope of −2.44. Note that
the DOISST had a slope of−2.39 for the SD1037). This difference between the saildrone and
L4 spectra is seen across all the grids in which the saildrone spectrum is subsampled, with
the exception of OSTIA. The OSTIA spectral slope is the only one that coincides with that
of the saildrone when subsampled on its grid (see Table 4. OSTIA slope ~1.8 vs. saildrone
on OSTIA grid ~1.78). This result suggests that only the OSTIA SST product is reproducing
the small-scale spatial variability observed from in situ instruments more accurately than
the other satellite products.

The saildrone exponent of −1.8 is slightly steeper but closer to the −5/3 spectral slope
of the Kolmogorov power law for temperature fluctuations in the inertial range, displaying
characteristics of passive scalar (temperature is advected with the flow) fully developed
turbulence. The SST spectral slopes of −2 are consistent with the presence of submesoscale
processes at the ocean surface in the Arctic Ocean and other oceanic regions [27–29].
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4. The Arctic River Discharge in the Yukon–Kuskokwim (Y–K) Delta: A Case Study

Previous work [13] compared SSS from NASA’s Soil Moisture Active Passive (SMAP)
satellite and saildrone-derived SSS and concluded that both the saildrone and the SMAP
were observing freshening, associated with the Y–K delta (Figure 8c). Figure 8b shows that
similarly, saildrone-derived SSTs show an increase in temperature near the delta. We focus
now on further evaluating whether the observed warming in the Y–K delta is consistent
with the freshening due to the rivers’ discharge.
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We focus on three data sets: DOISST, OSTIA, and the MWIR SSTs. OSTIA appears
to have more spectral power than the other data sets for scales < 100 km and is able to
better resolve the fine-scale fluctuations according to the spectra plots in Figure 7b,d. This
is further supported by visual inspection of Figure 4b, where the warm SST coastal features
in the OSTIA image are directly located at the mouths of both the Yukon and Kuskokwim
rivers. The warm water from the Kuskokwim River is also evident in DOISST (Figure 4f),
but the signature from the Yukon River is less defined. Further, the spectral slope of OSTIA
(1.78 and 1.82 for SD1036 and SD1037 in Table 4) is closer to the theoretical slope of −2,
where submesoscale processes are suspected to be present at the surface. Being able to
resolve the submesoscales is of critical importance for the study of estuarine processes
e.g., [27].

Although the statistics for the MWIR were a bit mixed, the time series of SST around
the Y–K delta shows very good agreement with the saildrone. Figure 3a,b shows that, at
the peak of the Y–K delta warming, during day 151, only the MWIR and the CMC captured
the right amplitude and location of the warming observed by the saildrones. This resulted
in ~zero biases for these two products during the period of 150–153, as seen in Figure 3b.
Further, the MWIR thermal spatial variability (Figure 4d) is similar to OSTIA’s (Figure 4b).

The DOISST composite over the Y–K delta region (60◦ N to 65◦ N and 167◦ W to
170◦ W) and entire saildrone campaign (150 days) is shown in Figure 8d. Comparing
Figure 8c,d, one can see that there is a freshening (local minima) in SSS coinciding with
the warmer (local maxima) SSTs, associated with river discharge from the Yukon and the
Kuskokwim rivers.
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Next, an SMAP-derived SSS climatology is compared to the Y–K delta, against SST
climatology’s, for the same time period from DOISST and OSTIA (Figure 9).
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Seasonal freshening in the ocean west of the Y–K delta is generally associated with
warmer temperature, as opposed to normal coastal upwelling conditions, where cooler
temperatures are associated with saltier waters. Additionally, if one examines the cross-
correlation between the two time series (not shown), the maxima correlation occurs at
0-lag, indicative of both the freshening and warming occurring simultaneously. These facts
provide additional support to the hypothesis that the thermal signal, seen by the satellite
and the saildrones SSTs off the Y–K delta, is, indeed, associated with river discharge.

5. Summary and Discussion

The purpose of the research is not to determine the best GHRSST SST analysis for Arctic
applications, but to show results in such a way that can lead to further improvements in
satellite-derived SST products at high latitudes, where they play a critical role in monitoring
changes in this part of the world’s oceans.

The results of this L4 inter-comparison, with respect to saildrones, are encourag-
ing because they show substantial improvements in the high-latitude SST analyses, at
least in open waters, compared to their performance six years ago (see Figures 5 and 6
from [10]). There are still substantial differences among products in coastal areas and dy-
namic regions-like river outlets, as the SST maps of the Y–K delta, shown in Figure 4a–h,
suggest. Limitations of the study include that the wavenumber Fourier spectra assume a
synoptic scale over the duration of the saildrone deployments. This is obviously not the
case. Additionally, the comparison is restricted to one year, so conclusions about data sets
could be specific to 2019. Thus, caution should be taken in generalizing results to other
years.

The extreme warming differences observed in coastal regions brings into question
the meaning of a foundation SST for shallow coastal regions, in particular for the Arctic
Seas, where there is an extended period of warming during the Arctic summer. If warming
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penetrates all the way to the bottom of the ocean, what is the meaning of the foundation
SST under those conditions?

Of all the L4 foundation SSTs considered here, it is hard to say, judging by the wide
range of warm SST amplitudes in shallow coastal waters, which one is giving a more
realistic foundation estimate. Relative to the median ensemble GMPE, then there are L4
products that are underestimating coastal warming (i.e., MUR, DMI, and K10) and others
that are substantially overestimating this warming (i.e., DOISST, MWIR, OSTIA, and CMC).
Of the three products that are underestimating coastal warming, two, MUR and DMI,
estimate foundation SSTs based solely on nighttime observations. This reduces the data
availability of the single sensor SSTs that are being ingested into the analysis systems; thus,
alternative foundation estimate techniques should be considered; however, at a minimum,
daytime data must be included for high latitude SST retrievals. Of the products that are
producing warmer foundation SSTs in coastal regions, the MWIR appears to be the most
consistent with GMPE. As it happens, this is the only L4 product that uses a diurnal
warming model in its estimate of the foundation. Clearly, SST analyses would benefit from
exploring the inclusion of a diurnal warming model, at least for coastal regions.

The global statistics are shown in Tables 2 and 3, as well as the Taylor diagrams
(Figure 6), which pointed to the DOISST product as the candidate with a leading edge in
these comparisons. This is a product that relies entirely on IR and in situ data and, as a
result, should be at a disadvantage in the Arctic, due to increased cloudiness in the region.
The main difference between the DOISST and other L4s considered here is its stronger
reliance on in situ data from buoys and Argo floats. Thus, it appears that products that rely
more heavily on in situ observations do better in the Arctic oceans.

The accuracy of SST analyses depends on using as much high-resolution data as
possible. The high-resolution data are provided by the IR sensors, but IR SST retrievals
are limited to clear skies and good weather conditions. When the IR coverage is poor, the
analyses are prone to generate high-frequency noise [10,30–32]. The high-resolution data
are particularly important near the ice edge and coastal regions, since the coarser MW SSTs
are not retrieved within 75 km of ice or land. These same regions happen to be areas of
enhanced natural variability [27]. The disparity in MW vs. IR resolution makes the analyses
extremely susceptible to the availability of fine-resolution IR data, which is not always
attainable, due to increased cloudiness in the Arctic region. Improvements in coastal areas,
however, can be achieved by using adaptive correlation scales, with shorter length scales in
highly variable regions [33], as seems to be shown here with OSTIA.

It is clear that there is substantial spatial SST variability at high latitudes. This implies
that not only the availability but also the abundance of high-resolution data is particularly
important for high-resolution SST analyses. A key finding from Figure 5 is the suggested
dependence between spatial variability and sample density variability or, equivalently,
between product accuracy and L4 grid resolution. This dependence was observed for
the SDE and the RMSE, with the former appearing linear and the latter nonlinear. The
gap between robust statistics and standard statistics (Tables 2 and 3) also narrowed for
scales ≥10 km. This would also be consistent with the Rossby number in the Arctic,
which is < ~10 km. The dependence plot suggests that, for spatial resolutions < ~9–10 km,
the noise in the analyses tends to dominate over the physical signal (due to small-scale
variability and limited high-resolution data availability). This finding implies that to fully
resolve the spatial variability associated with the Arctic, increased availability of high-
resolution observations with reduced noise is required in the Arctic. In the absence of these
data, coarser-resolution SST products may actually provide a more accurate representation
at their corresponding scale. This highlights the challenges of producing SST analyses of
ultra-high spatial resolution in the Arctic regions with current satellite technology. The L4
analyses that performed best, statistically, with respect to the saildrone, were all on the side
of the dependence relationship where the natural smoothing that results from binning the
SSTs over coarser resolution grids dumped the noise from spatial variability within the
grid cells (e.g., grid resolutions greater or equal than ~6 km).



Remote Sens. 2022, 14, 692 22 of 24

There is a paradox in Figure 5, in that SST analyses tended to reproduce more small-
scale spurious features (noise) the finer the spatial resolution of the product. Similarly, the
coarser the spatial resolution of the SST product, the more accurate the product appears to
be relative to the saildrone data aggregated over the pixel, presumably because of the more
effective smoothing of the inherent natural variability at the larger grid cells. It is important
to bear in mind that these are analyzed products that blend multi-resolution products;
as such, we can only speculate as to the sources of the observed variability. For a better
understanding of the dependence between satellite footprint and SST spatial variability at
the subpixel level, see [33].

Of course, there is a difference between spatial resolution and the feature resolution
of the satellite product. The L4 product that was most successful, in terms of resolving
the fine-scale features associated with the dynamics of the coastal region appears to be
OSTIA. This was evidenced in the spectral plots and can be confirmed by looking at the
satellite images for DOY 151. This product is the only one that showed evidence of warm
patches associated with the river discharge in the Y–K delta and right locations. Other
products show warming at one of the river’s mouths, but not the other, or show the entire
coast as warm or not warm at all. In the past, this product was known for its smoothness
(despite its ~6-km spatial resolution, the product had a feature resolution of 10 km [17]).
Starting in 2016, however, the OSTIA system started ingesting the ultra-high resolution
VIIRS and made adjustments that improved its feature resolution. This change resulted in
an improvement of OSTIA to represent small-scale features, without introducing noise [34],
and our analyses certainly gives external validity to this claim for the Arctic coastal regions.

Caution should be exercised when choosing a satellite product to use in a particular
application, based on the interpretation of the statistics alone. The outcomes of this study
were somewhat different, whether standard or robust statistics were analyzed or the data
was standardized by the natural variability of the saildrone. Even spectral analysis gave a
different outcome for the L4 analysis that better reproduced the fine-scale variability being
resolved by the saildrone. Even though all these products are performing quite well in
the open oceans (high correlations and SNR), substantial differences still persist in highly
dynamic areas, such in coastal regions. Using global statistics alone, one can get the correct
answer for the wrong reasons, or vice versa, if not looking at these comparisons in a more
comprehensive way. In the end, nothing beats visual inspection to decide what works
best for one’s particular application. Our results also show that regional comparisons are
necessary for establishing which product is most suitable for a specific application. Future
work needs to extend comparisons to other years, as well as more rigorous analysis of how
both the optimal interpolation technique used, as well as input data sets into the L4 analysis,
lead to differences in the overall quality in the Arctic. Another area of work would be to
determine how possible issues of cloud masking are affecting the quality of SST retrievals
in the Arctic. This would be especially critical to resolving the impact of changes in river
discharge in coastal regions, such as the Y–K delta, where the higher resolution IR data is
critical for the feature resolution needed.
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