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Abstract: A changing climate has been posing significant impacts on vegetation growth, especially in
the Yellow River Basin (YRB) where agriculture and ecosystems are extremely vulnerable. In this
study, the data for normalized difference vegetation index (NDVI) obtained from moderate-resolution
imaging spectroradiometer (MODIS) sensors and climate data (precipitation and temperature) de-
rived from the national meteorological stations were employed to examine the spatiotemporal
differences in vegetation growth and its reaction to climate changes in the YRB from 2000–2019, using
several sophisticated statistical methods. The results showed that both NDVI and climatic variables
exhibited overall increasing trends during this period, and positive correlations at different significant
levels were found between temperature/precipitation and NDVI. Furthermore, NDVI in spring had
the strongest response to temperature/precipitation, and the correlation coefficient of NDVI with
temperature and precipitation was 0.485 and 0.726, respectively. However, an opposite situation
was detected in autumn (September to November) since NDVIs exhibited the weakest responses to
temperatures/precipitation, and the NDVI’s correlation with both temperature and precipitation was
0.13. This indicated that, compared to other seasons, increasing the temperature and precipitation has
the most significant effect on NDVI in spring (March to May). Except for a few places in the northern,
southern, and southwestern regions of the YRB, NDVI was positively correlated with precipitation
in most areas. There was an inverse relationship between NDVI and temperature in most parts of
the central YRB, especially in summer (June to August) and growing season (May to September);
however, there was a positive correlation in most areas of the YRB in spring. Finally, continuous
attention must be given to the influence of other factors in the YRB.

Keywords: normalized difference vegetation index; climate change; correlation; Yellow River Basin

1. Introduction

Vegetation growth has been deemed important for water balance, carbon cycling, and
energy flow [1,2]. The normalized difference vegetation index (NDVI), strongly correlated
with vegetation dynamics [3,4], has been frequently used as an indicator of variation in
vegetation structure [5–9]. However, vegetation changes are constantly affected by climatic
variables [10]. Furthermore, climate change predominantly affects vegetation by variations
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in precipitation and temperature, which can further influence the processes of photosyn-
thesis, respiration, and the decomposition of soil organic carbon [11–13]. The two most
significant climatic parameters that affect vegetation are precipitation and temperature [14].
Global surface average temperature has increased by about 1.0 ◦C compared with the
baseline of 1850–1900, and it is expected to reach or exceed 1.5 ◦C in about twenty years, ac-
cording to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC AR6) [15]. Research has revealed that the decrease in NDVI in summer during the
1997–2006 period in northern Eurasia was closely related to the significant decrease in
precipitation [16]. Furthermore, the evident warming in spring after 2002 in Central Eurasia
improved vegetation growth in this season, whereas vegetation growth during the growing
season and summer mainly pertained to increased precipitation [17].

As one of the most important grain-producing regions in China, the Yellow River
Basin (YRB) has been affected by the warming climate [18,19]. Therefore, investigating the
changes in vegetation driven by climate factors is critical for determining the relationship
between changes in vegetation cover and climate change in YRB, promoting regional
ecological protection, and maintaining highly efficient development.

Previous studies have indicated that the use of long-term remotely sensed data is an
efficient approach to study vegetation variations and atmospheric processes at different
spatiotemporal scales [20]. For a number of years, remote sensing-derived NDVI, which is
calculated by the red and near-infrared reflectance ratios, has been considered an indicator
of vegetation cover [21]. Among all NDVI products, the moderate-resolution imaging
spectroradiometer (MODIS) NDVI is the most widely used, owing to its high spatial and
temporal resolution at the same time [22]. The MODIS NDVI product provides consistent
data on global vegetation, which can be utilized to understand vegetation dynamics. Owing
to its simplicity and ease of use, the MODIS NDVI is widely used in studies on hydrology,
ecology, and biogeochemistry.

In this study, remotely sensed NDVI (MOD13A2) and climate data were utilized to
examine the changes in NDVI and elucidate the relationships between these changes and
temperature/precipitation in the YRB during 2000–2019. A four-season approach was
used to understand seasonal variations in NDVI and climate factors: growing season (May
through September), spring (March through May), summer (June through August), and
autumn (September through October). This study examined spatiotemporal changes in
vegetation cover in the YRB and investigated how temperature and precipitation affect it.
We also assessed the relationships between precipitation, temperature, and NDVI. We will
receive a better understanding of the effects of climate change on vegetation variations in
the YRB as a result of this study, which will contribute to ecological research on the YRB
under changing climate conditions.

2. Materials and Methods
2.1. Study Area

In terms of length, the Yellow River ranks second in China (5464 km), located between
32◦10′–41◦50′ N and 95◦53′–119◦05′ E and exhibits an area of 752,443 km2 (Figure 1). In an
east–west direction, the YRB encompasses the Qinghai-Tibet Plateau, the Inner Mongolia
Plateau, and the Huang-Huai Plain. The climate in the YRB is influenced by its complex
topography and physiographic features, including wet and dry seasons [23]. Most areas
in the YRB are semi-arid or arid and have chronically insufficient water resources, with
mean annual precipitation of 470 mm [24]. The average annual temperature ranges from
14–24 ◦C [25]. YRB produces more than 14% of China’s grain harvest, using only 2% of the
nation’s water resources [26]. Therefore, investigating the changes in the vegetation growth
in the YRB and determining the influential factors are critical for understanding the role of
climate change in this region.
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Figure 1. Location of study area. (a) Altitude, meteorological stations, and main rivers in the Yellow
River Basin (YRB). (b) Major land-use types in the YRB. (c) Multi-year mean daily temperatures in
the YRB. (d) Multi-year mean annual precipitation in the YRB.

2.2. Data
2.2.1. Observations at Climate Stations

The National Meteorological Information Center of the China Meteorological Adminis-
tration provided the daily precipitation and mean air temperatures for 93 weather stations.
The dataset of climatic factors with a 1000 m grid resolution was produced based on meteo-
rological station observations by using the ANUSPLINE interpolation algorithm [27]. The
ANUSPLINE interpolation algorithm is a thin plate-smoothing spline algorithm, whereas
the core algorithm is a partial plate smoothing spline algorithm.

As input, we used daily climatic data, a digital elevation model (DEM), which
was derived from Shuttle Radar Topography Mission (SRTM, http://srtm.csi.cgiar.org,
accessed on 28 January 2021), and the geographic coordinates of meteorological stations.
All the station observations used have undergone strict quality control, including the
extrema detection, internal consistency check, and spatial consistency check, before the
interpolation operation. Stations with more than 10% missing records were considered in-
valid and excluded from the analysis. Inverse distance weighted interpolation was used to
estimate missing data from valid stations to compensate for imbalanced distribution of cli-
mate stations [28]. Finally, the annual total precipitation and annual averaged temperature
for different seasons were calculated for the 2000–2019 period.

2.2.2. NDVI Data

The MODIS NDVI dataset (MOD13A2) for the 2000–2019 period was compiled from
NASA’s Earth Observing System (EOS), with a spatial resolution of 1000 m and a temporal
resolution of 16 days. The MOD13A2 dataset contained two main vegetation layers.
NDVI, denoted as the continuity index for the existing National Oceanic and Atmospheric
Administration-Advanced Very High Resolution Radiometer (NOAA-AVHRR)-derived

http://srtm.csi.cgiar.org
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NDVI, was the first layer with effective values ranging from −2000 to 10,000 and the scale
conversion coefficient of 0.0001. The dataset contained 23 NDVI observations per year, and
the YRB spans five tiles in the MODIS images. The preprocessing of NDVI used in present
study was complemented by MODIS Reprojection Tool (widely known as MRT).

The maximum value compositing approach, carried out in this study by using ENVI/IDL
environment, was used for the NDVI study, which picks (at pixel scale) the highest ob-
served value from a predetermined compositing period to represent the period of interest
(i.e., growing season, spring, summer, or autumn). This was predicated on the presump-
tion that low-value observations were either incorrect or had less abundant vegetation
throughout the study period.

2.3. Methods
2.3.1. NDVI and Climatic Factors Trend Analysis

Climate factor and NDVI trends were examined from 2000 to 2019 using the least-
squares approach to fit the slope at the pixel and basin scales [9], which can be obtained by
Equations (1) and (2):

y = a + bx + ε (1)

b =

n
n
∑

i=1
i×Vi −

n
∑

i=1
i

n
∑

i=1
Vi

n
n
∑

i=1
i2 − (

n
∑

i=1
i)

2 (2)

where y represents the NDVI (or climatic factor, e.g., precipitation and temperature) time
series; x represents time changes during 2000–2019; a indicates the liner regressing intercept;
b is the linear regressing line slope; ε denotes the error; n is the monitoring years (1–20);
and Vi is the seasonal value of NDVI (or precipitation and temperature) of monitoring
year i. When b > 0, the seasonal NDVI (precipitation or temperature) increased during the
study period.

The significance level for NDVI and climatic variation was determined by the t-test.
The formula is listed as Equation (3):

Sig =

n
n
∑

i=1
i×Vi −

n
∑

i=1
i

n
∑

i=1
Vi

n
n
∑

i=1
i2 − (

n
∑

i=1
i)

2 (3)

where n is the analysis period, ranging from 1 to 20 in this study; Vi is the seasonal value of
year i (NDVI, precipitation, and temperature); and Sig is the regression slope. When Sig > 0,
the seasonal NDVI, precipitation and temperature increased; otherwise, the seasonal NDVI,
precipitation, and temperature decreased during the study period.

2.3.2. Mann–Kendall

There has been considerable use of the non-parametric Mann–Kendall (M–K) test for
analyzing the factors that affect the trend and variation characteristics of meteorological
time series [29,30]. Based on a given dataset, (x1, x2, · · · , xn), a new data series (Sk) can
be calculated using Equations (4) and (5):

Sk =
k

∑
i=1

ri (k = 2, 3, · · · , n) (4)

ri =

{
1, i f (xi > xj)
0, i f (xi ≤ xj)

(5)
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where xi and xj are quantities at times i and j, respectively, and n is the dataset length.
If the time series are independent and random, the statistic UFk can be obtained by
Equations (6) and (7):

UFk =
Sk − E(Sk)√

Var(Sk)
(k = 2, 3, · · · , n) (6)

E(Sk) =
k(k + 1)

4
and Var(Sk) =

k(k− 1)(2k + 5)
72

(7)

where UF1 = 0 and UFk has an approximately normal distribution. The calculated UFk
values were compared with the standard normal distribution table with confidence levels
α = 10%, 5%, and 1%. If |UFk| > UFα/2, the trend was statistically significant. Otherwise,
the trend was not statistically significant.

By reversing the order, the data series xi and the UBk were also calculated, which can
be expressed as Equation (8):

UBn−i+1 = −UFi (i = 1, 2, · · · , n) (8)

A positive UFk value showed that the dataset increased, whereas a negative UFk value
indicated a decreasing trend. The intersection of UBk and UFk curves was the turning
point that occurred at a certain confidence level. In this study, the M–K test results were
computed and obtained by using Matlab language.

2.3.3. NDVI and Climate Variables Relationship

To analyze the correlations between precipitation/temperature and changes in NDVI,
Pearson’s correlation coefficients need to be calculated by Equation (9):

Rxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2(yi − y)2

(9)

where x and y denote NDVI and climatic factor (precipitation and temperature) time
series; Rxy is the correlation coefficient between x and y; and x and y are mean x and
y values, respectively.

Using a t-test, we evaluated the level of significance of the correlation coefficient t
between NDVI and precipitation/temperature. It can be calculated by Equation (10):

Rxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2(yi − y)2

(10)

where R12,34....m is the partial correlation coefficient; n is the sample size; and m is the
number of independent variables. The critical value of the significance level was obtained
from the t-table. If t ≥ ta, the results indicated a significant correlation; if t < ta, the
correlation was not significant. Many studies have used the t-test to identify the NDVI
and climatic parameters’ relationship [31,32]. To analyze the temporal changes in NDVI in
response to climatic variations, partial correlations were also carried out.

In order to quantify the effect of each climate variable on NDVI, we conducted a
multivariate linear regression analysis (MLR). We also determined the adjusted multiple
coefficients of determination (adj-R2) associated with the total effects of the climate factors
on NDVI. Each pixel’s adj-R2 value and its significance were calculated. Adj-R2 is a measure
of the total amount of variation in the response variable (NDVI) that can be explained by
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the predictor variables (precipitation and temperature) [33]. The larger the adj-R2, the larger
the percentage that governs the change in NDVI due to climate change [18]. Vegetation
changes are influenced not only by climate factors but also by human activity. The residual
value, which may be determined as the difference between the observed and anticipated
NDVI values, can initially explain the impacts of human activities on vegetation change [34].
When the residual trend is negligible, the NDVI fluctuations can be explained only by
climatic variables; otherwise, human activities can contribute to variations in the index.

In this study, both trend analysis and relationship results were carried out by using
ENVI/IDL environment.

3. Results
3.1. Interpolation Quality Assessment

To determine the accuracy of the interpolated meteorological data, the sum of daily
precipitation in a month (hereinafter referred to as monthly precipitation) and the average
of daily mean temperature in a month (hereinafter referred to as monthly temperature) from
verified climate stations (Figure 1) were compared to the interpolated values (Figure 2).
There was a linear correlation between the interpolation results and the observed data from
meteorological stations. The determination coefficient (R2) of the linear regression was 0.898
for the monthly precipitation data, with the significance level of 0.01 (p < 0.01) (Figure 2a).
The observed and interpolated precipitation frequencies were consistent (Figure 2b). The
temperature interpolation matched the observed value very well, with an R2 of 0.982
(p < 0.01), implying that the interpolated values can explain the spatiotemporal variability
of 98% of the observed temperatures at the stations (Figure 2c,d).

Figure 2. Comparisons of (a) interpolated and observed precipitations and (c) interpolated and observed
temperatures. Comparison of the frequency of (b) interpolated and observed precipitations and (d) inter-
polated and observed temperatures. Note: monthly precipitation means the sum of daily precipitation
in a month; monthly temperature means the average of daily mean temperature in a month.
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3.2. Spatial–Temporal Climate and Vegetation Variations
3.2.1. Climate and Vegetation Variations at the Basin Scale

At the YRB scale, the YRB tended to become warmer, wetter, and greener in different
seasons during 2000–2019 (Figure 3). As shown in Figure 3a–d, temperature exhibited an
increasing tendency at rates of 0.046 ◦C/yr in spring, 0.020 ◦C/yr in summer, 0.022 ◦C/yr
in autumn, and 0.015 ◦C/yr in the growing season, but was not statistically significant
at the level of 0.1 (p > 0.1) except in spring. In terms of precipitation (Figure 3e–h), there
was a significantly increasing precipitation rate of 1.519 mm/yr (p < 0.05) in spring, while
no significant increasing trend at rates of 1.884 mm/yr (p > 0.1) in summer, 0.253 mm/yr
(p > 0.1) in autumn, and 2.210 mm/yr (p > 0.1) in the growing season. Consequently, due to
the joint effect of temperature and precipitation, NDVI presented a sharp increasing trend
at rates of 0.0052 per year (p < 0.01), 0.0051 per year (p < 0.01), and 0.005 per year (p < 0.01)
in spring, summer, autumn, and the growing season, respectively.

Figure 3. Interannual changes of temperatures, precipitation, and normalized difference vegetation
index (NDVI) in the Yellow River Basin during the spring (a,e,i), summer (b,f,j), autumn (c,g,k), and
the growing seasons (d,h,l) of 2000–2019.

We examined changes in climate variables and NDVI at the basin scale from 2000
to 2019 by using the M–K method (Figure 4). The temporal variations of climatic fac-
tors and NDVI varied across different seasons. During spring, precipitation decreased
slightly before 2011 and then increased significantly after 2011. Temperatures increased
significantly before 2008, decreased from 2009–2012, and increased significantly again
after 2012. The NDVI increased slightly before 2011, but the increase was more signifi-
cant after 2011. During summer, both precipitation and temperature increased slightly
from 2000–2019. The NDVI increased more significantly after 2006 than before 2006.
Precipitation and temperature in autumn increased slightly and insignificantly; however,
the NDVI in autumn increased significantly, particularly after 2008. In the growing
season, precipitation exhibited a wave-like pattern from 2000–2019, the temperatures
increased significantly after 2016, and the NDVI had a lower rate of increase after 2007
than before 2007. During the growing season, variations in temperature, precipitation,
and NDVI were more noticeable.
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Figure 4. Mann–Kendall test results of inter-annual precipitation, temperatures, and NDVI in the
Yellow River Basin during spring (first column), summer (second column), autumn (third column),
and the growing seasons (fourth column) from 2000–2019. The first (a–d), second (e–h), and third (i–l)
rows denote precipitation, temperature, and NDVI, respectively. Both UF and UB are statistics of
a certain variable, in which positive UF values denote an increase trend for a time series, whereas
negative UF values indicate a decreasing trend. In terms of UB, it is the inverse order of UF.

3.2.2. Climatic Variables and NDVI Spatial Patterns

The spatial variations of the precipitation, temperature, and NDVI were heterogeneous
in the YRB from 2000–2019 (Figure 5). In spring, almost all of the pixels exhibited an
increasing precipitation trend. In general, precipitation increased in the southern part of the
plateau (Loess Plateau, at a 5.6 mm/yr rate) but decreased in the northern part of the Hetao
Plain at a 1.0 mm/yr rate. The temperature in most of the YRB increased from 2000–2019 at
a maximum rate of 0.1 ◦C/yr; however, it decreased in the southern region at a maximum
rate of −0.04 ◦C/yr. The NDVI increased throughout the entire YRB, particularly in the
eastern and southwestern parts, with a maximum rate of 0.05 per year. In a few areas
of the northern and southern parts of the YRB, NDVI decreased at a maximum rate of
−0.02 per year.

In summer, precipitation changed and exhibited the maximum increase in the north-
eastern part of the YRB (9 mm/yr). In the southeastern parts, precipitation decreased at a
maximum rate of −10 and −3 mm/yr in the northwestern parts. Temperatures only de-
creased in the central and northeastern parts of the YRB at a maximum rate of −0.04 ◦C/yr.
The NDVI increased significantly in the eastern part of the Ningxia Plain and the west-
ern part of the Loess Plateau at a maximum rate of 0.04 per year; however, it increased
slightly in other parts of the basin, with a maximum decreasing rate of −0.03 per year
from 2000–2019.

In the central part of the YRB in autumn, precipitation increased by 2 mm/yr (e.g., most
of the Loess Plateau), followed by 4 mm/yr in the northern (e.g., Hetao Plain) and southern
parts of the YRB (e.g., Songpan Plateau). Temperatures increased throughout the basin,
except in the northern part (e.g., Hetao Plain), and the largest increases occurred in the
western, eastern, and central parts (0.06 ◦C/yr). The NDVI increased throughout the basin,
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particularly in the eastern part of the Ningxia Plain and the western Loess Plateau, at a rate
of 0.02 per year.

Figure 5. Spatial distributions of the normalized difference vegetation index (NDVI) (per year),
temperature (◦C/yr), and precipitation (mm/yr) trends in the Yellow River Basin during (a–c) spring,
(d–f) summer, (g–i) autumn, and (j–l) the growing seasons of 2000–2019.

During the growing season, the spatial variations of precipitation were similar to
those during summer. Precipitation increased in most areas of the YRB (maximum increase
of 9 mm/yr), except in the southeastern and northwestern parts (maximum decrease of
10 mm/yr). Temperature increased in the southwestern and southeastern parts of the basin
at a rate of 0.1 ◦C/yr, whereas it decreased in the central and northeastern parts at a maxi-
mum rate of −0.04 ◦C/yr. The NDVI generally increased except in some areas of the south-
ern and southeastern parts, where it exhibited a maximum decreasing rate of−0.05 per year.
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The NDVI increased significantly in the eastern part of the Ningxia Plain and the western
part of the Loess Plateau at a maximum rate of 0.05 per year from 2000–2019.

In summary, precipitation increased overall in the YRB during the different seasons
from 2000–2019, except in some regions such as the Loess Plateau. Among all the seasons,
autumn had the most heterogeneous precipitation distribution. Temperatures increased
throughout the YRB, except for a few areas in the northern part. The NDVI increased
during all seasons, with the eastern Ningxia Plain and the western Loess Plateau exhibiting
the largest increases.

3.3. NDVI and Climatic Variations Correlations
3.3.1. Temporal Changes in Correlations between NDVI and a Single Climate Factor

Vegetation changes are affected by climatic variables, especially precipitation and
temperature. The respective correlation coefficients between NDVI and precipitation
(RNDVI-P) and temperature (RNDVI-T) were calculated for different seasons in order to
investigate the relationships between vegetation and climatic factors from 2000–2019 in
the YRB (Table 1). Between the four seasons studied in this study, there were positive
correlations between NDVI and temperature, with precipitation and NDVI showing higher
positive correlations. The growing season’s NDVI showed a significant positive correlation
with precipitation (RNDVI-P = 0.559) and temperature (RNDVI-T = 0.24). The spring NDVI
had the most significant positive correlations with precipitation (RNDVI-P = 0.726) and
temperature (RNDVI-T = 0.485). Precipitation/temperature and summer NDVI showed
similar correlations to those during the growing season. Meanwhile, the autumn NDVI had
the least correlation with precipitation (RNDVI-P = 0.13) and temperature (RNDVI-T = 0.13).
Precipitation and temperature were both significant factors affecting vegetation changes on
the YRB during the different seasons from 2000–2019; however, precipitation was the most
influential climatic factor. The spring NDVI had the strongest correlation with climatic
factors, whereas climatic changes in autumn had the least influence on vegetation variations,
which shows that sufficient precipitation had a significant positive influence on vegetation
growth in the YRB.

Table 1. Respective correlation coefficients between NDVI and precipitation (RNDVI-P), temperature
(RNDVI-T) for different seasons in the Yellow River Basin during 2000–2019.

Season Growing Season Spring Summer Autumn

RNDVI-P 0.559 ** 0.726 *** 0.544 ** 0.13 *

RNDVI-T 0.24 * 0.485 ** 0.273 ** 0.13 *
Note: *, **, and *** represent p < 0.1, p < 0.05, and p < 0.01, respectively.

For a better view of the overall response of vegetation to climate changes in the YRB,
the partial correlation coefficients of different conditions were calculated (e.g., NDVI and
temperature with a fixed precipitation (PNDVI-P), NDVI, and precipitation with a fixed
temperature (PNDVI-T)) (Table 2). The growing season’s NDVI showed a positive partial
correlation with precipitation under the 0.05 significance level (PNDVI-P = 0.563) and was
less positively correlated with temperature under the 0.1 significance level (PNDVI-T = 0.251).
Among the seasons, the NDVI in spring showed the most positive partial correlations with
precipitation (PNDVI-P = 0.722) and temperature (PNDVI-T = 0.476) at significance levels of
0.01 and 0.05, respectively. The summer NDVI exhibited similar partial correlations with
climatic factors as those observed in the growing season (PNDVI-P = 0.521, PNDVI-T = 0.206).
The autumn NDVI had the slightest partial correlations with precipitation and temperature
(PNDVI-P = 0.114 and PNDVI-T = 0.114, respectively). Overall, the NDVI in the YRB is
more significantly correlated with precipitation than with temperature, which implies that
precipitation was the main determinant of vegetation changes over the period 2000–2019.
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Table 2. Partial correlations between NDVI, precipitation (RNDVI-P), and temperature (RNDVI-T) for
different seasons in the Yellow River Basin during 2000–2019.

Season Growing Season Spring Summer Autumn

PNDVI-P 0.563 ** 0.722 *** 0.521 ** 0.114 *

PNDVI-T 0.251 * 0.476 ** 0.206 * 0.114 *
Note: *, **, and *** represent p < 0.1, p < 0.05, and p < 0.01, respectively.

3.3.2. Spatial Changes in NDVI and Precipitation/Temperature Correlation

The RNDVI-T and RNDVI-P values for different seasons at the pixel scale in the YRB
from 2000–2019 are shown in Figure 6. The results showed that the spring NDVI was
positively correlated with precipitation in the majority of pixels (90%), with an RNDVI-P of
0.4–0.8; it was mainly distributed in the Ningxia Plain and Loess Plateau. In the northern,
southwestern, and southeastern YRBs, which contain cropland and grassland prone to
droughts, negative correlations were observed. The temperature was positively correlated
with 70% of the total pixels during spring, with correlation coefficients ranging from 0.2 to
0.6. A negative correlation was observed in the southern YRB (part of the Loess Plateau),
with an RNDVI-T of 0.2–0.4. In most parts of the YRB, NDVI and precipitation had a positive
correlation in summer, with a significant RNDVI-P of 0.4–1; precipitation had a stronger
influence on the NDVI values in the northern, central, and western YRB than in other areas.
There was a negative correlation only in a few areas of the southern YRB (eastern Loess
Plateau). The southeastern YRB had high precipitation, whereas the northwestern YRB
was arid. Precipitation in the mountainous areas was higher than that in plain areas, and
annual precipitation decreased from southeast to northwest. In the northern YRB, where
temperature had a negative effect on NDVI, nearly half of the pixels exhibited a negative
correlation between summer NDVI and temperature. In the northern and western YRB,
the autumn NDVI is positively correlated with precipitation; however, it is negatively
correlated with precipitation in the central and southwest parts of the basin. NDVI and
temperature were negatively correlated in the northern, western, and southeastern parts
of the YRB during the autumn. The growing season NDVI and precipitation had similar
correlations; however, the NDVI was negatively correlated with precipitation in areas of
the southeastern YRB. During the growing season, most of the YRB showed a negative
correlation between temperature and NDVI.

With the exception of a few areas in northern, southern, and southwestern parts of
the YRB, NDVI was positively correlated with precipitation during most seasons analyzed.
However, NDVI was negatively correlated with temperature in most areas in the central
part of the YRB (especially in summer and the growing season) but was positively correlated
in most areas of the YRB in spring.

Unlike seasonal changes, positive correlations between the annual averaged tem-
perature and NDVI were exhibited in 65.4% of the YRB (9.4% was significantly positive,
p < 0.05). However, negative correlations were observed in 17.8% of the YRB, of which only
0.4% were significant at the 0.05 level (mainly in the northern part). NDVI and precipitation
correlated positively in 83% of the YRB, with 38.6% being significant (p < 0.05). Meanwhile,
17% of the YRB had a negative correlation mainly in the southern part, with 0.9% being
significant (p < 0.05). The bulk part of the central and eastern plateaus had highly signifi-
cant positive correlations between temperature and NDVI, with a maximum correlation
coefficient of 0.884. There were negative correlations in some parts of the YRB’s western,
southern, and northern parts, with a maximum of 0.857 (Figure 7a). A significant positive
correlation existed between annual NDVI and accumulated precipitation as compared to
annual average temperature. Positive correlations were exhibited mainly in the northwest-
ern and central parts of the YRB between annual averaged NDVI and annual accumulated
precipitation, with a maximum positive correlation coefficient of 0.932. Across the YRB,
significant negative correlations between NDVI and precipitation were only observed in
a few areas. Compared to temperature, precipitation was more significantly positively
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correlated with the annually averaged NDVI. This phenomenon was mainly due to the
unique climatic environment in the YRB, where there are high temperatures and low pre-
cipitation. The temperature increases may not have significantly positively affected the
NDVI; however, a slight increase in precipitation could lead to significant influences on
the NDVI, especially in the Loess Plateau, Ningxia Plain, and Hetao Plain, where water
resources are in short supply.

Figure 6. Pearson’s correlation coefficients spatial distributions between seasonal averaged NDVI
and climatic factors in the Yellow River Basin during 2000–2019. Correlations between NDVI and pre-
cipitation in (a) spring, (c) summer, (e) autumn, and (g) the growing seasons. NDVI and temperature
correlations are provided in (b) spring, (d) summer, (f) autumn, and (h) the growing seasons.
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Figure 7. Spatial distribution of correlations in the Yellow River Basin between (a) the annual
averaged NDVI and temperature, and (b) NDVI and annual precipitation. (c) Significant correlations
between NDVI and temperature and (d) between NDVI and precipitation.

4. Discussion
4.1. NDVI Response to Human Activities

In addition to climatic influences [9], human activity impacts vegetation cover. Thus,
the effects of human activity on vegetation growth should not be ignored. The seasonal
residual (i.e., the difference between observed and predicted NDVI values), which can
initially explain the effects of anthropogenic factors on vegetation changes, was calculated
in this study to differentiate between the anthropogenic and climate impact in the period
from 2000–2019. The residual trend was categorized into significant or insignificant. The
results of the MLR analyses for the different seasons are shown in Figure 8.

Most areas of the YRB experienced positive residual trends during the different seasons.
In spring, pixels exhibited significant positive residual trends in the Ningxia Plain, western
Loess Plateau, and western mountainous area. It appears that the MLR method fitted using
temperature and precipitation is insufficient to explain vegetation changes in these areas
and that these changes may have been influenced by human activity. Significant positive
residual trends were observed in the northern Hetao Plain, southwestern Ningxia Plain, and
mountainous areas of the Songpan Plateau during summer. Autumn residual trends did
not exhibit significant changes in the YRB. During the growing season, residual vegetation
changes exhibited significant trends in parts of the Ningxia Plain along the Yellow River
and on the western Loess Plateau. The significant residual changes indicated that the MLR
did not perform well with respect to climatic trends and that the changes may have been
attributable to human activity. Based on the residual trends, vegetation changes in the
Ningxia Plain and southwestern Loess Plateau were likely due to human activity, which
may be related to the conversion of cultivated land to forests and grassland. The same
upward tendency in NDVI has been reported by Li et al. [35] as the result of the conversion
of sloping farmland to forestland or grassland under the national Grain-for-Green program
in YRB. We believe that climate factors and human activities go hand-in-hand in improving



Remote Sens. 2022, 14, 687 14 of 19

vegetation cover in the study area. Increasing precipitation and temperature improves soil
water availability and vegetation growth season, which, along with the implementation of
proper land management, could enhance NDVI. For instance, according to Guan et al. [36],
vegetation management along with the rising tendency of precipitation have resulted in
vegetation improvement and hence NDVI growth in Qilian area of China. Most of the
impact of human activities occur in flat areas and higher elevations and steeper slopes
are less affected and hence produced smaller residuals. The same results have been
reported by Liu et al. [37] for the whole country of China. According to their report, as
the elevation and slope increased, the correlation between NDVI and precipitation index
gradually increased, whereas the impact of human activities on vegetation decreased. The
impact of farming activities in the low-lying areas along with the grassland restoration and
reforestation projects in the study area are the main influential factors on NDVI values and
the generated residuals [38].

Figure 8. Adjusted-R2 of the multivariate linear regression between NDVI and temperature and
precipitation in the Yellow River Basin during (a–c) spring, (d–f) summer, (g–i) autumn, and (j–l) the
growing seasons from 2000–2019.

To investigate more the impact of human activity, we calculated and compared the
MLR determination coefficients of the climatic and NDVI factors at basin scale as provided
in Table 3. Climatic changes in spring had the most significant positive regression corre-
lation with NDVI (0.796). In autumn, climatic changes had a slight influence on NDVI,
with a determination coefficient of 0.172. It is obvious that the coefficient of determination
decreases towards the end of the growing season. According to the study of Du et al. [38],
vegetation is mostly under the influence of precipitation during the spring and growing
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season and temperature in the fall and the beginning of the dormant season. According
to Chu et al. [9], climatic variables are less correlated with NDVI during autumn. The au-
thors claimed that burning croplands during autumn along with the reforestation projects
could influence NDVI during autumn as compared with the climatic variables in China.
Therefore, the lower correlation between NDVI and climatic parameters in autumn could
be explained by the paucity of precipitation and largely by the impact of human activities.
These impacts, including precipitation shortage and intensive human activities, are more
pronounced during the wet years. Wang et al. [39] argued that extreme weather events
such as drought could offset the impact of vegetation restoration projects in hilly southern
China, and hence it could close the gap between the predicted and observed NDVI values.
On the contrary, during the wet years, by the vegetation improvement as the result of the
land restoration projects, the difference between the predicted and observed NDVI values,
and hence the human impact, would be greater.

Table 3. Correlations between NDVI and climatic factors (precipitation and temperature, RNDVI-T-P)
during different seasons in the Yellow River Basin during 2000–2019.

Season Growing Season Spring Summer Autumn

RNDVI-T-P 0.596 ** 0.796 *** 0.571 ** 0.172 *
Note: *, **, and *** represent p < 0.1, p < 0.05, and p < 0.01, respectively.

4.2. NDVI Responses to Climatic Factors

The NDVI in YRB showed an overall increasing trend. The same trend has been
detected in the work of Wang et al. [39], Ma et al. [40], and Shi et al. [41], contrary to
Chu et al. [9], who found human impact and climate change to negatively impacting vege-
tation cover in China. We found significant spatial heterogeneity in NDVI changes similar
to Wang et al. [39], and Sun et al. [42]. The NDVI showed a decreasing tendency in a few
areas in the source area, northern parts, and lower reaches, where both precipitation and
temperature decreased. The NDVI tended to increase in most areas of the YRB where
precipitation and temperature increased. An increasing temperature has a positive effect
on enhancing vegetation dynamics, which is mainly reflected in the influence of photo-
synthesis, respiration, etc. [43]. Increases in spring temperatures had a more significant
effect on promoting NDVI than increases in other seasons [44]. Higher temperatures in
spring enhance germination of seeds, leaf development, and photosynthesis in plants
and hence improve NDVI. In contrast, high temperatures in summer could negatively
impact NDVI since excessive warming may accelerate soil water evaporation and water
deficit [45]. Consequently, vegetation will reduce its leaf area as an adaption to increased
temperature, resulting in reduced vegetation growth [46]. Temperature variation’s impact
depends greatly on the vegetation type. Since most of the area is covered with croplands
and grasslands, temperature had a greater role at the early stages of the growth season [47].
We also found an increasing trend in precipitation in the study area. Precipitation enhances
NDVI through improving soil moisture content [48]. Water is involved in physio-bio-
chemical processes such as photosynthesis end evapotranspiration. In order for plants
to absorb soil nutrients and minerals, they must be dissolved in water first. Therefore,
increased precipitation will strengthen the photosynthetic rate and promote vegetation
coverage dynamics [49].

As previously mentioned, changes in vegetation were spatially heterogeneous. Pre-
vious researchers indicated that the influence of climate factors on vegetation presented
obvious spatial variation. For example, climate change had a much greater impact on
vegetation at high latitudes than at low latitudes, due to greater temperature increases
at high latitudes [8,50]. The climate change impact on vegetation in the upper basin was
greater than that in middle and lower watersheds of the YRB. Similar results were re-
ported by Qu et al. [51]. In arid areas of the YRB, vegetation growth was mainly limited
by precipitation. A higher precipitation level may increase vegetation growth, whereas
a higher temperature level could intensify evapotranspiration [52]. Similar to the results
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of Qu et al. [53] and Qu et al. [51], a high soil moisture content, as well as an increase in
temperature, could lead to an increase in vegetation growth and dry matter accumulation
in humid and semi-humid areas of the YRB; therefore, vegetation growth was positively
correlated with temperature.

In addition to temperature and precipitation, sunlight is also a prerequisite climatic
factor for vegetation growth [54]. However, this requires further research since some
authors, such as Wang et al. [55] and Cai et al. [56], found positive correlation between
sunshine and NDVI, while Liu et al. [57] reported that sunshine does not impact NDVI
significantly. We found that sunlight is directly associated with spring and fall temperatures,
where temperature rises for a brief period in regions with high sunlight, leading to an
increase in NDVI. Therefore, the role of sunlight is still somewhat uncertain.

5. Conclusions

Using meteorological measurements and remotely sensed NDVI data, this study
observed spatiotemporal patterns in NDVI and climatic parameters and assessed the
relationships between them at seasonal and yearly time scales in the YRB from 2000 to 2019.
The main conclusions are as follows:

(1) The YRB tended to become warmer, wetter, and greener in different seasons during
2000–2019; however, this varied among seasons.

(2) The NDVI in the growing season increased the most significantly at a rate of 0.0054/yr.
Temperature increased the most in spring at a rate of 0.046 ◦C/yr (p < 0.1). Meanwhile,
precipitation increased the most in the growing season at a rate of 2.210 mm/yr.

(3) Variations in NDVI and precipitation/temperature clearly exhibited spatial hetero-
geneity.

(4) The NDVI increased during all seasons, with the eastern Ningxia Plain and the
western Loess Plateau exhibiting the largest increases.

(5) Climatic factors have had a significant positive impact on vegetation changes in the
YRB from 2000–2019. Among all seasons, spring temperatures had the strongest
correlations with NDVI, whereas autumn temperatures had the weakest correlations
with NDVI. The seasonal relationships between NDVI and precipitation were similarly
positive, although there were significant seasonal and geographical fluctuations.
Annual precipitation exhibited more significant positive correlations across a wider
area as compared to temperature, which indicated that precipitation was a major
factor driving vegetation growth in these areas of the YRB.

(6) Climate was the main cause of increase in NDVI, with 65.4% of the NDVI increase
being closely related to temperature increases (i.e., the correlation between temper-
ature and NDVI was significant in 9.4% of the area); meanwhile, 83% of increases
in NDVI were closely related to precipitation increases (i.e., the correlation between
precipitation and NDVI was significant in 38.6% of the area).

The overall findings of this study will help in understanding the changes in NDVI and
the spatiotemporal relationships with climatic changes in the YRB from 2000–2019. The
YRB is generally dry and lacks precipitation; therefore, increased precipitation can improve
vegetation growth and lead to a greener basin, particularly in the central (Ningxia Plain)
and southern parts (Loess Plateau), which are the two driest regions in the YRB. In general,
increases in temperature can accelerate vegetation metabolism, which can also improve
vegetation growth. In addition to temperature and precipitation, the NDVI can also be
influenced by other factors (e.g., human activity and topography). This study contributes
to improving current understandings of NDVI and precipitation/temperature relationships
in the YRB and will guide the efforts aimed at restoring functional ecosystems in the YRB.
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