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Abstract: Drought in the Mongolian Plateau (MP) has gradually intensified in recent decades. The
energy and water cycles are key factors affecting drought. However, there are few quantitative
studies on the mechanism of aridity change in this region. This study uses the ERA5, Moderate
Resolution Imaging Spectroradiometer (MODIS) and Himawari 8 datasets and investigated the
mechanism of drought change over the MP. The aridity index (the ratio of potential evaporation
and total precipitation) is employed to detect drought changes. The results showed that the annual
mean of aridity index increased by 0.73% per year (increased significantly since 1999) during the
period 1979–2020. Moreover, the drought was most severe in the January to April of 2016–2020,
mainly concentrated in the central and western parts of the MP. The potential evaporation increased
(0.72% per year) and total precipitation decreased (0.16% per year) from 1979 to 2020. However,
the surface temperature continued increasing from August to December in the period 2016–2020
(1.67% per year). This may result in an increase in potential evaporation and a decrease in volumetric
soil water from August to December last year. The decrease of volumetric soil water resulted in the
decrease of total cloud cover (0.25% per year) and total precipitation from January to April. The
surface net radiation (increased by 0.42% per year) and the potential evaporation increased, which
may aggravate the drought from January to April. The evaporation paradox is studied over the MP.
The results show that the variation in evaporation is consistent with that of total precipitation, and
the surface temperature will promote an increase in evaporation and potential evaporation. This
study reveals that global warming, desertification and increased surface net radiation contribute to
the increase in potential evaporation and reduced volumetric soil water, which together contribute
to drought.

Keywords: aridity index; energy and water cycle; Mongolian Plateau; evaporation paradox

1. Introduction

Drought is a shortage of moisture in the climatic sense of the term, and its causes are
closely related to the availability of key parameters of the energy and water cycle such as
precipitation, evaporation, vegetation, surface radiation, water vapor and temperature, and
their interactions [1–4]. Therefore, the in-depth study of drought formation mechanism
based on multiple dependent variables is important for environmental protection, deserti-
fication prevention and drought prediction. The Mongolian Plateau (MP) is an arid and
semiarid region with large temperature variations and little precipitation. The annual mean
temperature increased 0.96 ◦C per year approximately from 1901 to 1998 over the MP [5].

Remote Sens. 2022, 14, 685. https://doi.org/10.3390/rs14030685 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030685
https://doi.org/10.3390/rs14030685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7136-4181
https://orcid.org/0000-0002-7336-8872
https://orcid.org/0000-0002-3562-2323
https://doi.org/10.3390/rs14030685
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030685?type=check_update&version=2


Remote Sens. 2022, 14, 685 2 of 14

Drought threatens grassland productivity, livestock and human societies and has attracted
much attention in this region.

At present, drought studies over the MP have focused on independent consideration
of vegetation degradation, precipitation reduction and mesoscale atmospheric circulation,
and have yielded some results [6–10]. For example, atmospheric circulation can affect
drought over the MP because the weakening of the subtropical high in the western Pacific
and the increase in the East Asian Arctic vortex negatively impact spring precipitation
transport [11]. Soil moisture on dry days is related to soil temperature, while that on rainy
days is related to atmospheric precipitation [12,13]. Drought over the MP can lead to a
decrease in vegetation cover, which further leads to a decrease in seasonal latent heat and
surface temperature [14]. The rapid warming of the MP at the beginning of the 20th century
exacerbated the drought, which was relatively severe in the central and western parts of the
MP [15]. Vegetation cover on the MP formerly continued to increase in the mid-1990s with
increases in precipitation and temperature, but decreased after 1999 when precipitation
decreased [16]. The findings suggest that the frequent droughts in the northeastern part
of the MP from 1996–2015 may be related to overgrazing, which led to an increase in
temperature and a decrease in soil water content [17].

Drought studies usually use precipitation and evaporation parameters, and it might
involve the evaporation paradox. The evaporation paradox states that global warming will
lead to an increase in potential evaporation, but there has been a significant decrease in
potential evaporation in the Northern Hemisphere. The results show that evaporation in
some areas of China decreased from 1985 to 2008 [18]. There are also some studies that
used multiple drought indexes to prove the drought situation over the MP. The drought
index is the ratio of potential evapotranspiration to total precipitation, and it can reflect the
impact of drought degree on energy and water cycle [19]. For example, the Palmer drought
severity index (PDSI) began to decrease from 4 to −2 during the period 1960–2010 over the
MP [9,20]. Drought was most severe in spring over the MP during the period 1980–2015 [6].
The standardized precipitation evapotranspiration index (SPEI) for MP decreased after
1999 (SPEI < −4.307) due to the influence of the surrounding climate forcing, indicating
that the drought has become more severe [8,21]. The SPEI study also showed that MP had
the most severe in spring drought during 1980–2015 [6].

In summary, although the drought causes of MP have been studied from many perspec-
tives and some useful results have been obtained, studies that combine multiple parameters
of energy and water cycle to analyze the drought mechanism of MP are relatively rare.
Therefore, this paper analyzes the temporal and spatial distribution of droughts over the
MP region and the impact of key parameters of the energy and water cycles on droughts for
the period 1979–2020. The paper is organized as follows. Section 2 describes the datasets
and methods. Section 3 describes the spatiotemporal distribution characteristics of drought,
energy and the water cycle over the MP. The interaction of energy and water cycles are also
analyzed. Finally, conclusions are presented in Section 4.

2. Materials and Methods
2.1. Data

ERA5 is the global climate reanalysis dataset that was released on 17 July 2017 by
the Copernican climate change service operated by the ECMWF and mainly includes
atmospheric parameters and surface parameter data [22,23]. The ERA5 reanalysis dataset is
produced by using the existing observation data assimilation method. Compared with other
available reanalysis datasets, for example, the ECMWF/ERA15 and the ERA-INTERIM [22,23], the
National Center for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis dataset [24] and the NASA Goddard Earth Observing System
(GEOS) reanalysis dataset [25,26], the latest ERA5 reanalysis dataset has longer time series
and higher spatial and temporal resolutions (0.25◦ and 1 h) [27]. The ERA5 reanalysis
dataset used in this paper is the ERA5 monthly averaged data on single levels from 1979 to
the present. This study uses total cloud cover, volumetric soil water layer 1 (which is defined
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as the water content at 0–7 cm below the surface), volumetric soil water layer 2 (which is
defined as the water content at 7–28 cm below the surface), surface net radiation (surface
net shortwave radiation minus surface net longwave radiation), surface temperature, total
precipitation, potential evaporation, evaporation, total column water vapor from ERA5
data for the period 1979-2020, with a spatial resolution of 0.25◦ and a temporal resolution
of months. This study utilizes ERA5 data with a spatial resolution of 0.25◦ and a temporal
resolution of months for the period 1979-2020. The ERA5 data were provided by the Climate
Data Store and are available from https://cds.climate.copernicus.eu/ (last accessed date is
29 January 2022).

The Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference
vegetation index (NDVI) was used to assist the analysis of drought intensity. MODIS is
a key instrument aboard the American National Aeronautics and Space Administration
(NASA) Terra and Aqua satellites. The NDVI product is MODIS/Aqua Level 3 (Monthly)
Vegetation Indexes for the period 2003–2020, with a spatial resolution of 0.05◦. MODIS
NDVI products are available from https://search.earthdata.nasa.gov/ (last accessed date
is 29 January 2022).

The QA parameters of Himawari-8 Level 2 cloud product data from the Japan Aerospace
Exploration Agency (JAXA) P-Tree system are used for the spatial distribution analysis
of total cloud cover for the period 2003–2020, with a spatial resolution of 0.05◦ and a
temporal resolution of 10 min [28]. Clear and probably clear conditions were defined as
clear skies and probably cloudy and cloudy conditions were defined as clouds for the QA
parameters. To match the spatial resolution of ERA5, we define the percentage of cloud
pixels in 5 × 5 pixels as the total cloud cover. The cloud property products are available
from https://www.eorc.jaxa.jp/ptree/index.html (last accessed date is 29 January 2022).

2.2. Study Area

The study areas include the whole MP and surrounding areas as shown in Figure 1.
The latitude range is 37 ◦N to 53.5 ◦N, and the longitude range is 87.5 ◦E to 126 ◦E.
Composed mainly of mountains and high-elevation plains, the MP is a complex terrain
with elevations of 900–3000 m. The central and western parts of the MP are the most arid,
with the annual mean of NDVI values less than 0.1.

2.3. Methods

The aridity index is normally defined as aridity index = potential evaporation/total
precipitation [3,4]. The aridity index not only involves key parameters of the water cy-
cle, but also potential evaporation related to energy cycle parameters, air temperature,
soil heat flux density, slope vapor pressure curve, slope vapor pressure curve, radiation
and wind speed [19]. We calculated the annual mean aridity index and determined the
drought conditions of the region according to the value range: humid (aridity index < 1.00),
subhumid (1.00 ≤ Aridity index < 1.50), semiarid (1.50 ≤ Aridity index < 4.00) and arid
(Aridity index ≥ 4.00) [4].

The interaction of key energy and water cycle parameters is studied using the Pearson
correlation coefficient. As shown in Equation (1), the monthly mean pixel values of ERA5′s
parameters are extracted as xi and yi.The total number of data points is n. The x and y are
the mean values of the energy or water cycle parameters. r is the correlation coefficient of
key paramters.

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(1)

https://cds.climate.copernicus.eu/
https://search.earthdata.nasa.gov/
https://www.eorc.jaxa.jp/ptree/index.html
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Figure 1. Overview of research area. (a) The annual MODIS normalized difference vegetation index
(NDVI) during the period 2003–2020, (b) digital elevation map.

Equation (2) is potential evaporation that is calculated using the Penman–Monteith
algorithm [29]. This algorithm represents the combined effects of surface net radiation (Rn),
temperature (T), soil heat flux density (G), slope vapor pressure curve (∆), psychrometric
constant (γ), wind speed (u), saturation vapor pressure (es) and actual vapor pressure (ea).
In this paper, potential evaporation is derived by the ERA5 potential evaporation product.

potential evaporation =
0.408∆(Rn∆G) + γ 900

T+273 u(es − ea)

∆ + γ(1 + 0.34u2)
(2)

3. Results and Discussion
3.1. Spatiotemporal Variation Characteristics of Drought

We used the linear regression method to calculate trends. Figure 2a shows that
the annual potential evaporation had an increasing trend (0.72% per year), and the total
precipitation decreased (0.16% per year) significantly during the period 1979–2020 over the
MP. The annual mean of aridity index increased by 0.73% per year (through the 0.05 level
of significance test). The switch point of the annual mean aridity index was around the
1999. The 21st century drying has lasted for approximately 20 years, posing serious threats
to ecosystems and societies. As the temperature rises, potential evaporation shows an
increasing trend (through the 0.05 level of significance test) and becomes an increasingly
important factor in the severity of drought.

Figure 2b shows the two most severe periods of drought during the period 2016–2020.
As shown in Figure 2a, we found that drought was the most severe during the periods
2016–2020. Drought mainly occurred from January to April. The aridity index was above
an average of 40%, and the drought conditions presented a fluctuating trend. It presented a
significant trend of drought.
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The spatial distribution characteristics of the spring aridity index during the period
2016–2020 are shown in Figure 3. The drought area in 2020 was the largest. In the northern
part of Chinese Gansu Province and the western part of Inner Mongolia Province, the
southern part of Mongolia’s Omnogovi and Ovorkhangai Provinces, there were the worst
drought (aridity index > 12). Areas with aridity index exceeding 12 accounted for 21.46%,
20.18%, 17.98%, 29.85% and 32.14% over the MP during the period of 2016–2020. Compared
with the average during the 1979–2020 period (15.33%), the drought regions increased by
2.65–16.81%.

Figure 2. Temporal distribution of the aridity index, potential evaporation and total precipitation over
the MP and surrounding areas. We used the linear regression method to calculate trends. (a) Annual
mean aridity index, potential evaporation and total precipitation during the 1979–2020 period. The
aridity index is expressed as the ratio of potential evaporation and total precipitation. (b) Monthly
mean aridity index during the period 2016–2020.
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Figure 3. Spatial distribution of the average January to April aridity index over the MP and surround-
ing areas during the period of 2016–2020. (a) 2016. (b) 2017. (c) 2018. (d) 2019. (e) 2020.

3.2. Spatiotemporal Variation Characteristics of Key Energy and Water Cycle Parameters
3.2.1. Energy Cycle Key Parameters

As shown in Figure 4a, the surface temperature continued to increase (1.67% per
year) during the period of August–December, and the potential evaporation had a similar
curve (0.26% per year) during the period of 2016–2020. As shown in Figure 4b, the total
cloud cover decreased during the period January–April (0.25% per year), resulting in
increased surface net radiation. The potential evaporation continued to rise, mainly due
to the increase in surface temperature (0.67% per year) and surface net radiation (0.42%
per year). The results show that there is less monthly mean total cloud cover (<50%) in the
spring over MP, and previous studies have shown that the cloud radiative forcing effect
on solar radiation is reduced over MP [30]. The lower NDVI and high altitude (>2000 m)
in the central and western regions of the study region resulted in the higher surface net
shortwave radiation in this region, which in turn resulted in the rise of surface temperature
and comprehensively promoted the increase of potential evaporation.

As shown in Figure 5, we found that the monthly mean potential evaporation was
higher (>70 mm) in the central and western regions than in the north and southwest
(<30 mm) in January–April during the period of 2016–2020. We analyzed the reasons for
the high potential evaporation. First, the monthly mean total cloud cover was <40% in
the central and western regions, while in the north and southwest regions it was >70%.
Because the high altitude (>2000 meters) makes it difficult to input southeast ocean water
vapor and NDVI is <0.1, the above factors make it difficult to form clouds in the central
and western regions of the MP. Second, studies have shown that cloud radiative forcing
over the MP is a cooling effect. Low total cloud cover in the central and western regions
is correlated with high surface net radiation [1,30]. Therefore, due to low cloud cover,
low latitude (<45◦ N) and low NDVI (<0.1), the monthly mean surface net radiation was
>140 W/m2 in the central and western regions, while that in the north and southwest
regions it was <100 W/m2. These causes can lead to higher surface temperatures (>8 ◦C),
which in combination contribute to higher potential evaporation than in the central and
western regions over MP.
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Figure 4. Temporal distribution of key monthly mean energy cycle parameters during the period
2016–2020. We used the linear regression method to calculate trends. (a) August–December, (b)
January–April.

3.2.2. Water Cycle Key Parameters

As shown in Figure 6a, the annual volumetric soil water decreased during the period
1979–2020 (decreased by 9.52% during the period 1979–2020). Its variation trend is con-
sistent with the difference between total precipitation and evaporation (decreased by 25%
during the period 1979–2020, through the 0.05 level of significance test). We found that the
peak and trough of total column water vapor were consistent, but there was no obvious
trend. As shown in Figure 6b, volumetric soil water in spring was lower than that in August
to December of the last year. This reduced total column water vapor, which in turn reduced
total cloud cover during the period of January to April. However, we also found that deep
soil water content did not show a downwards trend, indicating that shallow soil water con-
tent has an impact on drought. The variation trend is consistent with the difference between
total precipitation and evaporation. In particular, the annual volumetric soil water in 2019
decreased by 0.06 compared with that in 2018. The changes in volumetric soil water, total
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cloud cover, total precipitation and NDVI were significantly consistent, which highlights
that the clouds in the MP are mainly formed by local vegetation evapotranspiration.

Figure 5. Spatial distribution of key monthly mean energy cycle parameters over the MP
and surrounding areas in January–April of 2016–2020. (a) Monthly mean surface temperature.
(b) Monthly mean Himawari 8 total cloud cover. (c) Monthly mean surface net shortwave radiation.
(d) Monthly mean potential evaporation.

As shown in Figure 7, we found that the low volumetric soil water during the period
August to December of the last year affected the volumetric soil water in the next spring
year. In the central and western regions over MP, volumetric soil water layers one and two
were low from 2019 to spring 2020, and NDVI was low, leading to low total column cloud
water and further low total precipitation. The total precipitation was less than 6 mm in the
central and western regions over the MP. The 85.20% area of the total precipitation was
<12 mm. Low total precipitation is directly related to total column cloud water. Total column
cloud water is significantly consistent with the spatial distribution of total precipitation. In
addition to the clouds transported, the formation of local clouds is related to volumetric
soil water. In the central and western regions, NDVI is low, and volumetric soil water is
low, so it is difficult to form clouds.

3.2.3. The Interaction of Energy and Water Cycle Parameters

As shown in Figure 8, we investigated the interrelationship between key parameters
of the energy and water cycle. As shown in Figure 8a, there is a significant negative corre-
lation between total precipitation and potential evaporation over the MP. The correlation
coefficient of the western part is close to 0. It is speculated that the reason is that there is
little precipitation in desert areas. As shown in Figure 8b, we found a significant positive
correlation between total precipitation evaporation and volumetric soil water (volumetric
soil water layer one + volumetric soil water layer two) in the northern and eastern parts of
the research area. These are subhumid and humid areas with high shallow volumetric soil
water. This highlights that shallow volumetric soil water is mainly affected by precipitation–
evaporation differences. Figure 8c shows a significant negative correlation between total
cloud cover and potential evaporation, indicating that the decrease in total cloud cover
will promote the increase in potential evaporation over MP. Figure 8g shows a significant
correlation between surface net radiation and potential evaporation, and this result proves
the correctness of Equation (2).
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Figure 6. Temporal distribution of key water cycle parameters. We used the linear regression method
to calculate trends. (a) Annual average parameter change curve and trend. (b) Monthly average
parameters change curve. The grey dotted line is January, and the blue dotted line is April.

Figure 7. Spatial distribution of volumetric soil water parameters over the MP and surrounding areas
during the period of 2016–2020. (a) Monthly mean from August to December 2016. (b) Monthly mean
from January to April 2017. (c) Monthly mean from August to December 2017. (d) Monthly mean
from January to April 2018. (e) Monthly mean from August to December 2018. (f) Monthly mean
from January to April 2019. (g) Monthly mean from August to December 2019. (h) Monthly mean
from January to April 2020.
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Figure 8. Annual mean correlation coefficient of key energy and water cycle parameters over
the MP and surrounding areas during the 1979–2020 period. (a) Total precipitation and potential
evaporation, (b) total precipitation evaporation and volumetric soil water, (c) total cloud cover
and potential evaporation, (d) surface temperature and evaporation, (e) surface temperature and
potential evaporation, (f) surface temperature and total precipitation, (g) surface net radiation and
potential evaporation.

As shown in Figure 8d–f, we studied the relationship between surface temperature
and potential evaporation and evaporation for the evaporation paradox. We found that
there was a positive correlation (r > 0.5) between surface temperature and evaporation,
especially in humid, subhumid and partially semiarid regions over MP (r > 0.9). There is a
significant positive correlation between land surface temperature and potential evaporation
(r > 0.8), especially in arid and semiarid regions (r > 0.92). There is a significant positive
correlation (r > 0.8) between surface temperature and total precipitation in humid and
subhumid regions over MP. Therefore, we believe that the reason for this difference is
that evaporation is more influenced by local total precipitation. Areas with high surface
temperatures have high evaporation. Potential evaporation is influenced by surface net
radiation and surface temperature.

As shown in Figure 9, to study the evaporation paradox we investigated the tempo-
ral distribution of the surface temperature, potential evaporation, total precipitation and
evaporation. We found that surface temperature and potential evaporation had an increas-
ing trend over the MP and surrounding areas during the period of 1979–2020. However,
evaporation and total precipitation changed in a consistent trend of reduction. Therefore,
combined with the results in Figure 8, we think the change in evaporation is related to the
way it is measured. The change in total precipitation will affect the change in evaporation.
High surface temperature will lead to increased evaporation and potential evaporation.
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Figure 9. Temporal distribution of the surface temperature, potential evaporation, total precipitation
and evaporation over the MP and surrounding areas during the period of 1979–2020. We used the
linear regression method to calculate trends.

4. Conclusions

Drought increased significantly (0.73% per year) during the period of 1979–2020, and
the drought was severe after 1999 over the MP. The drought was most severe from January
to April during the period of 2016–2020. The arid areas had an NDVI < 0.1 and volumetric
soil water <0.16 m3/m3 in January to April during the period 2016–2020. The potential
evaporation had an increasing trend (0.72% per year), and the total precipitation decreased
(0.16% per year).

The direct cause of the drought from January to April may be closely related to the
abnormal energy and water cycle parameters from August to December the previous year.
From August to December, the surface temperature continued to increase (1.67% per year)
during the period 2016–2020, contributing to 0.26% per year increase in potential evapora-
tion. At the same time, the volumetric soil water decreased from August to December due
to the decrease in total precipitation. The results show that the parameters of the downward
trend include total cloud cover and total precipitation. The parameters of increasing trend
include surface temperature, surface net radiation and potential evaporation from January
to April. We hypothesize that the changes in these parameters may be the cause of the
drought. We found that the peak and trough of total column water vapor were consistent
with the difference between total precipitation and evaporation, but there was no obvious
trend. This indicates that the increase of evaporation and the decrease of total precipitation
may be related to the balance trend of total column water vapor.
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Difficult-to-form clouds are likely related to low volumetric soil water, resulting in
increased surface net radiation and decreased total precipitation. Global warming increases
surface temperatures. These factors contribute to the growth of potential evaporation.
For the evaporation paradox, the measurement of evaporation is influenced by local
total precipitation. High surface temperature will lead to increased evaporation and
potential evaporation.

There are several studies that support our results. The results show that there is a
significant correlation between the reduction in surface net radiation and drought, and
the surface net radiation is low in arid areas due to the low surface vegetation cover. This
result is because a reduction in surface net radiation leads to a reduction in air pressure
and evapotranspiration, which in turn reduces water vapor transport in the surrounding
area [31,32]. Clouds can reduce surface net radiation flux through cloud radiative forcing [2].
The current study shows that the total cloud cover in China has decreased by 0.88% per
decade; in contrast, the total cloud cover over the MP and surrounding areas has dropped
by 2.04% per decade [33]. In our study, the decrease in cloud cover was the result of an
increase in surface net radiation. This paper studies the influence of energy and water cycle
parameters on drought, and the conclusion is helpful for disaster prevention and mitigation
over the MP and surrounding areas.

The effects of energy and water cycle parameters on drought were studied, and the
conclusion is helpful for drought prevention over the MP and surrounding areas. However,
we did not combine wind, atmospheric circulation or other comprehensive factors to study
drought over the MP and surrounding areas, so this combination will be addressed in our
future research work.
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