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Abstract: Satellite remote sensing is an important method for forest phenological studies at continen-
tal or global scales. Sentinel-1 (S1), a polar orbit satellite with a spatial resolution of 10 m, provides an
opportunity to observe high-resolution forest phenology. The sensitivities of S1 C-band backscatter
measurements to vegetation phenology, such as crops, meadows, and mixed forests, have been dis-
cussed, whereas their performance for different forest types has not yet been quantitatively assessed.
It is necessary to evaluate accuracy before adapting S1 datasets in forest phenological studies. This
study discusses the seasonal variations in S1 backscatter measurements and assesses the accuracy
of S1-based forest phenological metrics in two types of typical forests: deciduous and coniferous.
S1 C-band SAR dual-polarization backscatter measurements for the period 2017–2019 were used to
extract forest phenology metrics using the Fourier transform (FT) and double logistic (DL) functions.
Phenological metrics from the ground-based PhenoCam dataset were used for evaluation. The S1
backscatter VV-VH signal peaks for deciduous and coniferous forests occur in the winter and summer,
respectively. The S1 backscatter could reasonably characterize the start of season (SOS) of deciduous
forests, with R2 values up to 0.8, whereas the R2 values for coniferous forest SOS were less than
0.30. Moreover, the retrieved end of season (EOS) was less accurate than the SOS. The differences
in accuracy of S1 backscatter phenological metrics between deciduous and coniferous forests can
be explained by the differences in seasonal changes in their corresponding canopy structures. To
conclude, S1 C-band backscatter has a reasonable performance when monitoring the SOS of decidu-
ous broadleaf forests (R2 = 0.8) and relatively poor performance when extracting EOS of deciduous
broadleaf forests (R2 = 0.25) or phenology of evergreen needleleaf forests (R2 = 0.2).

Keywords: sentinel-1; forest phenology; time-series; PhenoCam; NDVI

1. Introduction

Forests are important ecosystems that produce natural biological resources for hu-
mans [1,2]. As a major terrestrial ecosystem, forests play essential roles in providing habitats
for biomes, which maintain the global energy and material cycle, balancing greenhouse gas
concentrations in the atmosphere and maintaining climate stability. Forest phenology is a
key variable in conducting scientific management of forestry and has become important in
climate change studies [3,4].
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Forest phenology refers to the sensitive reactions of forest vegetation biological events
to seasonal variations in environmental variables such as temperature and humidity [5].
These reactions make forests the most sensitive indicator of environmental conditions [3,4].
The end of season (EOS) of broadleaf temperate deciduous forests of the eastern USA was
widely delayed by 0.8 days per year from 1988 to 2008 [6]; an advanced trend was found at
the start of season (SOS) of North American species [7], both clearly indicating the impact
of global warming. Thus, accurate and detailed forest phenological measurements are
essential not only for forestry management but also for climate change studies. Therefore,
it is necessary to efficiently and economically monitor forest phenology.

Observations of vegetation phenology have evolved over time. Traditional phenologi-
cal observations are based on ground surveys and refer to human visual observations of
the seasonal and annual variation in the biophysical dynamics of selected species [8]. The
history of phenological ground surveys can be traced back to the observation of cherry blos-
soms in 705 AD in Japan [9], while Europe and the US have formed observation networks
to record phenological information [10]. This method can provide accurate phenological
information of specific species and is independent of instruments. However, the established
observation networks can only cover a small localized area [8]. Furthermore, the standards
for phenological records could be different, and records may contain biases due to times for
budburst [6] or leaf opening [11] or to the amount of biomass [12]. Therefore, it is difficult
to extend such observations to continental or global vegetation phenological studies.

To overcome the limitation of ground surveys, remote sensing technologies have
been utilized and both ground-based and satellite remote sensing approaches have been
developed. Satellite remote sensing has the advantage of wider observational ranges
and can be utilized in a broad range of applications. Common optical satellites such as
NOAA, Terra, and Landsat can provide reliable observation data sources for phenological
studies, along with some Synthetic Aperture Radar (SAR) measurements such as those
obtained by the Sentinel-1 (S1) satellite [13–15]. Ground-based remote sensing can provide
accurate site-level data but is restricted by the cost of instruments and frequency of the
observations. However, these ground-based data can be used as references to evaluate
the accuracy of satellite retrievals [12]. These methods can monitor vegetation over wider
areas, longer time periods and can promote the development of phenological research.
Therefore, remote sensing products have been widely used in recent studies. In pheno-
logical studies, passive optical remote sensing mainly focuses on microstructures of the
vegetation such as chlorophyll which absorb red bands and leaf cells reflect near-infrared
bands [16], while SAR products focus on the backscatter to determine the structure of
leaves and branches [17]. The recently launched Sentinel-1 (S1) and Sentinel-2 (S2) satellites
developed by the European Space Agency within the Copernicus Program have a 6-day
and a 5-day repeat cycle respectively and have made a significant contribution in providing
reliable surface remote sensing data with high spatial and temporal resolutions [15]. SAR
measurements are obtained through active remote sensing techniques and thus can provide
observations that are not influenced by cloud or sunlight, which can influence the quality
of optical datasets.

S1 datasets showed great success in vegetation phenological studies, such as for
estimating crop phenology [18,19], classifying mixed temperate forests [2], and determining
meadow phenology [20]. Moreover, for forest phenology, some studies have started to
use S1 backscatter measurements to explore forest temporal characteristics, such as the
seasonal variations of temperate forest [1], forest biomass estimation [21,22] and forest
damage degree [23]. Current studies of optical sensors have not been satisfied with the
accuracy of phenological extraction (R2 value of approximately 0.5) and are considering
introducing S1 to improve the accuracy [20]. Therefore, it is necessary to assess the accuracy
of phenological extraction with S1 backscatter measurements.

To conclude, it is still unclear how accurate phenological retrieval based on S1 backscat-
ter would be for forests of different types. Thus, this study investigates the accuracy of
retrieving phenology for deciduous and coniferous forest sites across North America using
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S1 backscatter measurements. An evaluation of the S1 derived phenological metrics was
performed against an independent in-situ dataset obtained from the PhenoCam network.
Additionally, an inter-comparison against S2 NDVI derived phenology was also performed.

2. Materials and Methods
2.1. Study Sites

The climate of North America east of 110◦ W can be generally divided into tropical
monsoon, humid subtropical, and humid continental climates from south to north, while it
is mainly a semiarid steppe climate west of 110◦ W. Forest types are significantly affected
by climate; evergreen coniferous forests are mainly distributed in humid subtropical and
semiarid steppe climates, while deciduous broadleaf forests are mainly distributed in
humid continental climates.

The National Ecological Observatory Network (NEON) is a nationwide network
established to observe the environment at the regional and continental scales [24]. The
network composed of 20 regional networks covers most major forests and water bodies
to observe biodiversity and ecosystem functions and plays important roles in studying
environmental changes and predicting their trends. From the 20 regional networks, 26 field
sites with observations between 2017 and 2019 were considered. The stations are evenly
distributed in deciduous broadleaf (DB) forests and evergreen needleleaf (EN) forests and
cover as wide longitude and latitude spans as possible to observe the influence of climate
on forest phenology. The locations and forest types of the selected field sites were given in
NEON [25], as shown in Table 1, and marked in Figure 1.

Table 1. Information of selected field sites (14 deciduous broadleaf sites and 12 evergreen needleleaf
sites) and the corresponding data availability.

Domain Number Site Name Latitude Longitude
Data

Coverage

Satellite
Cycle (Day)

S1 S2

Deciduous Broadleaf (DB)

D01 BART 44.06387 –71.28738 2017–2019 6 5
D01 HARV 42.53691 –72.17265 2017–2019 12 5
D02 SCBI 38.89293 –78.13949 2017–2019 6 5
D02 SERC 38.89008 –76.56001 2017–2019 6 5
D05 STEI 45.50894 –89.58637 2018–2019 12 5
D05 TREE 45.49373 –89.58572 2017–2019 12 5
D05 UNDE 46.23391 –89.53725 2017–2019 12 5
D06 UKFS 39.04043 –95.19215 2019 6 5
D07 GRSM 35.68896 –83.50195 2017–2019 6 5
D07 MLBS 37.37831 –80.52485 2017–2019 6 5
D07 ORNL 35.96413 –84.28259 2017–2019 6 5
D08 DELA 32.54173 –87.80388 2017–2019 12 5
D08 LENO 31.85388 –88.16122 2017–2019 12 5
D11 CLBJ 33.40123 –97.57000 2017–2019 6 5

Evergreen Needleleaf (EN)

D02 BLAN 39.03370 –78.04179 2017–2019 6 5
D03 JERC 31.19484 –84.46862 2017 6 5
D03 OSBS 29.68928 –81.99343 2017–2019 12 5
D08 TALL 32.95047 –87.39326 2017–2019 6 5
D10 RMNP 40.27590 –105.54596 2017–2019 6 5
D12 YELL 44.95348 –110.53914 2019 6 5
D16 ABBY 45.76243 –122.33033 2018 12 5
D16 WREF 45.82049 –121.95191 2019 12 5
D17 SJER 37.10878 –119.73228 2019 6 5
D17 SOAP 37.03337 –119.26219 2018–2019 6 5
D19 BONA 65.15401 –147.50258 2019 12 5
D19 DEJU 63.88112 –145.75136 2017–2019 12 5
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Figure 1. Map of the US and study sites. DB: deciduous broadleaf forest, EN: evergreen needle-
leaf forest.

2.2. PhenoCam Data

The PhenoCam dataset provides digital camera images composed of three channels,
red (R), green (G), and blue (B), and can be used to derive vegetation statistics and vege-
tation index in the region of interest (ROI) based on given masks. The provided dataset
consists of time series of digital number (DN) and vegetation indices (VIs) that can reveal
phenological changes [26], including the RGB chromatic coordinates (i.e., Rcc, Gcc, and
Bcc). The Gcc can be defined as:

Gcc =
G

R + G + B
(1)

where RGB represents the DN of the red, green, and blue channels. Gcc has been more
widely used in recent studies and PhenoCam networks because it can decrease the ef-
fect of environmental illumination, thus enhancing the monitoring of vegetation dynam-
ics [12,27–32].

The Level 3 product of the PhenoCam dataset includes the statistics of DN and VIs
of each image with a time resample of 30 min, taken from cameras at a height of −300 m,
while the Level 4 product includes 1 and 3-day averages for contents of Level 3. The Pheno-
Cam dataset applies spline interpolation to remove Gcc outliers caused by environmental
variables when processing Level 4 time series into Level 5 products when extracting the
phenological metrics. Dynamic thresholds of the 10th, 25th, and 50th quantiles were applied
to determine the SOS and EOS from Level 5 products on the rising or falling amplitudes,
respectively [26].

The PhenoCam datasets have been validated to be consistent with ground obser-
vations, near-surface radiometry, and satellite remote sensing by Richardson et al. [33]
In this study, the transition date in Level 5 product with a threshold of the 50th quan-
tile of the amplitude was used for subsequent statistical analysis as a representation of
in-situ measurements.

2.3. Sentinel-1 and-2 Data

S1 and S2 are a part of the Copernicus Program satellite constellation (including
Sentinel-1, -2, and -3) developed by the European Space Agency (ESA). The C-band SAR
onboard S1 provides dual-polarization (i.e., VV and VH) observations and integrates four
imaging modes with different resolutions and coverages [34]. This study used the S1A and
S1B Level-1 Ground Range Detected (GRD) product from January 2017 to December 2019,
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and the resolution of the product was 10 m. The backscatter coefficient of VV and VH of
each study site was replaced by an average with a 15 × 15 kernel to reduce the inherent
speckle effects of radar imagery. For each site, two polarization combinations discussed in
previous studies [1,21], i.e., the ratio VH/VV and the differencing VV-VH, were extracted
to analyze the effect of phenological estimation.

In addition, S2 Level-1C data were used to compare the accuracy of S1 retrieval. The
Level-1C products consist of 13 spectral bands at spatial resolutions from 10 m to 60 m,
and B4 (centered at 665 nm) and B8 (centered at 842 nm) used in this study were at a
resolution of 10 m [35]. A cloud mask band (QA60) was used to pick only cloud-free pixels.
Scenes where more than 30% of the pixels within the subset were classified as cloudy were
removed from the analysis.

Then, the normalized difference vegetation index (NDVI), which reveals the differ-
ence between leaf spectral absorption and reflection, was calculated based on B4 and B8
reflectance using the following equation [36]:

NDVI =
B8 − B4
B8 + B4

(2)

Cloudy pixels (derived from the QA60) and water bodies (pixels with NDVI values less
than 0) were removed to ensure only pixels of good quality were used for further analysis.

2.4. Phenological Metrics Extraction

Satellite remote sensing time series are affected by environmental conditions such as
clouds and atmospheric contaminants, and the viewing angle of the satellite instruments
can introduce additional uncertainties. To enhance the seasonal variations of interest
indices, it is necessary to apply cleaning and curve-fitting methods to enhance the annual
variations of the time series.

Before fitting, data cleaning and smoothing were performed to reduce the noise
influences. First, the obtained time series were filtered to remove outliers using the method
proposed by Timesat 3.3 [37]. When iterating over the time series, the following criteria
were used to remove outliers: data points that exceeded 2 standard deviations (named as a
cutoff) away from the mean of the time series, less than the average of its nearest validate
values in the time series (named as immediate neighbors) minus the cutoff, or higher than
the maximum of its immediate neighbors plus the cutoff.

Fourier transform (FT), a basic signal-processing method, is a traditional signal noise
reduction technique that conducts frequency domain analysis and has been applied in
a number of phenological studies [38,39]. Evenly spaced time series are required in FT;
therefore, the pre-processed time series were binned into 10-day windows and the average
value was calculated to characterize the signal. Linear interpolation of the immediate
neighbor windows was used to fill gaps in the time series. If satellite data was consecutively
missing for more than 30 days (which occurred in the S2 data of 2017 and 2018 in this
research), the data before the missing period would be discarded to reduce the effect of
linear interpolation on the curve-fitting accuracy. The FT decomposes signals into a series of
harmonics sorted by frequency and one base value, in which non-periodic noise is usually
characterized by high-frequency harmonics and seasonal trends are usually characterized
by harmonics of lower frequency [40]. The non-periodic noise can be removed after inverse
FT is conducted using the first few low-frequency harmonics and the base value [41].
Pastor-Guzman et al. [42] reported that with the first four harmonics and the base value,
the phenological profile can be reconstructed reasonably, and this study conducted the
inverse FT in the same way.

The DL function was constructed using two logistic functions to simulate the single
peak phenology. Its basis function can be written as [43]:

g(t, a1, a2, b1, b2, c, d) = c + d
(

1
1 + eb1(a1−t)

− 1
1 + eb2(a2−t)

)
(3)
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where a1, a2 are the inflection points of the growing period and falling period, respectively,
b1, b2 are the slopes of a1, a2, respectively, c is the minimum value of the curve, and d is the
amplitude of the curve. A non-linear least square function was considered in the curve
fitting. Each DL function can fit the time series of polarization combinations or NDVI for
one growing season, approximately one year for forests, so the time series were divided by
year during the DL curve fitting.

The FT, the inverse FT, and the curve fitting process of the DL were performed in
Python 3.8. The FT and the inverse FT were conducted by NumPy [44], while the curve
fitting was conducted by a least-squared optimization method from SciPy [45].

To facilitate the comparison of phenological phases extracted by this research and
the phenological metrics in the PhenoCam Level 5 product, the same dynamic threshold
method was applied to extract the phenological metrics, for each growing period or falling
period, 50% of its amplitude was set as the threshold [26]. Figure 2 shows the curve fitting
and the extracting of phenological metrics. The first day, when the data increase exceeded
the threshold, was marked as SOS, and the first day when the data decreased below the
threshold was marked as EOS. Then, the correlation R2 values between the estimated
phenological dates from S1 backscatter, S2 NDVI and PhenoCam Gcc were used to evaluate
the reliability of the phenological metrics obtained from different techniques. Figure 3
summarizes the forest phenology extracting and evaluation.
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3. Results

Figure 4a,c show the S1 dual-polarization temporal profiles of one representative
DB site (D02.SCBI). VV polarization displayed no obvious seasonal variation (annual
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fluctuation is less than 1 dB), while the VH polarization showed a decrease in spring (−12
to −14 dB) and an increase in autumn. Moreover, at the 6 EN sites where seasonal variations
were observed, the temporal profile of backscatter measurements showed different seasonal
trends than that of DB. Figure 4b illustrates an example of the backscatter coefficients of
the VV and VH in EN, which are similar in seasonal variations, while the amplitude of VH
is slightly higher than that of VV (approximately 3 dB and 1 dB, respectively). The peak
value of VV-VH in EN, therefore, appeared in the winter, and the valley value was in the
summer, opposite to that in DB, as shown in Figure 4b. Therefore, it would be necessary to
analyze the EN phenology with the negative form of band combinations as that for DB.
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As discussed above, the S1 C-band backscatter data of the two forest types showed
different seasonal patterns. In the following study, we explored the characteristics of
different polarization combinations for each forest. Overall, for DB, 12 of the 14 study
sites had significant seasonal variation in the time series of VH/VV, while 9 of them
showed significant seasonal variations in VV-VH. At the D01.BART and D11.CLBJ sites, no
significant seasonal patterns were detected on the time series of either of the polarization
combinations. For evergreen needleleaf forests, only 6 of 12 study sites witnessed seasonal
variations in the VV-VH time series, and only 3 of them observed seasonal patterns in the
VH/VV values. Among coniferous sites, only the D16.WREF and D19.BONA sites showed
significant annual changes in the time series of the two combinations at the same time.
S1 data exhibited higher accuracy in deciduous forest phenology, but for coniferous forests,
seasonal changes were less significant.

Figure 5 displays the VH/VV and VV-VH time series of a typical deciduous forest
site smoothed by FT and DL methods, as well as the Gcc time series obtained from the
PhenoCam Dataset. The time series of the two tested polarization combinations both
showed seasonal variations comparable to Gcc, but VV-VH showed less seasonal variability
over the growing season. Both band combinations could extract phenological metrics
consistent with the Gcc series. PhenoCam data in coniferous forest sites were partially
missing, and at sites with complete observed data, the VH/VV time series could not extract
sufficient phenological metrics to support the ability of phenological metric estimation.
Figure 6 shows the results of FT applied on VH/VV and VV-VH for one coniferous forest
site. It is obvious that the VV-VH graph followed a similar trend as Gcc, although the slope
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of rising and falling is relatively flat; however, the VH/VV combination had no obvious
fluctuation in value except for small increases in spring 2017 and summer 2019. Although
no literature was found discussing the sufficiency of the differencing combination, some
recent papers have all used this combination for phenological research [21,46], which is
consistent with the conclusion of this study.
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by FT; and (c): Gcc. Red lines: FT function; and dashed line: phenological metrics.



Remote Sens. 2022, 14, 674 9 of 14

An evaluation of the performance of the satellite-derived phenological metrics was
performed by comparison to those obtained from the in-situ PhenoCam dataset (Table 2).
In deciduous forest sites, the SOS extracted from VV-VH was strongly correlated with that
from Gcc (R2 values of 0.81 for FT and 0.75 for DL), which exceeded the correlation between
the NDVI and Gcc (R2 values of 0.63 for FT and 0.77 for DL), and the EOS extracted from
VV-VH through the DL method was also slightly higher than that from the NDVI.

Table 2. Correlation of Sentinel-1 and Sentinel-2 extracted phenological metrics to PhenoCam
extracted metrics (shown by R2 values).

Forest Type Index
SOS EOS

FT DL FT DL

DB
VH/VV 0.42 0.66 0.01 0.02
VV-VH 0.81 0.75 0.00 0.26
NDVI 0.63 0.77 0.17 0.15

EN
VH/VV 0.14 0.07 0.07 0.20
VV-VH 0.30 * 0.20 0.20 0.01
NDVI 0.25 0.03 0.35 0.00

* Negative correlation.

Figures 7 and 8 show the relationships between the in-situ and satellite remote sensing
for the extracted phenological metrics. Generally, for deciduous forests, VV-VH had a
higher relationship with Gcc, and VH/VV behaved the worst among the calculated indices.
For coniferous forest, it is remarkable that the SOS derived from VV-VH using FT had
a negative correlation with Gcc phenology, but this negative correlation did not occur
when using DL in estimating SOS based on the same data. Additionally, VH/VV cannot
effectively extract phenological phases regardless of whether FT or DL was applied as
the smoothing algorithm. Due to the lack of PhenoCam data at coniferous forest sites,
the correlation between S1 and S2 phenological metrics was also extracted (Table 3). The
SOS of DB derived from S1 backscatter is closely related to that of S2 NDVI, with the
highest R2 value of 0.72 for VH/VV processed by DL. The EOS of DB and EN both had low
correlations with those from the NDVI (R2 value close to 0), and the SOS extracted from
VV-VH still had a negative correlation with that from the NDVI.
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Figure 8. Correlations of phenological metrics in day of year between PhenoCam (x-axis) and satellite
remote sensing (y-axis) in coniferous forests. (a,e): SOS extracted by FT; (b,f): EOS extracted by FT;
(c,g): SOS extracted by DL; and (d,h): EOS extracted by DL. Red lines: VV-VH; and green lines: NDVI.

Table 3. Correlation between Sentinel-1 and Sentinel-2 NDVI extracted phenological metrics (shown
by R2 values).

Forest Type Index
SOS EOS

FT DL FT DL

DB
VH/VV 0.30 0.72 0.01 0.00
VV-VH 0.61 0.50 0.00 0.10

EN VV-VH 0.10 * 0.35 0.01 0.01
* Negative correlation.

4. Discussion

Our results confirmed the potential of S1 for monitoring deciduous forest phenol-
ogy [1], and, more importantly, we also discovered quite different performances for the
coniferous forest phenology. These were possibly caused by the difference in SAR po-
larization backscattering behavior between different forests. For deciduous forests, the
absorption and forward scattering of radar signals by foliage are more than that of backscat-
tering [47]; therefore, the backscattering decreases significantly during the leaf-on period,
which is consistent with the discovery of this research. Furthermore, it has also been dis-
cussed that the co-polarization of the C-band (VV of S1) is related to the vertical structure
of forests [17–19], while cross-polarization (VH of S1) is related to forest canopy volume.
It can therefore be explained that no signal variations occurred in the vertical structure,
while the VH backscattering decreased rapidly because of the foliage dynamics. This dif-
ference causes seasonal variation in the ratio and differencing combinations and indicates
the strong potential of S1 data to estimate the phenology of deciduous broadleaf forest.
The amplitude of VH was higher than VV in 6 out of 12 coniferous sites in this study,
but Dostálová et al. [48] and Frison et al. [1] pointed out that the amplitude of VV was
higher than that of VH in their research (2.40 dB for VV and 2.08 dB for VH [48]). One
possible explanation for this inconsistency could be the difference in the types of coniferous
forests studied. Based on visual inspection of images in PhenoCam Level 2 products, the
coniferous forests studied in this research are possible types with short needles, such as
spruces and short-leaf pines, while the VH backscatter of coniferous forests was negatively
correlated with the length of needle leaves [47], and this can be the reason for the amplitude
of VH backscatter exceeding that of VV. Because of the negative correlation between the VH
polarization and needle length, the polarization combinations may show different seasonal
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patterns among the forest types and may not show obvious seasonal variation when the
amplitude of VH is close to that of VV, and this may be the reason for the 6 sites that did
not show significant variations in VV-VH. Therefore, further research is required on the
potential of S1 data for monitoring coniferous forest phenology.

Previous studies have shown the stability of the NDVI for phenological studies [49]. A
recent study also indicated that the phenological estimation results for comprehensive veg-
etation types based on S1 C-band backscatter are less accurate than those of S2 NDVI [20].
This study partly concurs with their conclusion about coniferous forest phenological es-
timation. The unexplained negative SOS correlation between S1 and PhenoCam and the
instability of the VV-VH profile indicates that the tested algorithm in this research may
not be suitable for the extraction of coniferous forest phenology. Therefore, S2 data are
more suitable for large-scale phenological observations of coniferous forests. For deciduous
forest sites, S1 data showed a higher accuracy of phenological estimation than S2 data.
Although seasonal variations could not be extracted stably from all study sites based on
S1 signal profiles, they still showed better continuity in time series than S2 NDVI results
because optical remote sensing satellites can be affected by cloud coverage and cause the
loss of data for a continuous period. Generally, although S2 performs better than S1 on
coniferous forest phenological estimation, the continuity of S1 data was clearly better than
S2 and will have better research potential.

In this research, the SOS extracted from satellite data had a satisfying correlation
with the rising transition date of Gcc, but the correlation of EOS was relatively poor. We
suggest that this may be caused by the difference in seasonal variation drivers between
SAR backscattering, NDVI, and Gcc, which may have nonlinear relationships. To be clear,
C-band backscatters are affected by canopy structures [17–19], NDVI is affected by leaf
microstructures, while Gcc is influenced by leaf greenness, leaf area index, and pigmenta-
tion [49]. Previous work also discovered the inconsistency between Gcc time series and VI
time series at the end of the growing season and listed some possible explanations [32,49,50].
This could be the main reason for the low accuracy of EOS estimation in this research but
cannot completely explain why the EOS correlation was significantly lower than that in
other studies. The noise in the S1 time series and the difference in the smoothing algorithm
used (this research applied FT and DL, while PhenoCam applied spline interpolation)
could also play a minor role. Although the same smoothing algorithm and phenological
extraction algorithm were applied, the coherence between the S1 polarization combination
and S2 NDVI was not satisfactory for EOS and evergreen needleleaf forests (Table 3), which
might also be because of the difference in the driving factors of seasonal variation. However,
limited by research conditions, no further investigation or development was carried out on
this aspect.

Affected by environmental variables such as weather and temperature, this research
did not obtain sufficient remote sensing data of coniferous forest, while the phenological
measurements in PhenoCam products were also missing. Therefore, the statistical analysis
for the accuracy of coniferous forest phenology estimation is not reliable to some degree.
In future research, more near-surface remote sensing data can be introduced for quantita-
tive analysis, and in-situ data can be collected to enrich the phenological measurements
when necessary. Further smoothing methods such as the Savitzky-Golay filter would be
considered in future studies to improve the curve fitting results.

5. Conclusions

By exploring remote sensing data from 14 deciduous broadleaf forest sites and 12 ever-
green needleleaf forest sites, this research analyzed the difference in seasonal variations in
the S1 backscatter coefficient between deciduous forest and coniferous forest and assessed
their accuracy to estimate forest phenology. The co-polarization of the two forests is both
positively correlated with the forest vertical structure and follows similar variations, while
the cross-polarization differs. During the leaf-on period, the foliage of deciduous forests
can absorb and front scatter the cross-polarization signals, which causes a decrease in
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backscattering. Coniferous forests do not show significant foliage dynamics, but the annual
amplitude of the cross-polarization is possibly negatively correlated with the length of
needle leaves, which may cause instability in seasonal variation of VV-VH signals. We also
discovered that both VH/VV and VV-VH can be exploited to monitor deciduous forest
phenology, and VV-VH is more stable in annual amplitudes and performs better at conifer-
ous forest sites. Although the time series can satisfactorily characterize seasonal variations,
the satellite data performed poorly in extracting EOS compared with Gcc measurements.
Further research can focus on exploring the non-linear relationships of phenological re-
trieval between different data sources. Overall, S1 backscatter measurements can better
characterize the SOS of DB but are not satisfactory for EOS of DB and EN phenology.
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