
����������
�������

Citation: Reedha, R.; Dericquebourg,

E.; Canals, R.; Hafiane, A.

Transformer Neural Network for

Weed and Crop Classification of High

Resolution UAV Images. Remote Sens.

2022, 14, 592. https://doi.org/

10.3390/rs14030592

Academic Editor: Jianxi Huang

Received: 12 November 2021

Accepted: 19 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Transformer Neural Network for Weed and Crop Classification
of High Resolution UAV Images

Reenul Reedha 1, Eric Dericquebourg 1,*, Raphael Canals 2 and Adel Hafiane 1

1 INSA CVL, University of Orleans, PRISME Laboratory EA 4229, 18022 Bourges, France;
reenul.reedha@insa-cvl.fr (R.R.); adel.hafiane@insa-cvl.fr (A.H.)

2 INSA CVL, University of Orleans, PRISME Laboratory EA 4229, 45067 Orleans, France;
raphael.canals@univ-orleans.fr

* Correspondence: eric.dericquebourg@insa-cvl.fr

Abstract: Monitoring crops and weeds is a major challenge in agriculture and food production today.
Weeds compete directly with crops for moisture, nutrients, and sunlight. They therefore have a
significant negative impact on crop yield if not sufficiently controlled. Weed detection and mapping
is an essential step in weed control. Many existing research studies recognize the importance of
remote sensing systems and machine learning algorithms in weed management. Deep learning
approaches have shown good performance in many agriculture-related remote sensing tasks, such as
plant classification, disease detection, etc. However, despite the success of these approaches, they still
face many challenges such as high computation cost, the need of large labelled datasets, intra-class
discrimination (in growing phase weeds and crops share many attributes similarity as color, texture,
and shape), etc. This paper aims to show that the attention-based deep network is a promising
approach to address the forementioned problems, in the context of weeds and crops recognition with
drone system. The specific objective of this study was to investigate visual transformers (ViT) and
apply them to plant classification in Unmanned Aerial Vehicles (UAV) images. Data were collected
using a high-resolution camera mounted on a UAV, which was deployed in beet, parsley and spinach
fields. The acquired data were augmented to build larger dataset, since ViT requires large sample
sets for better performance, we also adopted the transfer learning strategy. Experiments were set out
to assess the effect of training and validation dataset size, as well as the effect of increasing the test
set while reducing the training set. The results show that with a small labeled training dataset, the
ViT models outperform state-of-the-art models such as EfficientNet and ResNet. The results of this
study are promising and show the potential of ViT to be applied to a wide range of remote sensing
image analysis tasks.

Keywords: computer vision; deep learning; self-attention; vision transformers; remote sensing; drone;
image classification; agriculture

1. Introduction

Agriculture is at the heart of scientific evolution and innovation to face major chal-
lenges for achieving high yield production while protecting plants growth and quality to
meet the anticipated demands on the market [1]. However, a major problem arising in
modern agriculture is the excessive use of chemicals to boost the production yield and to
get rid of unwanted plants such as weeds from the field [2]. Weeds are generally considered
harmful to agricultural production [3]. They compete directly with crop plants for water,
nutrients and sunlight [4]. Herbicides are often used in large quantities by spraying all
over agricultural fields which has, however, shown various concerns like air, water and
soil pollution and promoting weed resistance to such chemicals [2]. If the rate of usage
of herbicides remains the same, in the near future, weeds will become fully resistant to
these products and eventually destroy the harvest [5]. This is why weed and crop control
management is becoming an essential field of research nowadays [6].

Remote Sens. 2022, 14, 592. https://doi.org/10.3390/rs14030592 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030592
https://doi.org/10.3390/rs14030592
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9100-7539
https://orcid.org/0000-0003-3185-9996
https://doi.org/10.3390/rs14030592
https://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/14/3/592?type=check_update&version=1


Remote Sens. 2022, 14, 592 2 of 20

Automated crop monitoring system is a practical solution that can be beneficial both
economically and environmentally. Such a system can reduce labour costs by making use
of robots to remove weeds and hence minimising the use of herbicides [7]. The foremost
step to an automatic weed control system is the detection and mapping of weeds on
the field which can be a challenging part as weeds and crop plants often have similar
colours, textures, and shapes [4]. The use of Unmanned Aerial Vehicles (UAVs) has proved
significant results for mapping weed density across a field by collecting RGB images ([8–12])
or multispectral images ([13–17]) covering the whole field. As UAVs fly over the field at an
elevated altitude, the images captured cover a large ground surface area and these large
images can be split into smaller tiles to facilitate their processing ([18–20]) before feeding
them to learning algorithms to identify and classify a weed from a crop plant.

In the agricultural domain, the main approach to plant detection is to first extract
vegetation from the image background using segmentation and then distinguish crops
from the weeds [21]. Common segmentation approaches use multispectral information to
separate the vegetation from the background (soil and residuals) [22]. However, weeds and
crops are difficult to distinguish from one another even while using spectral information
because of their strong similarities [23]. This point has also been highlighted in [6], in which
the authors reported the importance of using both spectral and spatial features to identify
weeds in crops. In traditional machine learning approaches, features are handcrafted and
then algorithms like support vector machines (SVM) are used to generate discriminative
models. For example, the authors in [24,25] used this method to detect weeds in potato
fields. Literature reviews of this type of approach for weed detection can be found in [26,27].

Classical machine learning approaches depend on feature engineering, where one has
to design feature extractors, which generally performs well on small databases but fails on
larger and varied data. In contrast, deep learning (DL) approaches rely on learning feature
extractors and have shown much better performance compared to traditional methods.
Therefore, DL becames an essential approach in image classification, object detection and
recognition [28,29] notably in the agricultural domain [30]. DL models with architectures
based on Convolutional Neural Network (CNN), have been applied to various domains as
they yield high accuracy for image classification and object detection tasks [31–33]. CNN
uses convolutional filters on an image to extract important features to understand the object
of interest in an image with the help of convolutional operations covering key properties
such as local connection, parameters (weight) sharing and translation equivariance [28,34].
Numerous papers covering weed detection or classification make use of CNN-based model
structures [35–37] such as AlexNet [32], VGG-19, VGG-16 [38], GoogLeNet [39], ResNet-50,
ResNet-101 [33] and Inception-v3 [40].

On the other hand, attention mechanism has seen a rapid development particularly
in natural language processing (NLP) [41] and has shown impressive performance gains
when compared to previous generation of models [42]. In vision applications, the use of
attention mechanism has been much more limited, due to the high computational cost
as the number of pixels in an image is much larger than the number of units of words
in NLP applications. This makes it impossible to apply standard attention models to
images. A recent survey of applications of transformer networks in computer vision can
be found in [43]. The recently proposed vision transformer (ViT) appears to be a major
step towards adopting transformer-attention models for computer vision tasks [44]. Where
image patches are considered as units of information for training, whereas CNN-based
methods operate on image pixel level. ViT incorporates image patches into a shared space
and learns the relation between these patches using self-attention modules. Given massive
amounts of training data and computational resources, ViT was shown to surpass CNNs in
image classification accuracy [44]. Vision transformer models have not been explored yet
for the task of weeds and crops classification of high resolution UAV images. To our best
knowledge, there is no study that has examined their potential for such a task.

In this paper, we propose a methodology to automatically recognize weeds and crops
in drone images using the vision transformer approach. We set up an acquisition system
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with a drone and a high resolution camera. The images were captured in real-world
conditions on plots of different crops: red leaf beet, green leaf beet, parsley and spinach.
The main objective was to study the paradigm of transformers architectures for specific
tasks such as plant recognition in UAV images, where labeled data are not available in large
quantities. Data augmentation and transfer learning were used as a strategy to fill the gap
of labeled data. To evaluate the performance of the self-attention mechanism via vision
transformers, we fluctuated the proportions of data used for training and for testing within
cross-validation scheem. The contributions are summarized in the following points:

• Low-altitude aerial imagery based on UAVs and self-attention algorithms for crop
management.

• First study to explore the potential of transformers for classification of weed and crop
images.

• Evaluation of the generalization capabilities of deep learning algorithms with regard
to train set reduction, in crop plants classification task.

The rest of the paper is organised as follows: Section 2 presents the materials and
methods used as well as a brief description of the self-attention mechanism and the vision
transformer model architecture. The experimental results and analysis are presented in
Sections 3 and 4. We discuss the results in Section 5. Section 6 summarizes our study and
provides some perspectives.

2. Materials and Methods

This section outlines the acquisition, preparation and labeling of the dataset acquired
using a high resolution camera mounted on a UAV, and describes both: the self-attention
paradigm and the vision transformer model architecture.

2.1. Image Collection and Annotation

The study area is composed of crop fields of beet, parsley and spinach located in the
Centre-Val de Loire Region, in France. It is a highly agricultural region as it presents many
pedo-climatic advantages: the region has limited rainfall and clay-limestone soils with
good filtering capacity. Irrigation is also offered on 95% of the plots, enabling controlled
water conditions.

To survey the study area, a “Starfury”, Pilgrim UAV was equipped with a Sony ILCE-
7R, 36 mega pixel camera as shown in Figure 1. The camera is mounted to the drone
using a 3-axis stabilized brushless gimbals in order to keep the camera axis stable even
during strong winds. The drone flight altitude was respectively of 30 m for the beet field
and 20 m for the parsley and spinach fields. These altitudes where selected to minimize
drone flight times while maintaining sufficient image quality. The beet plants being more
developed, a higher altitude was selected. The aerial image acquisitions of the 3 fields were
also conducted at different times depending of the weed levels reported by ground field
experts. Acquiring images over multiple days resulted in adding variability in the images,
as the beet field was flown by a light morning fog and the parsley and spinach fields under
sunnier weather conditions.

The drone followed a specific flight plan and the camera captured RGB images at
regular intervals as shown in Figure 2 and Figure 3. The images captured have respectively
a minimum longitudinal and lateral overlapping of 70% and 50–60% depending on the
fields vegetation coverage and homogeneity, assuring a better and complete coverage of
the whole field of 4 ha (40,000 m2) and improving the accuracy of the orthorectified image
of the field.
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(a) (b)

Figure 1. Apparatus used for data acquisition. (a) Starfury Drone; (b) Sony ILCE-7R Camera.

Figure 2. Overlay of the orthophoto on google earth of the spinach plot (left) and the flight plan
(right) across a spinach field (the images are taken along the yellow lines at regular intervals to ensure
sufficient overlapping).

Figure 3. Example of image captured from a spinach study site.

The data were manually processed using the annotation tool LabelImg (https://github.
com/tzutalin/labelImg, accessed on 7 September 2021) on the tiles of the orthorectified
image. Weeds and crops were annotated using bounding boxes, which may have various
sizes and contain a portion of the object of interest. We extract the crop and weed image
patches from the bounding boxes. Then, the image patches are resized to 64 × 64 pixels.
This image size was chosen because the bounding box dimensions were centered around
64 × 64 pixels, which may be proportionally related to the flight height of the UAV and the
size of the crops observed in the study fields. Resizing the patches to the average bounding
box dimensions also limits width and height distortions in the input images. We divided
the crop and weed labels into 5 classes as shown in Figure 4. We have a class for each of the
studied crops, an overall weed class, and an off-type green leaf beet class.

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
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(a) (b)

(c) (d)

(e)

Figure 4. This overview shows sample images patches of all 5 classes of our custom dataset. The
images measure 64 × 64 pixels. Each class contains 3200 to 4000 images. (a) Weeds; (b) Beet;
(c) Off-type green leaves beet; (d) Parsley; (e) Spinach.

2.2. Image Preprocessing

Manual image labeling being a very time consuming task which implying huge labor
costs, therefore, we limited the manual labeling to 4000 samples for each crop and weed
classes. Off-type green leaf beet is not as well represented as the other 4 classes, with only
653 labeled samples. In order to tackle this class imbalance, we upsampled four times the
off-type beet class up to 3265 samples, by performing random flips and rotations. Resulting
in a dataset distribution of 16.9% of off-type beet plants, and equally 20.8% images for the
four other classes as presented in Table 1, for a total of 19,265 images of size 64 × 64.

Table 1. Class Distribution.

Class Number

Weed 4000

Beet 4000

Off-type Beet 3265

Parsley 4000

Spinach 4000

Images have been rescaled to 0–1 range and then normalized by scaling the pixels
values to have a zero mean and unit variance before being divided into training, validation
and testing sets.

During the training phase, we employed data augmentation strategies to enrich the
datasets as it plays an important role in deep learning [45]. The augmentations applied
can be summed up as random resized crop, colour jitters and rand augments [46]. This
technique is implemented using Keras ImageDataGenerator, generating augmented images
on the fly.Data augmentations were used to help improve the robustness of the model
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and generalisation capabilities by expanding the training dataset and simulate real-world
agricultural scenarios as they can vary a lot depending on the soil, environment, season
and climate conditions.

2.3. ViT Self-Attention

The attention mechanism is becoming a key concept in the deep learning field [47].
Attention was inspired by the human perception process where the human tends to focus on
parts of information, ignoring other perceptible parts of information at the same time. The
attention mechanism has had a profound impact on the field of natural language processing,
where the goal was to focus on a subset of important words. The self-attention paradigm
has emerged from the concepts attention showing improvement in the performance of deep
networks [42].

Let us denote a sequence of n entities (x1, x2, . . . , xn) by X ∈ Rn×d, where d is the
embedding dimension to represent each entity. The goal of self-attention is to capture the
interaction amongst all n entities by encoding each entity in terms of the global contextual
information. This is done by defining three learnable weight matrices, Queries (WQ ∈
Rn×dq ), Keys (WK ∈ Rn×dk ) and Values (WV ∈ Rn×dv ). The input sequence X is first
projected onto these weight matrices to get Q = XWQ, K = XWK and V = XWV .

The attention matrix A ∈ Rn×dv indicates a score between N queries Q and KT keys
representing which part of the input sequence to focus on.

A(Q, K) = σ(QKT) (1)

where σ is an activation function, usually so f tmax(). To capture the relations among
the input sequence, the values V are weighted by the scores from Equation (1). Resulting
in [44],

Sel f Attention(Q, K, V) = A(Q, K) ·V

⇒ Sel f Attention(Q, k, V) = so f tmax(
QKT
√

dk
) ·V

(2)

where dk is dimension of the input queries.
If each pixel in a feature map is regarded as a random variable and the covariances

are calculated, the value of each predicted pixel can be enhanced or weakened based on
its similarity to other pixels in the image. The mechanism of employing similar pixels in
training and prediction and ignoring dissimilar pixels is called the self-attention mechanism.
It helps to relate different positions of a single sequence of image patches in order to gain a
more vivid representation of the whole image [48].

The transformer network is an extension of the attention mechanism from Equation (2)
based on the Multi-Head Attention operation. It is based on running k self-attention
operations, called “heads”, in parallel, and project their concatenated outputs [42]. This
helps the transformer jointly attend to different information derived from each head. The
output matrix is obtained by the concatenation of each attention heads and a dot product
with the weight WO. Hence, generating the output of the multi-headed attention layer. The
overall operation is summarised by the equations below [42].

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO

whereheadi = Attention(QWQ
i , KWK

i , VWV
i )

(3)

where WQ
i , WK

i , WV
i are weight matrices for queries, keys and values respectively and

WO ∈ Rhdv×dmodel .
By using the self-attention mechanism, global reference can be realised during the

training and prediction of models. This helps in reducing by a considerable amount training
time of the model to achieve high accuracy [44]. The self-attention mechanism is an integral
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component of transformers, which explicitly models the interactions between all entities
of a sequence for structured prediction tasks. Basically, a self-attention layer updates each
component of a sequence by aggregating global information from the complete input
sequence. While, the convolution layers’ receptive field is a fixed K× K neighbourhood
grid, the self-attention’s receptive field is the full image. The self-attention mechanism
increases the receptive field compared to the CNN without adding computational cost
associated with very large kernel sizes [49]. Furthermore, self-attention is invariant to
permutations and changes in the number of input points. As a result, it can easily operate
on irregular inputs as opposed to standard convolution that requires grid structures [43].

Figure 5. Attention mechanism on an image patch (left) containing weeds (in green) and beet plant
(in red). With the original image on the left and the attention map (right) obtained with ViT-B16
model. The attention map shows the model’s attention on the different plants: with a dark blue and
purple colour pixel representing the attention on the weeds and a light blue colour pixel representing
the beet plant.

Average attention weights of all heads mean heads across layers and the head in
the same layer. Basically, the area has every attention in the transformer which is called
attention pattern or attention matrix. When the patch of the weed image is passed through
the transformer, it will generate the attention weight matrix for the image patches (see
Figure 5). For example, when patch 1 is passed through the transformer, self-attention will
calculate how much attention should pay to others (patch 2, patch 3, . . . ). In addition,
every head will have one attention pattern as shown in Figure 6 and finally, they will
sum up all attention patterns (all heads). We can observe that the model tries to identify
the object (weed) on the image and tries to focus its attention on it (as it stands out from
the background).

An attention mechanism is applied to selectively give more importance to some of the
locations of the image compared to others, for generating caption(s) corresponding to the
image. In addition, consequently, this helps to focus on the main differences between weeds
and crops in an images and improves the learning of the model to identify the contrasts
between these plants. This mechanism also helps the model to learn features faster, and
eventually decreases the training cost [44].
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Figure 6. Attention map generated from layers 7 to 12 of the ViT-B16 model on an image of a weed.

2.4. Vision Transformers

Transformer models were major headway in NLP. They became the standard for
modern NLP tasks and they brought spectacular performance yields when compared to
the previous generation of state-of-the-art models [42]. Recently, it was reviewed and
introduced to computer vision and image classification aiming to show that this reliance
on CNNs is not necessary anymore in object detection or image classification and a pure
transformer applied directly to sequences of image patches can perform very well on image
classification tasks [44].

Figure 7 presents the architecture of the vision transformer used in this paper for
weed and crop classification. It is based on the first developed ViT model by Dosovitskiy
et al. [44]. The model architecture consists of 7 main steps. Firstly, the input image is split
into smaller fixed-size patches. Then each patch is flattened into a 1-D vector. The input
sequence consists of the flattened vector (2D to 1D) of pixel values from a patch of size
16 × 16.

For an input image,
(x) ∈ RH×W×C (4)

and patch size P, N image patches are created

(x)P ∈ RN×P×P×C (5)
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with
N =

HW
P× P

(6)

where N is the sequence length (token) similar to the words of a sentence, (H, W) is the
resolution of the original image and C is the number of channels [44].

Afterwards, each flattened element is then fed into a linear projection layer that will
produce what is called the “patch embedding”. There is one single matrix, represented as
‘E’ (embedding) used for the linear projection. A single patch is taken and first unrolled
into a linear vector as shown in Figure 8. This vector is then multiplied with the embedding
matrix E. The final result is then fed to the transformer, along with the positional embedding.
In the 4th phase, the position embeddings are linearly added to the sequence of image
patches so that the images can retain their positional information. It injects information
about the relative or absolute position of the image patches in the sequence. The next step
is to attach an extra learnable (class) embedding to the sequence according to the position
of the image patch. This class embedding is used to predict the class of the input image
after being updated by self-attention. Finally, the classification is performed by stacking a
multilayer perceptron (MLP) head on top of the transformer, at the position of the extra
learnable embedding that has been added to the sequence.

Figure 7. ViT model architecture based on original ViT model [44].

Figure 8. Positional embeddings as vector representations.



Remote Sens. 2022, 14, 592 10 of 20

3. Performance Evaluation

We made use of recent implementations of ViT-B32 and ViT-B16 models as well as
EfficientNet and ResNet models. The algorithms were built on top of a Tensorflow 2.4.1
and Keras 2.4.3 frameworks using Python 3.6.9. To run and evaluate our methods, we used
the following hardware; an Intel Xeon(R) CPU E5-1620 v4 3.50 GHz x 8 processor (CPU)
with 16 GB of RAM, and a graphics processing unit (GPU) NVIDIA Quadro M2000 with an
internal RAM of 4 GB under the Linux operating system Ubuntu 18.04 LTS (64 bits).

All models were trained using the same parameters in order to have an unbiased and
reliable comparison between their performance. The initial learning rate was set to 0.0001
with a reducing factor of 0.2. The batch size was set to 8 and the models were trained for
100 epochs with an early stopping after a wait of 10 epochs without better scores. The
models used, ViT-B16, ViT-B32, EfficientNet B0, EfficientNet B1 and ResNet 50 were loaded
from the keras library with pre-trained weights of “ImageNet”.

We limited the comparison of the ViT Based models with ResNet and EfficientNet
CNN architectures as they are widely used CNN architectures and have been applied to
various study domains. More specifically, the ResNet architecture [33] was the first CNN
architecture introducing residual blocks. Where the residual blocks use skip connections
between layers providing alternative paths for the gradient backpropagation, resulting
in improving accuracy. We selected the ResNet-50 version for the residual architecture
using 3-layer building blocks which yields better results compared to 2-layer building
blocks as used in ResNet-34. The second CNN architecture considered is the EfficientNet
architecture [50], the particularity of the EfficientNet neural network family is that is has
highly optimised parameters and yields equivalent or higher Top-1 results depending on
the version of the network used.

3.1. Cross-Validation

The experiments have been carried out using the cross-validation technique to ensure
the integrity and accuracy of the models. Cross-validation is a widely used technique for
assessing models as the performance evaluation is carried out on unseen test data [51], the
method also presents the advantage of being a low bias resampling method [52].

As our dataset classes are not perfectly balanced we applied stratified K-Fold. By
applying stratification, each randomly sampled fold will have an equal class distribution in
respect to the total dataset distribution. From these folds we then test the performance of
the models using the k-fold cross-validation leaving k folds as validation set.

To assess the performance of ViT models with respect to the selected CNN architec-
tures, we performed 3 workflows. First, we performed cross-validation with one validation
set (k = 1) to maximize the size of the training dataset and evaluate the performance at
a fixed test fold (see Figure 9). Second, we decreased the number of training folds and
increased the size of the validation set while keeping the same test fold. Finally, we re-
duced the number of training folds while maintaining a single validation fold (k = 1) and
increasing the size of the test set, to evaluate the predictive performance of the models
when trained on small data sets.

Using the stratified five-folds cross-validation leaving k folds as validation set (where
1 ≤ k ≤ 4), Figure 10 shows how the dataset is splitted with n = 5 and k = 2 where n
represents the total number of cross-validation folds, resulting in the training of 10 models.
Increasing the value of k, decreases the number of folds used for training and thus forces the
model to train on a smaller dataset. This helps to evaluate how well the models perform on
reduced training datasets and their capacities to extract features from fewer image samples.
The number of combination (splits) of the train-validation is as follows:

Cn
k =

n!
k!(n− k)!

(7)

where n is the number of folders and k is the number of validation folds.
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Figure 9. Stratified five-folds cross-validation, leaving one out for validation and the remaining 4
folds are used for training. Dark blue representing validation folds, light blue colour folds are used
as training set and yellow colour folds are used as testing set containing unprocessed images. This
generates 5 trained models.

Figure 10. Stratified five-folds cross-validation and leaving two out as validation set and the rest are
used for training resulting in 10 different models. Dark blue representing validation folds and light
blue colour folds are used as training set.
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For the third workflow, we conducted three experiments. The number of testing
images is increased for each experiment, consequently decreasing the number of training
images. In experiment 1, the dataset was split into 9633 training and 6421 testing images.
In experiment 2, the dataset was divided into 6422 training and 9633 testing images.
Experiment 3 contains only 3211 training images for 12,843 testing images. Each set up of
experiments is then trained using the cross-validation technique (see Figure 11).

Figure 11. Variation of training/validation set and testing image set for the 3 workflows. The
training/validation set is used for the cross-validation as shown in Figure 9.

3.2. Evaluation Metrics

In the collected dataset, each image has been manually classified into one of the
categories: weeds, off-type beet (green leaves beet), beet (red leaves), parsley or spinach,
called ground-truth data. By running the classifiers on a test set, we obtained a label for
each testing image, resulting in the predicted classes. The classification performance is
measured by evaluating the relevance between the ground-truth labels and the predicted
ones resulting in classification probabilities of true positives (TP), false positives (FP) and
false negatives (FN). We then calculate a recall measure representing how well a model
correctly predicts all the ground-truth classes and a precision representing the ratio of how
many of the positive predictions were correct relative to all the positive predictions.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(8)

The metrics used in the evaluation procedure were the precision, recall and F1-
Score [53], the latter being the weighted average of precision and recall, hence considering
both false positive and false negatives. Comparison studies have shown that these metrics
are relevant for evaluation of classification model performance [54].

These metrics were also selected as in opposition to accuracy, they are invariant to
class distribution. This invariance property is due to the consideration of only TP and not
TN predictions in the computation of precision and recall [55]. Not taking TNs into account
can sometimes cause issues in particular classification tasks where TNs have a significant
impact in certain domains. This is not the case in our agricultural application, since an
example of a TN would be to predict a crop sample as a weed, when it is more desirable
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to not classify a weed as a crop. In other words, it is better to over-detect weeds than to
under-detect them.

F1− Score = 2× (Recall × Precision)
(Recall + Precision)

(9)

Since we used cross-validation techniques to evaluate the performance of each model,
we calculated the mean (µ) and standard deviation (σ) of the F1-scores of the model in
order to have an average overview of its performance. The equations used are presented
below:

µF1−Score =
∑Ni=1(F1− Scorei)

N

σF1−Score =

√
∑Ni=1(F1− Scorei − µF1−Score)2

N

(10)

whereN is the number of splits generated from the cross validation procedure. For instance,
leave one out generates five splits (N = 5) using Equation (7) as shown in Figure 9.

As for the loss metrics, we used the cross-entropy loss function between the true
classes and predicted classes.

4. Results

CNN-Based architectures, ResNet and EfficientNet were trained along the ViT-B16
and ViT-B32 in order to compare their performance on our custum dataset comprising of
5 classes (weeds, beet, off-type beet, parsley and spinach). All models have been trained
using the five-folds cross-validation leaving one out technique. With this technique, the
models were trained using 12,844 samples (66.6 %), validated with 3211 (16.7 %) and tested
on 3210 (16.7 %) image samples. The accuracies and losses of the models tend to be flat
after the 30th epoch. The average F1-Scores and losses obtained for the considered models
are reported in Table 2.

Table 2. Comparison between state-of-the-art CNN-based models and vision transformer models on
agricultural image classification. The F1-Score has been calculated using Equation (10) with N = 5.

Model µF1−Score µLoss

ViT B-16 0.994 ± 0.002 0.656

ViT B-32 0.992 ± 0.002 0.672

EfficientNet B0 0.987 ± 0.005 0.735

EfficientNet B1 0.989 ± 0.005 0.720

ResNet 50 0.992 ± 0.005 0.716

From these experimental results, we notice the outperformance of the ViT models
compared to the CNN models, with a best F1-Score of 99.4 % for the ViT B-16 model
although the ViT B-32 models’s performance is very close behind at 99.2 % with a minimum
loss of 0.656. The EfficientNet and ResNet models fall behind compared to the ViT models
but with high scores nevertheless, having been trained on a large dataset (12,844 training
images). The experimental results confirm vision transformers high performance compared
to state of the art models ResNet and EfficientNet as presented by [44]. Although all
network families obtain high accuracy and F1-Score, the classification of crops and weed
images using vision transformer yields the best prediction performance.

Influence of the Training Set Size

In the next stage, we tried to answer the question of which network family yields the
best performance with a smaller training dataset. We did so by carrying out a five-folds
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cross-validation leaving k out where k is a varying parameter from 1 to 4 while keeping the
testing set to 3210 images to evaluate the performance of the models.

Varying the number of training images has a direct influence on the performance
of the trained ViT model, as shown in Table 3. The results obtained with the five-folds
cross-validation, leaving two out as a validation set (k = 2) are promising, with a mean
F1-Score of 99.28 % and a standart deviation of 0.1% showing a very small decrease in the
performance of the ViT B-16 model while reducing the number of training images. We note
a very light decrease of 0.1% in the accuracy of the ViT B-16 model while training only with
2/5 of the dataset (6422 images, k = 3) and validating on the remaining 3/5. With k = 4,
the ViT B-16 model was trained with a smaller dataset of 3211 images (75% reduction), and
its performance decreased as expected but by a small margin of only 0.44 % for an overall
accuracy of 99.63 %. These experimental results show how well the vision transformer
models perform with small datasets and transfer learning.

We also compared the performance of the ViT B-16 model to CNN-based models
ResNet and EfficientNet with a deacreasing number of training images. The experimental
results of their F1-Scores are reported in Figure 12. We notice a deacrease in the F1-Scores
of the ResNet50, EfficientNet B0 and EfficientNet B1 with a reduction in the number of
training images. In contrast, the ViT B-16 model keeps its high performance in the set of
experiments, specially with the smallest number of training images, achieving an F1-Score
of 99.07%. On the other hand, ResNet 50 scores an accuracy of 97.54%, EfficientNet B0 scores
96.53% and EfficientNet B1 with the worst score of 95.91%. EfficientNet B1 has the worst
decrease in performance of 3.07% (from 98.98%—with 12,844 training images to 95.91%—
with 3211 training images). Even though EfficientNet B1 achieves better results with the
largest dataset (98.98% accuracy) than EfficientNet B0 (98.78%), its performance falls off the
most with the smallest train dataset. While the F1-Scores of ResNet and EfficientNet B0
and B1 declines with a reduction of training images by 25% (from 12,844 images to 9633
images), the ViT B-16 model still achieves a high performance of 99.28% (a slight decrease
from 99.44%). These experimental results show the outperformance of vision transformer
models over current CNN-based models ResNet and EfficientNet in agricultural image
classification when dealing with small training datasets.

Furthermore, we compared the performance of the models with by varying the number
of testing images while using a 5-folds leaving one fold out cross-validation technique. The
ViT results for each class are reported in Table 4. It can be observed that there is a slight
decrease in performance along the reduction of the train set and the increase of the test
set, indicating a good stability of ViT with the variation of the dataset size. As shown in
Figure 13, there is a notable decrease in the F1-Scores of the four models while testing on
9632 and 12,843 images and training with only 33.3% and 16.7% of the labelled dataset. On
the third experiment, models were trained on only 3211 images and also validating on 3211
images, which explains the decrease in their performances. Even though all models have a
decrease in their F1-Scores with an increasing number of testing images, the ViT B-16 model
still achieves higher performance than EfficientNet B0, EfficientNet B1 and ResNet50. The
ViT B-16 model had the smallest decrease in performance from 99.44% (from 3210 testing
images and 12,844 training images) to 98.63% (from 12,844 testing images an 3211 training
images).
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Table 3. Comparison of classification reports generated from 5-Fold cross-validation leaving k folds out (where k-folds stands for the number of validation folds)
with 1 ≤ k ≤ 4. k = 1 represents the most number of training images (12,844) and k = 4 represents the lowest number of training images (3211). The average precision,
recall and F1-Score, obtained using Equation (10) are reported for each class obtained with the ViT B-16 model.

Classes

k-Folds k = 1 k = 2 k = 3 k = 4

µPrecision µRecall µF1−Score µPrecision µRecall µF1−Score µPrecision µRecall µF1−Score µPrecision µRecall µF1−Score

Weeds 0.996 0.979 0.988 ± 0.001 0.989 0.980 0.984 ± 0.002 0.988 0.972 0.980 ± 0.001 0.984 0.977 0.981 ± 0.001
Off-Type Beet 0.977 0.996 0.986 ± 0.001 0.978 0.987 0.983 ± 0.002 0.969 0.986 0.977 ± 0.002 0.973 0.980 0.977 ± 0.001

Beet 0.998 1.000 0.999 ± 0.000 0.998 0.999 0.998 ± 0.003 0.998 1.000 0.999 ± 0.003 0.997 0.998 0.998 ± 0.001
Parsley 1.000 1.000 1.000 ± 0.000 0.999 1.000 0.999 ± 0.003 0.999 1.000 0.999 ± 0.003 0.999 1.000 0.999 ± 0.003
Spinach 0.999 1.000 0.999 ± 0.003 1.000 1.000 1.000 ± 0.000 1.000 1.000 1.000 ± 0.000 0.999 1.000 0.999 ± 0.001

Table 4. Comparison of classification reports generated from 5-Fold cross-validation leaving k = 1 fold out while reducing training and augmenting test sample size.
Where experiment 3 represents the largest test sample size Figure 11. The average precision, recall and F1-Score are reported for each class obtained with the ViT
B-16 model.

Classes

Test Fold Experiment 1 Experiment 2 Experiment 3

µPrecision µRecall µF1−Score µPrecision µRecall µF1−Score µPrecision µRecall µF1−Score

Weeds 0.993 0.980 0.987 ± 0.005 0.987 0.981 0.984 ± 0.006 0.985 0.957 0.971 ± 0.004
Off-Type Beet 0.978 0.992 0.985 ± 0.006 0.979 0.984 0.982 ± 0.005 0.954 0.979 0.966 ± 0.003

Beet 0.998 1.000 0.999 ± 0.000 0.997 0.999 0.998 ± 0.003 0.994 0.999 0.997 ± 0.001
Parsley 1.000 1.000 1.000 ± 0.000 1.000 1.000 1.000 ± 0.000 0.997 1.000 0.998 ± 0.001
Spinach 1.000 1.000 1.000 ± 0.000 1.000 1.000 1.000 ± 0.000 1.000 1.000 1.000 ± 0.000
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Figure 12. Comparison between ViT B-16, EfficientNet B0, EfficientNet B1 and ResNet50 on their
respective performance with different number of training images.

Figure 13. Comparison between ViT B-16, EfficientNet B0, EfficientNet B1 and ResNet50 on their re-
spective performance with different number of testing samples while keeping 5-Fold cross-validation
leaving one fold out as validation set.

5. Discussion

This study aimed to deploy and analyze self-attention deep learning approaches, in the
context of a drone-based weed and crop recognition system. The classification models were
evaluated on our aerial image dataset to select the best architecture. As discussed earlier,
the ViT B-16 architecture achieved better performance compared to the CNN architectures.
This observation implies that the self-attention mechanism may be more effective for weed
identification because image patches are interpreted as units of information, whereas with
CNN-based models, information is extracted via convolutional layers. Another observed
advantage of interpreting images as information units, via self-attention, is the stable
performance of the visual transformation model while reducing the number of training
samples and increasing the number of test samples.
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In the first workflow, all models studied achieved high accuracies and F1 scores,
indicating that with a sufficient number of examples for each class, the difference in
performance is not significant, and that the variations may be due to the dataset used for
the experiments. Unfortunately, creating datasets large enough for weed identification by
UAV, can be difficult depending on the crops being studied. Weeds must be removed from
the field quickly by the grower and the costs of acquiring aerial images by drone can be
high depending on the sensor and the area to be photographed.

In response to this difficulty, and in order to optimize future data acquisition cam-
paigns. We decreased the number of training samples and increased the number of vali-
dation samples (Workflow 2). Reducing the number of training images while increasing
the number of validation samples will force the model to extract general features for the
images and track its training progress with a large number of validation samples. As can
be observed in Figure 12, the performance of CNN models is proportional to the number
of training samples while the performance of ViT is more stable. Moreover, the F1-score
for each class predicted using the self-attention mechanism decreases only slightly and
uniformly for all five classes, and does not decrease only for specific classes (Table 3). In
addition to decreasing the training samples, in workflow 3 we increase the number of test
samples and keep a fixed number of validation samples. Increasing the number of test sam-
ples from 3210 to 12,843 unseen samples simulates the behavior of the model as it would
be in a production inference, as the larger the test set, the more representative it is. In this
experimental setup, as summarized in Figure 13, the ViT B-16 model also maintains steady
metric scores as the decrease for the CNN is greater the higher the number of test samples.

We have showed that applied to our five class agricultural dataset for weed iden-
tification, the ViT B-16 architecture pre-trained on ImageNet dataset outperforms other
architectures and is more robust to a varying number of samples in the dataset. The ap-
plication of the ViT for weed classification shows promising results for a limited number
of classes. In futur experiments, we will add extra classes to cover more number of crop
types. Adding extra classes will probably lower the classification top-1 score especially if
classifying similar plants in shape and color. But should still yield better results than CNNs
as the ViT was shown to be more robust.

There are also some limitations in the acquisition and preparation of the data sets.
First, the data augmentations used are large, especially for the off-type beet class, where
the rotation augmentations were applied before the training augmentations. On the other
hand, the other augmentations performed during training facilitate model convergence
and generalization by transforming the samples, which can represent different variations
in outdoor brightness, for example. This may ensure the generalization capabilities of
the models when the image acquisition conditions are similar to the augmentations per-
formed. If the image acquisition conditions are very different, the models could lose score
points, a most important environmental change may be photographing plants after a rain
where the plants will not have the same vigor/shape as when they are capturing sunlight.
Therefore, additional image acquisitions are planned for next season to address these
different conditions.

6. Conclusions

In this study, we used the self-attention paradigm via the ViT (vision transformer)
models to learn and classify custom crops and weed images acquired by UAV in beet,
parsley and spinach fields. The results achieved with this dataset indicate a promising
direction in the use of vision transformers with transfer learning in agricultural problems.
Outperforming current state-of-the-art CNN-based models like ResNet and EfficientNet,
the base ViT model is to be preferred over the other models for its high accuracy and its
low computation cost. Furthermore, the ViT B-16 model has proven better with its high
performance specially with small training datasets where other models failed to achieve
such high accuracy. This shows how well the convolutional-free, ViT model interprets
an image as a sequence of patches and processes it by a standard transformer encoder,
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using the self-attention mechanism, to learn patterns between weeds and crops images.
It is worth mentioning that certain findings of the current study do not support some
previous researches, where it is indicated the transformers perform better only with large
datasets. It is possible that the high performance obtained here with small dataset is due
to the low number of classes, transfer learning, and data augmentation. In this respect,
we come to conclusion that the application of vision transformer could change the way to
tackle vision tasks in agricultural applications for image classification by bypassing classic
CNN-based models. Despite these promising results, questions remain, such as the viability
of the vision-transformers in the recognition task after a significant change in the image
acquisition conditions in the fields (resolutions, luminosity, plant development phase, etc.),
large number of plant classes, etc. Further research should be undertaken to study these
aspects. In future works, we plan to use vision transformer classifier as a backbone in an
object detection architecture to locate and identify weeds and plants on UAV orthophotos,
with different acquisition conditions.
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