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Abstract: Sea SurfaceTemperature (SST) is a critical parameter for monitoring the marine environment
and understanding various ocean phenomena. While SST can be regularly retrieved from satellite
data, it often suffers from missing data due to various reasons including cloud contamination. In
this study, we proposed a novel two-step data fusion framework for generating high-resolution
seamless daily SST from multi-satellite data sources. The proposed approach consists of (1) SST
reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using the SSTs
derived from two satellite sensors (i.e., Moderate Resolution Imaging Spectroradiometer (MODIS)
and Advanced Microwave Scanning Radiometer 2(AMSR2)), and (2) SST improvement through
data fusion using random forest for consistency with in situ measurements with two schemes
(i.e., scheme 1 using the reconstructed MODIS SST variables and scheme 2 using both MODIS and
AMSR2 SST variables). The proposed approach was evaluated over the Kuroshio Extension in
the Northwest Pacific, where a highly dynamic SST pattern can be found, from 2015 to 2019. The
results showed that the reconstructed MODIS and AMSR2 SSTs through DINCAE yielded very good
performance with Root Mean Square Errors (RMSEs) of 0.85 and 0.60 ◦C and Mean Absolute Errors
(MAEs) of 0.59 and 0.45 ◦C, respectively. The results from the second step showed that scheme 2 and
scheme 1 produced RMSEs of 0.75 and 0.98 ◦C and MAEs of 0.53 and 0.68 ◦C, respectively, compared
to the in situ measurements, which proved the superiority of scheme 2 using multi-satellite data
sources. Scheme 2 also showed comparable or even better performance than two operational SST
products with similar spatial resolution. In particular, scheme 2 was good at simulating features
with fine resolution (~50 km). The proposed approach yielded promising results over the study area,
producing seamless daily SST products with high quality and high feature resolution.

Keywords: reconstruction; data fusion; machine learning; sea surface temperature

1. Introduction

Sea Surface Temperature (SST) is an important driver and tracer of the global at-
mosphere and ocean circulations in terms of air–sea interaction [1–4]. Satellite-derived
SST has been widely used in ocean studies due to its extensive spatiotemporal coverage,
such as the monitoring of oceanfront, eddy, and turbulence [5–9]. Two types of satellite
sensors have been used to retrieve SST: thermal infrared and passive microwave sensors.
Thermal infrared sensors (e.g., Advanced Very High-Resolution Radiometer (AVHRR) and
Moderate Resolution Imaging Spectroradiometer (MODIS)) provide relatively high spatial
(i.e., 1 km) and temporal (i.e., subdaily) resolution SST data. However, they often suffer
from cloud contamination, sun glint effect, and aerosols, resulting in missing data especially
in the Western Pacific Ocean. While passive microwave sensors (e.g., Advanced Microwave
Scanning Radiometer 2 (AMSR2)) are much less influenced by atmospheric conditions to
estimate SST, they provide relatively low spatial (i.e., 25 km) resolution data [10].
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Satellite-based SST often loses a large amount of data for various reasons mentioned
above, limiting the production of seamless daily SST from single satellite data sources.
Therefore, studies to reconstruct missing SST data have been actively conducted [11–18].
Several widely used seamless daily SST products are based on Optimal Interpolation (OI)
with data assimilation of multiple infrared and passive microwave satellite observations
and in situ measurements, which include global products from Danish Meteorological
Institute (DMI) on a grid scale of 0.05◦ and Operational Sea Surface Temperature and Sea
Ice Analysis (OSTIA) on a grid scale of 0.054◦ [16–19]. However, since such operational
products are based on the OI approach resulting in smoothed surface, they have a relatively
limited feature resolution [17]. Several processes such as outlier removals and smoothing
are conducted to improve the accuracy of the operational SST products, which often
degrade the spatial pattern of the products, even though 1 km SST data are assimilated in
the products [18]. The feature resolution of OI-based SST products is often greater than
100 km in horizontal resolution in the Power Spectral Density (PSD) analysis [15]. The
Multiscale Ultra-high-Resolution Sea Surface Temperature (MUR SST) provides the global
SST data on a 0.01◦ grid resolution and proves a relatively higher feature resolution than
other OI-based operational SST products [15]. While seamless daily SST products generate
high-quality SST fields for operational purposes, several error corrections for improving
the consistency with in situ measurements (e.g., buoys and ship measurements) have been
conducted [20].

In addition to OI, the Empirical Orthogonal Function (EOF) has been used to in-
terpolate satellite SST time series, demonstrating an acceptable performance (root mean
square error (RMSE) ~ 1.07 ◦C) [13,14]. Data Interpolate Empirical Orthogonal Function
(DINEOF) is one of the most cutting-edge reconstruction methods of geophysical ocean
parameters [21–24]. However, DINEOF has suffered from the smoothing of mesoscale
features due to the high missing rate of satellite data and the truncation of EOF [17,25]. Fur-
thermore, conventional OI and EOF approaches have numerous assumptions on linearity
in handling sparsely distributed data, which makes it hard to reflect complicated nonlinear
ocean dynamics during the interpolation process.

Recently, machine learning has emerged as a cutting-edge technology for the recon-
struction and estimation of ocean data, which can resolve the nonlinear relationship among
high-dimensional and heterogeneous data [26–33]. A variety of machine learning tech-
niques for reconstructing SST have been evaluated, including Artificial Neural Network
(ANN), the patch-based NN with Kalman filter, and Random Forest (RF) [18,32,34]. More
recently, deep learning has been used to reconstruct satellite-derived SST. Barth et al.,
(2020) proposed Data Interpolate Convolutional AutoEncoder (DINCAE), which uses a
convolutional AutoEncoder (AE) structure based on OI [25]. While conventional OI is
based on a linear assumption (e.g., the best linear unbiased estimator), DINCAE applies
nonlinear interpretation of OI through a series of convolutional operations. AE in the
DINCAE algorithm can effectively extract meaningful features from irregular and sparsely
distributed data through dimension reduction, similar to EOF. Therefore, DINCAE showed
relatively higher restoration accuracy than DINEOF in Provençal Sea (4.56–9.5◦ E and
39.5–44.43◦ N) in the Mediterranean [25]. In addition, DINCAE simulates higher spatiotem-
poral variability of SST than DINEOF. Han et al., (2020) adopted DINCAE for the first
time to reconstruct satellite-derived chlorophyll-a concentrations and examined the use of
multiple satellite data as input variables to DINCAE [35]. Since DINCAE has not been used
to reconstruct SST based on multiple input data, there is a chance to further improve the
reconstruction accuracy of SST. In addition, multiple satellite sensors can be synergistically
used to generate high-resolution seamless daily SST.

This research aims to produce spatially seamless daily SST with high spatial and
feature resolution and consistency with in situ SST measurements through the synergis-
tic use of two satellite sensor data based on machine learning. The proposed approach
consists of two parts: (1) the reconstruction (i.e., gap filling) of two SST products (i.e., one
from a thermal infrared sensor and the other from a passive microwave sensor) using
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DINCAE, and (2) the improvement of the reconstructed SSTs using in situ measurements
and RF machine learning. The specific objectives of this study were to (1) design a frame-
work to produce high-resolution satellite-based seamless daily SST based on DINCAE
and random forest machine learning using two satellite data and in situ measurements,
(2) evaluate the proposed models from both quantitative and qualitative aspects including
their generalization over the Kuroshio Extension in the Northwest Pacific, where a highly
dynamic SST pattern can be found, from 2015 to 2019, and (3) analyze the feature resolution
of SST generated using the proposed approach.

2. Study Area and Data
2.1. Study Area

The study area is the Kuroshio Extension (KE) region of the Northwest Pacific (latitude
25–45◦ N and longitude 120–170◦ E; Figure 1a). The KE region has gained a high attention
as the physical characteristics (i.e., heat flux and eddy variability) of the region are closely
related to the climate of the Northwest Pacific [36–38]. The northward flowing warm
Kuroshio current encounters the southward cold subpolar Oyashio current, generating
vigorous meanders flowing eastward in the Northwest Pacific region [39,40]. The high eddy
kinetic energy induced by recirculation results in the intensified spatiotemporal variability
of turbulent flows (i.e., eddy, front) in the KE system. The spatial variability of SST in the
region has strong seasonal and interannual characteristics [41]. Therefore, KE was selected
to evaluate the proposed framework to produce high-resolution seamless daily SST in a
highly dynamic region. The study area was divided into six equal zones (hereafter, tiles;
Figure 1b) to reduce the computational demand of the proposed approach. A buffer of
20 pixels was applied to each tile to effectively combine the tiles after reconstruction. The
study period is five years from 2015 to 2019.

2.2. Satellite and In Situ Data

In this study, we used daily data from MODIS onboard the AQUA satellite and AMSR2
onboard the Global Change Observation Mission 1st–Water (GCOM–W1) satellite at the
same equatorial crossing local time (i.e., 1:30 p.m. for the ascending pass and 1:30 a.m. for
the descending pass). The vertical variability of SST (i.e., from skin to foundation SST)
is high during the daytime due to the varied levels of insolation. However, the vertical
structure of temperature is relatively stable at night [42,43]. Thus, we focused on night-time
SST (i.e., local time at 1:30 a.m.) to reduce the impact of diurnal heating on the ocean’s
upper layer in the daytime when using in situ measurements as reference data.

We used the night-time MODIS Short-Wave Sea Surface Temperature (SST4) in this
study. The night-time MODIS SST4 (hereafter, SST) is generated using shortwave infrared
channels (i.e., 3.95 and 4.05 µm) based on the split window Nonlinear SST (NLSST) al-
gorithm [44]. Since the shortwave infrared channels are less affected from atmospheric
absorption and have higher spectral sensitivity than long-wave infrared channels (i.e., 11.03
and 12.02 µm) at night [45]. The night-time SST4 data were binned and mapped into an
equidistant cylindrical projection on a 4 km resolution grid for 5 years from 2015 to 2019
and were downloaded from NASA Physical Oceanography Distributed Active Archive
Center (PODAAC) (https://podaac.jpl.nasa.gov/dataset/) (accessed on 24 June 2021).

AMSR2 provides global passive microwave-based (PMW) sub-skin (i.e., 1 mm) SST
data. AMSR2 SST is retrieved using the brightness temperature (BT) measured at 6.9 and
10.7 GHz with vertical polarization. The vertical polarization is less affected by wind
than the horizontal polarization [46]. This study used SST retrieved using BT at 6.9 GHz
with vertical polarization because the 10.7 GHz data have larger radiometric noise and
geophysical errors at high latitudes and cold water than 6.9 GHz [47,48]. The AMSR2 SST
data on a 10 km resolution grid for 5 years from 2015 to 2019 were downloaded from the
Japan Aerospace Exploration Agency (https://gcom-w1.jaxa.jp) (accessed on 26 June 2021).

https://podaac.jpl.nasa.gov/dataset/
https://gcom-w1.jaxa.jp
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Figure 1. (a) The study area in the red rectangle box with surrounding currents. (b) Six tiles of the
study area. All rectangle tiles are equally divided on the latitude and longitude. (c) Accumulated
acquisition frequency of drifting buoy data for five years, which are aggregated by 1◦ grid for
the study area. The bathymetry map was adopted from General Bathymetric Chart of the Oceans
(GEBCO) at www.gebco.net, accessed on 27 December 2021.

Figure 2 shows the spatial and temporal missing percentages of AMSR2 and MODIS
SSTs. Since AMSR2 (i.e., passive microwave) is relatively less affected by clouds, the overall
missing rate per day (i.e., the temporal missing rate of 42.96% for AMSR2) is lower than
that of MODIS (i.e., 71.84%). The spatial missing rate of MODIS dramatically increased
above 30◦ N, resulting in less than 20% of data available for the study period from 2015
to 2019.

Among various in situ SST data sources, drifting buoys have been widely used to
validate numerous satellite-derived SSTs due to the measurement depth close to the surface
that satellite sensors observe [7]. Drifting buoys measure sea water temperature at around
20 cm below the sea surface, while satellite-based SSTs are retrieved from 1µm (i.e., thermal
infrared) to 1 mm (i.e., passive microwave) below the surface. Although the measurement
depth is slightly different between drifting buoy- and satellite-based SST, there is a strong
correlation between drifting buoy measurements and satellite-based SSTs [49]. In this

www.gebco.net
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study, the hourly buoy observations were obtained by National Oceanic and Atmospheric
Administration Observing System Monitoring Center (NOAA OSMC) via Global Telecom-
munication System (GTS) (https://www.aoml.noaa.gov/phod/gdp/real-time_data.php)
(accessed on 10 September 2021). A total of 265,926 in situ SSTs were collected from
390 drifters from 1 January 2015, to 31 December 2019. The spatial distribution of the num-
ber of in situ SST observations (i.e., drifting buoys) within the study boundary is depicted
in Figure 1c. It is necessary to minimize the bias caused by the different measurement
depths between satellite-based and in situ SSTs. Thus, we added 0.17 ◦C to the MODIS SST
to reduce the cool skin effect and subtracted 0.03 ◦C from the AMSR2 SST to mitigate warm
bias at night [28,50–52]. Finally, the proposed approach was applied to the bias-corrected
satellite SSTs at a depth of 20 cm.

Figure 2. (a) Spatial distribution of the average missing percentage of the AMSR2 SST data for the
five years. (b) Spatial distribution of the average missing percentage of the MODIS SST data for the
five years. (c) Temporal variation of daily and 30 day-moving average missing percentage of AMSR2
and MODIS SSTs for the study area.

3. Methods

Figure 3 shows a framework of the proposed approach to generate high-quality, high-
resolution seamless daily SST from two satellite sensor data. The proposed approach
consists of two parts: (1) reconstruction of MODIS and AMSR2 SSTs based on DINCAE
and (2) improvement of the reconstructed SST through data fusion based on RF machine
learning using in situ measurements. Two parts were described in the following sections
in details.

https://www.aoml.noaa.gov/phod/gdp/real-time_data.php
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Figure 3. The overall flow diagram of the proposed approach for SST reconstruction and improvement
through data fusion.

3.1. Reconstruction of SST

The AMSR2 SST data with 10 km resolution were resampled to the 4 km grid of
MODIS SST using the nearest neighbor method to ensure the same grid unit. We extracted
50 occlusion masks (i.e., missing data areas of the original AMSR2 SSTs) for the first 50 days
of the study period to evaluate both the reconstructed MODIS and AMSR2 SSTs [25,35]. The
50 occlusion masks were applied to both MODIS and AMSR2 SSTs on randomly selected
50 days (i.e., same days on both MODIS and AMSR2 but excluding the first 50 days) during
the study period. After occlusion, the MODIS and AMSR2 SSTs (i.e., every tile) were fed
into DINCAE (see Section 3.1.1), the reconstruction model adopted in this study. More
details about DINCAE were described in Section 3.1.1.

After the SST reconstruction, we mosaicked the six tiles to produce a spatially con-
tinuous SST field. A postprocessing was conducted to minimize the SST discrepancy
in the tile boundaries. The discrepancy typically occurs due to the zero-padding of the
convolution layers in DINCAE [25]. Among the overlapped 20 pixels by tile, the outer
5 pixels were removed because they contained the artifacts due to zero-padding. Then,
the remaining 15 pixels were used to minimize the SST discrepancy in the tile boundaries
based on distance-based weights using an exponential function (Equation (1)).

DW =
1

1 + exp[ D×±W]
(1)

where DW is the distance-based weight; D represents the number of the overlapped
horizontal pixels (i.e., 30 pixels); and W represents the empirical weight to organize the
inclination of the exponential function. Through multiple tests, the optimal weight was
determined as 0.3. This postprocessing was applied in all directions of the adjacent tiles
(i.e., up, down, left, and right).

3.1.1. Data INterpolate Convolutional AutoEncoder (DINCAE)

The DINCAE algorithm developed by Barth et al., (2020) was applied to reconstruct
daily MODIS and AMSR2 SSTs [25]. The basic model architecture of DINCAE is a stacked
AE, which stacks multiple convolutional layers on the encoder and decoder layers in a self-
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supervised way. In addition, DINCAE adopts the denoising AE concept that contributes to
the robustness of AE as a generative model [53]. DINCAE corrupts input data with noise
and learns a feature representation (i.e., information of SST) to minimize the difference
between the corrupted data and input data. DINCAE divides random subsets (i.e., for
optimization) from minibatches, which are used as independent validation data for every
epoch. This is a different learning strategy compared to the conventional AE.

A total of 10 input variables were used in DINCAE, including SST anomalies and the
inverse of error variance as key input data, which are the same as the previous research [25,35]
(Table 1).

Table 1. Summary of input variables used in DINCAE to reconstruct MODIS and AMSR2 SSTs in
this study.

Variable Type Variable

Satellite data derived
(MODIS/AMSR2)

- SST anomalies scaled by the inverse of the error variance (the
scaled anomaly is zero when data are in an absence)

- Inverse of the error variance (zero when data are in an absence)
- Scaled SST anomalies of the previous day

- Inverse of error variance of the previous day
- Scaled SST anomalies of the next day
Inverse of error variance of the next day

Auxiliary variables

- Longitude (scaled linearly between −1 and 1)
- Latitude (scaled linearly between −1 and 1)

- Cosine of the day of the year divided by 365.25
- Sine of the day of the year divided by 365.25

The training process of DINCAE is based on OI, which aims to minimize the analysis
error (i.e., between the estimated and observed values). The basic OI approach can be
found in the previous studies [25,54,55]. DINCAE estimates the anomaly of SST (ŷij) from
the inverse of the error variance and provides the error standard deviation (σ̂ij) of the
reconstructed SST field. This estimated error standard deviation (σ̂ij) represents a relatively
quantified error of the reconstructed SST. The anomaly of SST and the error standard
deviation are the outputs from DINCAE as two layers. The first layer Tij1 is the logarithm
of the inverse of the expected error variance; the second layer Tij2 is the temperature
anomaly divided by the error variance. The corresponding error variance (σ̂2

ij) is calculated
from the logarithmic function of the inverse of the expected error variance (Tij1). The
reconstructed SST (Rij) is the sum of the reconstructed anomaly (ŷij) and mean of the
time-series SST (m). All parameters are computed as:

σ̂2
ij =

1
max

(
exp
(
min

(
Tij1, γ

))
, δ
) (2)

ŷij = Tij2 ∗ σ̂2
ij (3)

Rij = ŷij + m (4)

where γ = 10 and δ = 10−3 ◦C−2. The subscripts i and j indicate every grid location
(i.e., Tij1 and Tij2 are produced for every grid). The max and min in Equation (2) indicate
maximum and minimum functions. The effective range of the error standard deviation is
expected from 0 to 1 ◦C because the expected error standard deviation is scaled by error
variance [25].

During optimization, DINCAE occluded the input data using randomly chosen masks
(i.e., randomly select SSTs from minibatch) of missing data areas at every minibatch. The
occluded data from chosen masks were used for calculating loss to optimize the model.
The loss function (J(ŷij, σ̂2

ij)) of DINCAE assumes two outputs (i.e., Tij1, Tij2) to be the
parameters (i.e., estimated mean, estimated standard deviation) with Gaussian probability
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distribution. The anomaly of SST (ŷij) and the error standard deviation (σ̂ij) are the mean of
the estimation and standard deviation with Gaussian probability distribution, respectively.
The loss function (J(ŷij, σ̂2

ij)) is calculated as Equation (5):

J
(

ŷij, σ̂2
ij

)
=

1
2N ∑

ij

(yij − ŷij

σ̂ij

)2

+ log
(

σ̂2
ij

)
+ 2log

(√
2π
) (5)

where yij and N are the occluded data of each grid and the number of occluded data
during optimization, respectively. The first term is the mean square error, which is scaled
by the error standard deviation. The second term reduces the variance of error stan-
dard deviation to penalize overestimation. The third term is a constant for normalization
(i.e., Neglect term). Therefore, parameters (i.e., weight and bias) are determined to max-
imize the likelihood (i.e., in the form of Gaussian probability distribution) between esti-
mations and observations. Since the loss function is related to both anomaly estimation
(i.e., expected error variance) and expected error estimation, DINCAE has the advantage of
providing reliable performance in terms of reconstruction and error estimation.

DINCAE is independent of an inherent error of SST data (i.e., sensor malfunctioning
and synoptic error at satellite overpass time), background error (i.e., first guess), and the
error between the observation and first guess (i.e., unbiased, averaged error is zero). It
is only affected by analysis error from the model [13,25]. More details about DINCAE
are found in Barth et al., (2020) [25]. The dimension of the input dataset to DINCAE
is 1826 ∗ 480 ∗ 720 ∗ 10 before dividing the study area into the six tiles (i.e., length of
the study period, latitude, longitude, and input variables, respectively). The DINCAE
package was provided by Geohydrodynamics and environment research Github (https:
//github.com/gher-ulg/DINCAE) (accessed on 10 October 2021). All experiments were
run on a computer with Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz and NVidia Quadro
RTX 8000 GPU (48 GB of memory). The hyperparameter settings of DINCAE determined
based on the empirical testing of various combinations are summarized in Table 2.

Table 2. The hyperparameters used to train DINCAE in this study. The values in bold indicate the
optimized (selected) hyperparameter values. The range of numerical values in the parentheses was
empirically tested for parameter optimization.

Hyper-Parameters Options

Window of timeseries SST 3 days (±3–7 days)
Epoch 800–1000 (Stop with the lowest error)

Standard deviation of the noise 1 (0.9–1.1)
Error standard deviation of the observations 0.05

Image (transposed convolutional layer) resize method in
the decoder layers Nearest neighbor

Pooling method in the decoder layers Average
Number of convolution layers of the encoder and

decoder 4/4 (1–4)

Batch size 64 (50–128)
Skip-connection between the encoder and decoder 4

Dropout rate during optimization 0.3
Number of filters for the encoder and decoder layers

(from left to right for the encoder layers, and the
opposite for the decoder layers)

16/24/36/54 (16–128)

Dropout rate in the latent space 0.2 (0.1–0.3)
Activation function for convolutional layers Leaky ReLu

L2 regularization weight 0.001
Optimizer Adam

Learning rate of step size in the optimizer 1 × 10−3

The exponential decay rate for the first moment
(i.e., beta 1) in the optimizer 0.9

https://github.com/gher-ulg/DINCAE
https://github.com/gher-ulg/DINCAE
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3.2. Data Fusion for Improving Reconstructed SST

The second part of the proposed approach is to generate a high-quality (i.e., strong con-
sistency with in situ measurements), high-resolution seamless daily SST based on the bias
and variance correction through the data fusion of the reconstructed SSTs targeting in situ
measurements using RF. The primary assumption of this part is that in situ measurements
are regarded as the reference data of the reconstructed SSTs (see Section 2.2).

The input variables of RF are described in Table 3. The outputs (reconstructed SST
and error standard deviation) of DINCAE (see Section 3.1.1), presence of original data,
latitude, and scaled Day Of Year (DOY) as input variables in the RF model (Table 3). The
presence of data (i.e., binary) was selected to distinguish the reconstructed and original SST
pixels in RF [30]. Latitude affects the retrieval of satellite-based SST, temporal variability
of SST, and the number of in situ matchup data [28,30,32]. Scaled DOY was used to
document the seasonality of SST [25,28]. In this data fusion process, two schemes (S1 and
S2) were evaluated: S1 uses the MODIS-based reconstructed SST and its error standard
deviation, and three auxiliary variables. S2 uses the reconstructed SST and error terms
from both MODIS and AMSR2, and three auxiliary variables. Learning the relationship
between the estimated SST (i.e., reconstructed SST) and the error standard deviation of
the estimated SST might expect to further improve the accuracy of the reconstructed SST
because the literature [25] shows a high correlation between the estimated SST and the
error standard deviation.

Table 3. Summary of the input variables used in the random forest model to further improve the
reconstructed SSTs through data fusion.

Variable Type Variable

In situ data
(Target variable) - GTS drifting buoys

DINCAE outputs
(MODIS/AMSR2,
input variables)

- Estimated SST (Mean SST add with anomaly SST calculate from SST
scaled by the inverse of the expected error variance and logarithm of the

inverse of the expected error variance)
- Expected error standard deviation from the logarithm of the inverse of the

expected error variance

Auxiliary
variables (Input

variables)

- Latitude (Scaled linearly between −1 and 1)
- Sine of the day of the year divided by 365.25

- Presence of data (If value = 1, data are missing; otherwise, data are valid)

Random Forest (RF)

In this study, RF was used to correct the bias and variance between the reconstructed
SST and in situ drifting buoy data. Note that the bias caused by the different measurement
depth was corrected for the satellite-derived SSTs (refer to 2.2). RF has been widely used
to examine the regression problems of ocean parameters in recent years [26–28,30–32,56].
RF is a nonparametric ensemble approach that composes a multitude of bootstrapped
regression trees [57–61]. Ensemble regression trees have different bootstrap data (bagging),
and each tree’s nodes are expended toward the least error of constructing the tree. RF
calculates a mean of squared residuals (i.e., mean of square error) from aggregated trees
using simple averaging for internal validation of the RF model. RF was implemented using
Python through the scikit statistical analysis package (https://scikit-learn.org) (accessed
on 10 October 2021). In this study, the optimal number of trees was determined as 500, and
the depth of tree was set as 50 through a multitude of empirical testing.

3.3. Performance Evaluation of the Proposed Approach

We conducted an accuracy assessment for each part: using occlusion masks as valida-
tion data for the SST reconstruction part and using Leave-One-Year-Out-Cross-Validation
(LOYOCV) for the improvement of the reconstructed SST through data fusion. For LOY-
OCV, one year of in situ data were held out from the training, and the remaining data were

https://scikit-learn.org
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used to develop a model. Then, the held-out data were used to evaluate the model. This
process was repeated for the five years. LOYOCV was conducted to assess the two schemes
(S1 and S2) for the second part.

For accuracy assessments, the coefficient of determination (R2; Equation (6)), bias
(Equation (7)), Root Mean Square Error (RMSE) (Equation (8)), relative RMSE (rRMSE;
Equation (9)), and Mean Absolute Error (MAE) (Equation (10)) were used to evaluate the
performance of the models for both parts of the proposed approach. For further quantitative
assessment using in situ measurements, an adjusted relative mean absolute error (ARMAE)
(Equation (11)) was calculated based on LOYOCV results [62–65].

R2 = 1− ∑n
i=1( yi − ŷi)

2

∑n
i=1( yi − yi)

2 , yi =
∑n

i=1 yi

n
(6)

Bias (◦C) =
n

∑
i=1

(ŷi − yi)

n
(7)

RMSE (◦C) =

√
∑n

i=1(ŷi − yi)
2

n
(8)

rRMSE (%) =
100 ∗ RMSE

yi
(9)

MAE (◦C) =
1
n

n

∑
i=1
|ŷi − yi| (10)

ARMAE =
1
n

n

∑
i=1

(|ŷi − yi| −OE)
|yi|

(11)

where yi is the observed value, ŷi is the predicted value, ymax and ymin represent the
maximum and minimum values of reference SST data, and n is the number of samples. The
expression (|ŷi − yi| −OE) of ARMAE is set zero for negative values. OE is an estimated
average value of the systematic error of in situ measurements. In this study, OE was
identified as 0.015 ◦C using the collected drifting buoy data (i.e., GTS) [66–69].

For further qualitative and quantitative assessment of the high-resolution SST field
generated from the proposed approach focusing on various ocean features, we used a
gradient field and PSD. The gradient of the SST field is often used to describe ocean
phenomena such as ocean fronts and currents [41]. PSD has been widely used to define the
eddy kinetic energy of mesoscale ocean turbulence [17,41]. First, the magnitude of gradient
field (G) is given as follows (Equation (12)):

G =

√√√√√ −1 0 +1
−2 0 +2
−1 0 +1

 ∗ S÷ (2× dx)

2

+

 −1 −2 −1
0 0 0
1 2 1

 ∗ S÷
(
2× dy

)2

(12)

where the first and second terms are a zonal (Horizontal) and meridional (Vertical) gra-
dients, respectively. The square matrix of each term are the 3 × 3 convolutional operator
of zonal and meridional Sobel filters, respectively. S is the SST field. The dx and dy are a
longitudinal and latitudinal distances (i.e., pixel size) of each SST, respectively, which are
4 (i.e., equidistant). Second, PSD is based on Fast Fourier Transform (FFT). FFT converts
a turbulence-domain (i.e., spatial) representation of a function into frequency domain. In
this study, we calculated the wavenumber of the SST field and set the output resolution to
4 km × 4 km.
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4. Results and Discussion
4.1. Performance of SST Reconstruction

Figure 4 shows the validation results of the MODIS and AMSR2 SSTs reconstructed
through DINCAE. While both resulted in similar R2 (0.98 for MODIS and 0.99 for AMSR2)
and bias (0.03 ◦C for MODIS and –0.09 ◦C for AMSR2), the reconstructed AMSR2 SST
produced slightly better performance metrics than the MODIS one in terms of RMSE,
rRMSE, and MAE by 0.25 ◦C, 0.86%, and 0.14 ◦C, respectively (Figure 4a,b). The recon-
structed MODIS SST was relatively underestimated and had a slightly higher variance
when compared to the reconstructed AMSR2 SST. The different performances between
the two reconstructed SSTs were possibly due to differences in missing data rates, spatial
resolution, and the number of SST training samples [7,70].

The reconstructed MODIS and AMSR2 SSTs showed the RMSE distribution between
0.1 and 0.7 ◦C across the study area. Both results have higher RMSE distribution (~0.7 ◦C) in
tiles 1–3 (i.e., high latitudes; refer to Figure 2b) than tiles 4–6 (Figure 4c,d). This corresponds
to the results by tile using the optimized parameters (Table S2). In addition, high RMSE
(>1.0 ◦C) was found near the land (e.g., tile 1; Figure 4c,d). This high error near the
shelf region corresponds to the results of Han et al., (2020), where DINCAE was applied
to reconstruct chlorophyll concentrations in coastal areas. The study pointed out that
river discharge and external factors such as marine activities affected the distribution of
chlorophyll-a and SST, increasing the reconstruction error [35]. Therefore, one possible
reason of high error near the land in the present study is high spatiotemporal variability of
SST due to the west boundary current (i.e., Kuroshio current), which limited the anomaly
estimation of DINCAE in the coastal areas [35]. In addition, the swath characteristic
of AMSR2 affected the spatial distribution of RMSE along with missing data regions
(145–150◦ E in Figure 4d).

Table 4 presents the accuracy assessment results of the reconstruction models by
tile. Interestingly, tiles 1–3 at high latitudes performed less than tiles 4–6 at low latitudes
(∆0.3 ◦C in RMSE, ∆1% in rRMSE, and ∆0.15 ◦C in MAE for MODIS; and ∆0.3 ◦C in RMSE,
∆1% in rRMSE, and ∆0.15 ◦C in MAE for AMSR2). Accuracy difference by latitude possibly
resulted from the difference in the range of SST during the study period. The SST range
that DINCAE estimated was 35 ◦C (from –4 to 31 ◦C) for tiles 1–3, while 21 ◦C (from 11 to
32 ◦C) for tiles 4–6, which affected the model performance (Figure S1).

Table 4. Validation accuracy of the MODIS and AMSR2 SST reconstructions for each tile.

Satellite The Number
of Tiles

Coefficient of
Determination (R2) Bias (◦C) RMSE (◦C) rRMSE (%) MAE (◦C) The Number

of Data

MODIS

1 0.98 0.01 1.12 7.72 0.79 321,128
2 0.98 0.08 1.10 6.57 0.81 298,132
3 0.98 −0.31 0.98 5.94 0.73 186,952
4 0.98 0.04 0.76 3.17 0.53 526,838
5 0.98 0.07 0.65 2.67 0.44 545,800
6 0.98 −0.18 0.69 2.85 0.50 479,770

AMSR2

1 0.99 0.43 0.85 5.83 0.66 471,262
2 0.99 −0.24 0.78 5.42 0.61 566,431
3 0.99 0.20 0.67 4.79 0.51 713,314
4 0.99 0.11 0.50 2.17 0.38 664,447
5 0.99 0.01 0.45 1.92 0.33 660,315
6 0.99 −0.00 0.38 1.63 0.30 781,999

Table 5 summarizes the accuracy of the original SST and reconstructed SST pixels
(i.e., estimated SST from DINCAE), when compared to the in situ measurements. Both
MODIS and AMSR2 SSTs showed high correlation (R2 = 0.98–0.99) with in situ measure-
ments. The original MODIS SST pixels showed higher accuracy than the original AMSR2
SST when compared to in situ measurements by RMSE of 0.07 ◦C, rRMSE of 0.94%, MAE of
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0.07 ◦C, and ARME of 0.008. The reconstructed MODIS SST pixels resulted in less accuracy
(RMSE = 1.1 ◦C, rRMSE = 5.96%, MAE = 0.78 ◦C, and ARMAE = 0.041) against in situ
data than the original MODIS one (RMSE = 0.76 ◦C, rRMSE = 3.42%, MAE = 0.53 ◦C, and
ARMAE = 0.023). On the other hand, the reconstructed AMSR2 SST pixels yielded accuracy
similar to the original AMSR2 one.

Figure 4. Validation accuracy of the reconstruction SSTs for the study area. (a,b) are the density
scatterplots of the reconstruction models for MODIS and AMSR2, respectively. (c,d) are the spatial
distribution of mean RMSE of the models for MODIS and AMSR2, respectively. The validation data
were explained in Section 3.1.
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Table 5. Accuracy of the original and reconstructed SST pixels for MODIS and AMSR2 when
compared to the in situ measurements.

Satellite Pixels
Coefficient of

Determination
(R2)

Bias
(◦C)

RMSE
(◦C)

rRMSE
(%)

MAE
(◦C) ARMAE

The
Number of

Data (N)

MODIS
Original SST pixels 0.99 −0.31 0.76 3.42 0.53 0.023 73,023

Reconstructed SST pixels 0.98 −0.35 1.10 5.96 0.78 0.041 189,398
Total (i.e., original +

reconstructed SST pixels) 0.98 −0.34 1.02 5.21 0.71 0.036 262,421

AMSR2
Original SST pixels 0.99 −0.12 0.83 4.36 0.60 0.031 142,557

Reconstructed SST pixels 0.98 −0.20 0.85 4.22 0.62 0.030 119,864
Total (i.e., original +

reconstructed SST pixels) 0.99 −0.15 0.84 4.30 0.61 0.031 262,421

Figures 5 and 6 show the examples of the original SST, the original SST with the
occlusion mask for validation, the reconstructed SST, and its error standard deviation
for both MODIS and AMSR2 on 25 May 2015, and 6 November 2018, respectively. Over-
all, DINCAE well simulated the spatial distribution of SST for both MODIS and AMSR2.
Due to the coarse resolution of AMSR2, the result did not show the detailed SST pat-
terns but produced relatively good reconstruction in the occluded areas (Figures 5a–c,
6a–c and S2). In particular, the MODIS SST after reconstruction clearly showed ocean
features such as eddies (i.e., mesoscale features < 100 km) and a polar front (blue boxes in
Figure 5a,c,g). However, smoothing occurred for fine-scale features (i.e., sub-mesoscale
features < 50 km) such as a warm core ring edge of an eddy (red box in Figure 5e,g).
DINCAE results in dimension reduction while extracting features from SST data through
the pooling convolutional layers. When DINCAE reconstructs the reduced data to the
original dimension using the nearest resampling, smoothing often occurs, and some fine
feature information disappears [25]. While skip connection to keep the characteristics of
the original data was applied to mitigate the smoothing problem, smoothing still remained,
affecting the performance of reconstruction at the fine feature scale (i.e., submesoscale).

As shown in Figures 5 and 6, the error standard deviation of AMSR2 SST was low
(<1 ◦C) over the study area including the areas with missing data. Similar to other ac-
curacy metrics, the difference in the error standard deviation by latitude was also dom-
inant in the reconstructed AMSR2 SST (Figures 5f and 6f). OI-based DINCAE generally
yielded relatively low errors for areas where data exist similar to the results of AMSR2
(Figures 5f and 6f). On the other hand, the error standard deviation of the reconstructed
MODIS SST varied by tile and the difference by latitude was not great. Some areas at high
latitude (tiles 1–3) where original SST data exist yielded the high error standard deviation
for the reconstructed MODIS SST (green boxes in Figures 5f,h and 6f,h). The scaled error
probability density function of MODIS was positively skewed, while that of AMSR2 fol-
lowed the normal distribution (Figure S3), which made the MODIS reconstruction slightly
less performed than the AMSR2 one. In addition, both AMSR2 and MODIS results showed
high error standard deviation in the coastal region of Japan regardless of the presence of
data, which was similar to the spatial distribution of RMSE (Figure 4c,d). These results
imply that areas with low reconstruction accuracy had large uncertainty in the estimation
of reliable error standard deviation. Such an uncertainty has been reported in the previous
studies that applied OI for EOF [13].
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Figure 5. (a) Original AMSR2 SST, (b) original AMSR2 SST with the occlusion mask for validation,
(c) reconstructed AMSR2 SST, (d) estimated error standard deviation of the AMSR2 reconstruction
model, (e) original MODIS SST, (f) original MODIS SST with the occlusion mask for validation,
(g) reconstructed MODIS SST, and (h) estimated error standard deviation of the MODIS reconstruction
model on 25 May 2015.

Figure 6. (a) Original AMSR2 SST, (b) original AMSR2 SST with the occlusion mask for validation,
(c) reconstructed AMSR2 SST, (d) estimated error standard deviation of the AMSR2 reconstruction
model, (e) original MODIS SST, (f) original MODIS SST with the occlusion mask for validation,
(g) reconstructed MODIS SST, and (h) estimated error standard deviation of the MODIS reconstruction
model on 06 November 2018.
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4.2. Improvement of the Reconstructed SST

Figure 7 presents the accuracy assessment results of the data fusion model to improve
SST using RF for schemes 1 and 2. It should be noted that both Scheme 1 and Scheme 2
showed better performance than the original and reconstructed MODIS SSTs (Figure 7;
Table 5). Scheme 2 that used multi-satellite data outperformed scheme 1 based on a single
satellite data source, yielding higher accuracy metrics (Scheme 2: R2 = 0.99, Bias = 0.01 ◦C,
RMSE = 0.75 ◦C, rRMSE = 3.83%, MAE = 0.53 ◦C and ARMAE = 0.026; Scheme 1: R2 = 0.98,
Bias = 0.02 ◦C, RMSE = 0.98 ◦C, rRMSE = 4.99%, MAE = 0.68 ◦C and ARMAE = 0.034).
This implies that the synergistic use of both the reconstructed MODIS and AMSR2 SSTs
improved the accuracy generating a more similar SST product to in situ data.

Table 6 compares scheme 1 LOYOCV results, scheme 2 LOYOCV results, and scheme
2 calibration results to the operational gap-free OSTIA SST product using in situ mea-
surements. The accuracy of scheme 1 SST over both the original and reconstructed SST
pixels produced a minor accuracy increment when compared to the MODIS SST (Table 6).
Similarly, the proposed scheme 2 approach yielded a similar performance regardless of
the presence of the original AMSR2 SST pixels (Figure S4). Interestingly, the accuracy of
the scheme 2 approach over the reconstructed pixels of MODIS SST was similar to that of
the original MODIS SST (Tables 5 and 6), which implies that the data fusion approach suc-
cessfully increased the accuracy of SST for data missing areas. According to ARMAE [63]
(Table S1), scheme 2 showed excellent performance for both the original and reconstructed
SST when compared to the MODIS SST and scheme 1 (Tables 5 and 6).

Notably, the LOYOCV accuracy of scheme 2 over the original MODIS SST pixels is
comparable to the accuracy of OSTIA SST (Table 6). Since the OSTIA model corrected the
error of SST using GFS drifting buoy data, which are the same in situ measurements used
in this study. While the accuracy of OSTIA over the study area was very similar (RMSE
of 0.59 ◦C) to those reported in the literature [16], scheme 2 calibration outperformed the
OSTIA SST (∆0.43 ◦C in RMSE, ∆2.19% in Rrmse, ∆0.28 ◦C in MAE, and ∆0.014 in ARMAE).
Consequently, the proposed scheme 2 approach integrating two satellite data sources can
produce the high-quality SST product comparable (or even better) to the operational SST
product that incorporates multiple satellite and in situ data.

Figure 7. Scatterplots of Leave-One-Year-Out-Cross-Validation (LOYOCV) results for (a) scheme
1-improved SST and (b) scheme 2-improved SST from 2015 to 2019. The scheme-improved SST was
derived through the data fusion of bias corrected satellite SSTs.
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Table 6. Accuracy metrics of Leave-One-Year-Out-Cross-Validation (LOYOCV) results of schemes 1
and 2, scheme 2 calibration results, and OSTIA SST when compared to in situ data.

SST
Validation
Area (i.e.,

Pixels)

Coefficient of
Determination

(R2)
Bias (◦C) RMSE (◦C) rRMSE (%) MAE (◦C) ARMAE

The
Number of

Data (N)

Scheme 1
Original

MODIS SST
pixels

0.99 0.04 0.74 3.31 0.51 0.022 73,023

Scheme 1
Reconstructed
MODIS SST

pixels
0.98 0.02 1.05 5.70 0.74 0.039 189,398

Scheme 2
Original

MODIS SST
pixels

0.99 0.04 0.58 2.61 0.41 0.018 73,023

Scheme 2
Reconstructed
MODIS SST

pixels
0.99 0.00 0.80 4.35 0.57 0.030 189,398

Scheme 2
(Calibra-

tion)

The entire
study area 1.00 0.00 0.09 0.46 0.04 0.002 262,421

OSTIA The entire
study area 0.99 0.05 0.52 2.65 0.32 0.016 262,421

4.3. Feature Resolution Analysis

Figure 8 depicts the spatial distribution of the reconstructed SSTs, SSTs improved
through data fusion by scheme using bias-corrected satellite-SSTs (i.e., MODIS and AMSR2
SSTs, see Section 2.2), and high-resolution operational SST products. As shown in Figure 4a
and Figure S3a, the reconstructed MODIS SST (Figure 8b) tends to be underestimated at
high latitude (i.e., blue boxes in Figure 8b,c,e,f) when compared to other products. One
possible reason is that the image resizing method (i.e., nearest neighbor) in the decoder layer
for dimension restoration induces smoothness during the reconstruction [35]. Surprisingly,
scheme 1 (Figure 8d) and scheme 2 (Figure 8e) effectively mitigated such underestimation
in the reconstructed MODIS SST (Figure 8b). In particular, scheme 1 (Figure 8d) seemed
to focus on a specific range of temperature when compared to the reconstructed MODIS
SST (Figure 8b). For example, the scheme 1 result (Figure 8d) clearly showed the core ring
of a warm eddy (i.e., black boxes on Figure 8), similar to the operational products (OSTIA
in Figure 8c and MUR SST in Figure 8f). However, based on visual interpretation, the
overall spatial distribution of scheme 2 SST was in better agreement with the operational
products than that of scheme 1 SST, which corresponded to the accuracy assessment results
in Table S3.

However, the comma-shaped rotational features at the end of warm cores (i.e., green
boxes in Figure 8) in the operational products were not clearly shown in the reconstructed
and scheme 1-/scheme 2-improved SST results. As mentioned in Figures 5 and 6, it
is challenging to effectively reconstruct SST through DINCAE at the submesoscale [35].
Scheme 1 and 2 models were also affected by the reconstructed SSTs, which were used as
input variables in the models.

Figure 9 depicts the gradient fields of the reconstructed SSTs, the scheme-improved
SSTs, and operational SST products. It is not possible to quantitatively compare the
gradient fields as they are different by interpolation approach. Thus, a comparison was
conducted using the super resolution (i.e., 1 km) MUR SST product as reference data.
The reconstructed MODIS SST (Figure 9b) showed overall similar gradients to MUR SST
(Figure 9f). In particular, scheme 2-improved SST (Figure 10e) showed much more similar
gradients to the MUR SST in the open sea (i.e., yellow box in Figure 9) than the reconstructed
MODIS SST (Figure 9b). Scheme 2-improved SST resulted in more detailed gradients than
OSTIA (Figure 9c), comparable to MUR SST.
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Figure 8. Spatial distribution of SSTs on 6 November 2018: (a) the reconstructed AMSR2 SST,
(b) the reconstructed MODIS SST, (c) OSTIA SST, (d) scheme 1-based SST, (e) scheme 2-based SST, and
(f) multiscale ultra-high-resolution (MUR) SST. The spatial resolutions of the SST data are 10, 4, 4,
and 4 km and 0.05◦ and 0.01◦, respectively.

However, the gradient fields of both scheme-improved SSTs (Figure 9d,e) had more
diverged patterns compared to that of the reconstructed MODIS SST (Figure 9b). In partic-
ular, the scheme 1 result (Figure 9d) had more excessively diverged gradients (i.e., noise in
the white box in Figure 9d) than the scheme 2 result (Figure 9e). One possible reason is that
since RF works pixel-by-pixel, the relationships among the neighboring SST pixels might
not be well trained. The incorporation of textual information might be able to mitigate the
problem [71].

Interestingly, the high error standard deviation in the reconstructed MODIS SST in
the east coast of Japan (i.e., tile 1 in Figure 5h and 6h) had a similar distribution with the
gradient fields of the reconstructed MODIS SST (i.e., red boxes in Figure 9b). This implies
that DINCAE, the reconstruction model adopted in this study, might have high uncertainty
in the areas where there is high spatiotemporal variability of SST (i.e., rapid change due to
west-boundary current).
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Figure 9. Spatial distribution of SST gradient fields on 6 November 2018: (a) the reconstructed
AMSR2 SST, (b) the reconstructed MODIS SST, (c) OSTIA SST, (d) scheme 1-improved SST, (e) scheme
2-improved SST, and (f) multiscale ultra-high-resolution (MUR) SST. The spatial resolutions of the
SST data are 10, 4, 4, and 4 km and 0.05◦ and 0.01◦, respectively.

Figure 10 compares the PSDs of the reconstructed MODIS SST, the scheme-improved
SSTs, and two operational SST products. All SSTs, except for OSTIA, resulted in a similar
turbulence significant energy especially for fine-scale (<50 km) ocean surface phenom-
ena [15]. OI-based OSTIA was able to simulate SST at the scale of 100 km [15,17,18]. The
density of scheme 1-improved SST was higher than those of other high-resolution SSTs in-
cluding the density of the reference MUR SST. This is possibly due to the excessive diverged
gradients generated in the scheme 1 model, increasing false turbulence, which degraded
feature resolution (Figure 9d). The scheme 2-improved SST generated very similar density
with the MUR SST, especially at scales between 20 and 100 km, which implies that the
proposed approach can successfully simulate the seamless SST at high resolution (~4 km).

4.4. Novelty and Limitations

Many previous SST reconstruction studies have focused on the restoration of missing
data, which did not fully consider the consistency with in situ measurements [17,18,25,34,35].
To our knowledge, only Sunder et al., 2020, has used in situ data as a target to generate
the high-resolution cloud-free daily SST, but it lacks discussion of restoring the ocean
phenomena such as fronts and eddies [32]. This study proposed a novel method that
improves consistency with in situ SST measurements and generates the fine resolution
seamless daily SST field through the synergistic use of two satellite sensor data based
on machine learning. In particular, the proposed method shows a very promising result
when compared to the high-resolution operational SST products using various assessment
methods from both quantitative and qualitative aspects.
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Figure 10. Power spectral density plots of the reconstructed MODIS SST, the scheme (Scheme
1/Scheme 2)-improved SSTs, and two operational SST products on 6 November 2018, which were
calculated from the fast Fourier transform.

There are, however, several limitations of the proposed method. First, the proposed
approach tends to rely on the performance of DINCAE. Although DINCAE applied skip
connection to keep the fine feature scale of ocean phenomena of the original data, it was not
able to fully mitigate the smoothing problem. DINCAE also has uncertainty in estimating a
reliable error standard deviation over areas with a low reconstruction accuracy. Another
limitation is that the pixel-wise learning adopted in the second part of the proposed
approach may cause diverged gradients without consideration of textual information.

5. Conclusions

In this study, we proposed a data fusion approach for generating high-resolution
seamless daily SST based on machine learning (i.e., DINCAE and RF) over the Kuroshio
Extension in the Northwest Pacific from 2015 to 2019. MODIS and AMSR2 SSTs were
reconstructed through DINCAE. Then, the reconstructed SSTs were fused with ancillary
data through RF targeting in situ measurements with two schemes (scheme 1 using the
reconstructed MODIS SST variables and scheme 2 using both MODIS and AMSR2 SST
variables). The results showed that the reconstructed MODIS and AMSR2 SSTs through
DINCAE yielded very good performance with the RMSEs of 0.85 and 0.60 ◦C and MAE of
0.59 and 0.45 ◦C, respectively. In the second step, scheme 2 clearly outperformed scheme
1 by Bias of 0.01 ◦C, RMSE of 0.23 ◦C, rRMSE of 1.16%, and MAE of 0.15 ◦C based on
LOYOCV. Scheme 2 also showed comparable or even better performance than operational
SST products with similar spatial resolution. In particular, scheme 2 was good at simulating
features with fine resolution (~50 km) such as MUR SST. The proposed approach yielded
promising results over KE, producing seamless daily SST products with high quality and
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high feature resolution (i.e., low-power spectral density at low wavelengths). This study
deserves further investigation, including the use of an attention mechanism in the deep
learning model and the evaluation of the model transferability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14030575/s1, Figure S1: The violin plots of the reconstructed and reference SST data for
validation by tile. The range of temperature between tiles 1–3 and 4–6 was quite different. (a,b) are
MODIS and AMSR2, respectively, Figure S2: The density scatterplots of the validation results for the
reconstruction MODIS and AMSR2 SSTs on 25 May 2015 ((a,b), respectively) and on 06 November
2018 ((c,d), respectively), Figure S3: (a) The box plot and Guassian Probability Density Function (PDF)
of the scaled errors (dimensionless) for the MODIS SST. (b) The same as (a) but for the AMSR2 SST.
The Gaussian PDF was estimated via Kernel Density Estimation (KDE) plot of the scaled errors which
divided the difference between the reconstructed and reference SST by the expected error standard
deviation of SST. Q1, Q3, IQR, and STD indicate the first quantile, the third quantile, the interquartile,
and the standard deviation, respectively. On the PDF plot, dark blue bars mean the scaled errors
between Q1 and Q3. The validation data were used to generate the plots. The numbers of the MODIS
and AMSR2 validation data are 2,358,620 and 3,857,768, respectively, Figure S4: The scatterplots of
the original, reconstructed MODIS SST pixels, and scheme 2-improved SST compared to the in situ
measurements for the following four cases: where both the original MODIS and AMSR2 SSTs exist
(a,e), where the original MODIS SST exists, but no original AMSR2 SST (b,f), where the AMSR2 SST
exists, but no MODIS SST (c,g), and where both SSTs do not exist (d,h), Table S1: Error classification
and categorization of ARMAE. The range of ARMAE for each category is determined based on the
validation results using in situ measurements considering the literature [58]. Note that the range
values are arbitrary depending on the in situ data types and sources, Table S2: The training accuracy
of the results of the optimized DINCAE model by tile. The optimized DINCAE model was selected
by the least Root Mean Square Error (RMSE) during optimization after 800 epochs. The RMSE and
loss were calculated using the sum of errors from minibatches. Independent DINCAE models were
run on a computer with Intel(R) Xeon(R) Silver 4215R CPU @ 3.20 GHz and NVidia Quadro RTX
8000 GPU (48 GB of memory), resulting in the runtime of 6.5 h for 1000 epochs for each model., Table
S3: Accuracy metrics of the original, reconstructed MODIS SSTs, and the Leave-One-Year-Out-Cross-
Validation (LOYOCV) results of scheme 1 and scheme 2 when compared to the in situ data on 6
November 2018.

Author Contributions: Conceptualization, S.J. and J.I.; methodology, S.J, C.Y. and J.I.; software, S.J.;
validation, S.J.; formal analysis, S.J.; investigation, S.J.; resources, S.J. and J.I.; writing original draft
preparation, S.J. and C.Y.; writing review and editing, S.J., C.Y. and J.I.; visualization, S.J.; supervision,
J.I.; project administration, J.I.; funding acquisition, J.I. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the “Development of technology using analysis of ocean
satellite images (20210046)” funded by the Korea Institute of Marine Science and Technology Pro-
motion (KIMST), “Development of Advanced Science and Technology for Marine Environmental
Impact Assessment (20210427)” funded by the Ministry of Oceans and Fisheries of Korea (MOF),
and “Technology development for Practical Applications of Multi-satellite data to maritime issues
(20180456)” supported by the Ministry of Ocean and Fisheries, Korea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and code used in this study are available upon request to
the corresponding author. GHRSST Level 4 Multi Ultra Resolution (MUR) Global Foundation SST
analysis is downloaded from NASA JPL Physical Oceanography Distributed Active Archive Center
(PODAAC). The data were downloaded from the NASA JPL Physical Oceanography DAAC (https:
//podaac.jpl.nasa.gov/MEaSUREs-MUR?tab=background&sections=about%2Bdata) (accessed on 24
June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/rs14030575/s1
https://www.mdpi.com/article/10.3390/rs14030575/s1
https://podaac.jpl.nasa.gov/MEaSUREs-MUR?tab=background&sections=about%2Bdata
https://podaac.jpl.nasa.gov/MEaSUREs-MUR?tab=background&sections=about%2Bdata


Remote Sens. 2022, 14, 575 21 of 23

References
1. Dunstan, P.K.; Foster, S.D.; King, E.; Risbey, J.; O’Kane, T.J.; Monselesan, D.; Hobday, A.J.; Hartog, J.R.; Thompson, P.A. Global

patterns of change and variation in sea surface temperature and chlorophyll a. Sci. Rep. 2018, 8, 14624. [CrossRef] [PubMed]
2. Park, S.; Deser, C.; Alexander, M.A. Estimation of the surface heat flux response to sea surface temperature anomalies over the

global oceans. J. Clim. 2005, 18, 4582–4599. [CrossRef]
3. Podestá, G.P.; Glynn, P.W. Sea surface temperature variability in Panamá and Galápagos: Extreme temperatures causing coral

bleaching. J. Geophys. Res. Ocean. 1997, 102, 15749–15759.
4. Samelson, R.; Skyllingstad, E.; Chelton, D.; Esbensen, S.; O’Neill, L.; Thum, N. On the coupling of wind stress and sea surface

temperature. J. Clim. 2006, 19, 1557–1566.
5. Brasnett, B.; Colan, D.S. Assimilating retrievals of sea surface temperature from VIIRS and AMSR2. J. Atmos. Ocean. Technol. 2016,

33, 361–375. [CrossRef]
6. Cummings, J.A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604. [CrossRef]
7. O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.;

Høyer, J.L. Observational needs of sea surface temperature. Front. Mar. Sci. 2019, 6, 420. [CrossRef]
8. Tory, K.J.; Dare, R.A. Sea surface temperature thresholds for tropical cyclone formation. J. Clim. 2015, 28, 8171–8183. [CrossRef]
9. Vazquez-Cuervo, J.; Torres, H.S.; Menemenlis, D.; Chin, T.; Armstrong, E.M. Relationship between SST gradients and upwelling

off Peru and Chile: Model/satellite data analysis. Int. J. Remote Sens. 2017, 38, 6599–6622. [CrossRef]
10. Wentz, F.J.; Gentemann, C.; Smith, D.; Chelton, D. Satellite measurements of sea surface temperature through clouds. Science 2000,

288, 847–850. [CrossRef]
11. Barth, A.; Beckers, J.-M.; Troupin, C.; Alvera-Azcárate, A.; Vandenbulcke, L. divand-1.0: N-dimensional variational data analysis

for ocean observations. Geosci. Model Dev. 2014, 7, 225–241. [CrossRef]
12. Barth, A.; Troupin, C.; Reyes, E.; Alvera-Azcárate, A.; Beckers, J.-M.; Tintore, J. Variational interpolation of high-frequency radar

surface currents using DIVAnd. Ocean Dyn. 2021, 71, 293–308. [CrossRef]
13. Beckers, J.-M.; Barth, A.; Alvera-Azcárate, A. DINEOF reconstruction of clouded images including error maps–application to the

Sea-Surface Temperature around Corsican Island. Ocean Sci. 2006, 2, 183–199.
14. Beckers, J.-M.; Rixen, M. EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Ocean. Technol. 2003,

20, 1839–1856. [CrossRef]
15. Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote

Sens. Environ. 2017, 200, 154–169. [CrossRef]
16. Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The operational sea surface temperature and sea ice

analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [CrossRef]
17. Fablet, R.; Viet, P.H.; Lguensat, R. Data-driven Models for the Spatio-Temporal Interpolation of satellite-derived SST Fields. IEEE

Trans. Comput. Imaging 2017, 3, 647–657.
18. Ouala, S.; Fablet, R.; Herzet, C.; Chapron, B.; Pascual, A.; Collard, F.; Gaultier, L. Neural network based Kalman filters for the

Spatio-temporal interpolation of satellite-derived sea surface temperature. Remote Sens. 2018, 10, 1864. [CrossRef]
19. Høyer, J.L.; Le Borgne, P.; Eastwood, S. A bias correction method for Arctic satellite sea surface temperature observations. Remote

Sens. Environ. 2014, 146, 201–213. [CrossRef]
20. Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J. The current

configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration
analyses. Remote Sens. 2020, 12, 720. [CrossRef]

21. Alvera-Azcárate, A.; Barth, A.; Parard, G.; Beckers, J.-M. Analysis of SMOS sea surface salinity data using DINEOF. Remote Sens.
Environ. 2016, 180, 137–145. [CrossRef]

22. Alvera-Azcárate, A.; Barth, A.; Beckers, J.M.; Weisberg, R.H. Multivariate reconstruction of missing data in sea surface temperature,
chlorophyll, and wind satellite fields. J. Geophys. Res. Ocean. 2007, 112.

23. Hilborn, A.; Costa, M. Applications of DINEOF to satellite-derived chlorophyll-a from a productive coastal region. Remote Sens.
2018, 10, 1449. [CrossRef]

24. Yang, M.; Khan, F.A.; Tian, H.; Liu, Q. Analysis of the monthly and spring-neap tidal variability of satellite chlorophyll-a and
total suspended matter in a turbid coastal ocean using the DINEOF method. Remote Sens. 2021, 13, 632. [CrossRef]

25. Barth, A.; Alvera-Azcárate, A.; Licer, M.; Beckers, J.-M. DINCAE 1.0: A convolutional neural network with error estimates to
reconstruct sea surface temperature satellite observations. Geosci. Model Dev. 2020, 13, 1609–1622. [CrossRef]

26. Jang, E.; Im, J.; Ha, S.; Lee, S.; Park, Y.-G. Estimation of water quality index for coastal areas in Korea using GOCI satellite data
based on machine learning approaches. Korean J. Remote Sens. 2016, 32, 221–234. [CrossRef]

27. Jang, E.; Kim, Y.J.; Im, J.; Park, Y.-G. Improvement of SMAP sea surface salinity in river-dominated oceans using machine learning
approaches. GISci. Remote Sens. 2021, 58, 138–160. [CrossRef]

28. Kumar, C.; Podestá, G.; Kilpatrick, K.; Minnett, P. A machine learning approach to estimating the error in satellite sea surface
temperature retrievals. Remote Sens. Environ. 2021, 255, 112227. [CrossRef]

29. Park, J.; Kim, J.-H.; Kim, H.-c.; Kim, B.-K.; Bae, D.; Jo, Y.-H.; Jo, N.; Lee, S.H. Reconstruction of ocean color data using machine
learning techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. Remote Sens. 2019, 11, 1366. [CrossRef]

http://doi.org/10.1038/s41598-018-33057-y
http://www.ncbi.nlm.nih.gov/pubmed/30279444
http://doi.org/10.1175/JCLI3521.1
http://doi.org/10.1175/JTECH-D-15-0093.1
http://doi.org/10.1256/qj.05.105
http://doi.org/10.3389/fmars.2019.00420
http://doi.org/10.1175/JCLI-D-14-00637.1
http://doi.org/10.1080/01431161.2017.1362130
http://doi.org/10.1126/science.288.5467.847
http://doi.org/10.5194/gmd-7-225-2014
http://doi.org/10.1007/s10236-020-01432-x
http://doi.org/10.1175/1520-0426(2003)020&lt;1839:ECADFF&gt;2.0.CO;2
http://doi.org/10.1016/j.rse.2017.07.029
http://doi.org/10.1016/j.rse.2010.10.017
http://doi.org/10.3390/rs10121864
http://doi.org/10.1016/j.rse.2013.04.020
http://doi.org/10.3390/rs12040720
http://doi.org/10.1016/j.rse.2016.02.044
http://doi.org/10.3390/rs10091449
http://doi.org/10.3390/rs13040632
http://doi.org/10.5194/gmd-13-1609-2020
http://doi.org/10.7780/kjrs.2016.32.3.2
http://doi.org/10.1080/15481603.2021.1872228
http://doi.org/10.1016/j.rse.2020.112227
http://doi.org/10.3390/rs11111366


Remote Sens. 2022, 14, 575 22 of 23

30. Saux Picart, S.; Tandeo, P.; Autret, E.; Gausset, B. Exploring Machine Learning to Correct Satellite-Derived Sea Surface Tempera-
tures. Remote Sens. 2018, 10, 224. [CrossRef]

31. Stock, A.; Subramaniam, A.; Van Dijken, G.L.; Wedding, L.M.; Arrigo, K.R.; Mills, M.M.; Cameron, M.A.; Micheli, F. Comparison
of cloud-filling algorithms for marine satellite data. Remote Sens. 2020, 12, 3313. [CrossRef]

32. Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Machine learning techniques for regional scale estimation of high-resolution
cloud-free daily sea surface temperatures from MODIS data. ISPRS J. Photogramm. Remote Sens. 2020, 166, 228–240. [CrossRef]

33. Lee, J.; Kim, M.; Im, J.; Han, H.; Han, D. Pre-trained feature aggregated deep learning-based monitoring of overshooting tops
using multi-spectral channels of GeoKompsat-2A advanced meteorological imagery. GISci. Remote Sens. 2021, 58, 1052–1071.
[CrossRef]

34. Pisoni, E.; Pastor, F.; Volta, M. Artificial Neural Networks to reconstruct incomplete satellite data: Application to the Mediterranean
Sea Surface Temperature. Nonlinear Process. Geophys. 2008, 15, 61–70. [CrossRef]

35. Han, Z.; He, Y.; Liu, G.; Perrie, W. Application of DINCAE to Reconstruct the Gaps in Chlorophyll-a Satellite Observations in the
South China Sea and West Philippine Sea. Remote Sens. 2020, 12, 480. [CrossRef]

36. Joh, Y.; Di Lorenzo, E.; Siqueira, L.; Kirtman, B.P. Enhanced interactions of Kuroshio Extension with tropical Pacific in a changing
climate. Sci. Rep. 2021, 11, 6247. [CrossRef]

37. Qiu, B.; Chen, S.; Hacker, P. Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System
Study (KESS). J. Phys. Oceanogr. 2007, 37, 982–1000. [CrossRef]

38. Yang, P.; Jing, Z.; Sun, B.; Wu, L.; Qiu, B.; Chang, P.; Ramachandran, S. On the upper-ocean vertical eddy heat transport in the
Kuroshio extension. Part I: Variability and dynamics. J. Phys. Oceanogr. 2021, 51, 229–246. [CrossRef]

39. Donohue, K.; Watts, D.R.; Tracey, K.; Wimbush, M.; Park, J.H.; Bond, N.; Cronin, M.; Chen, S.; Qiu, B.; Hacker, P. Program studies
the Kuroshio extension. Eos Trans. Am. Geophys. Union 2008, 89, 161–162. [CrossRef]

40. Kawabe, M. Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys.
Oceanogr. 1995, 25, 3103–3117. [CrossRef]

41. Wang, Y.; Tang, R.; Yu, Y.; Ji, F. Variability in the Sea Surface Temperature Gradient and Its Impacts on Chlorophyll-a Concentration
in the Kuroshio Extension. Remote Sens. 2021, 13, 888. [CrossRef]

42. Minnett, P.; Alvera-Azcárate, A.; Chin, T.; Corlett, G.; Gentemann, C.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E. Half
a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [CrossRef]

43. Morak-Bozzo, S.; Merchant, C.; Kent, E.; Berry, D.; Carella, G. Climatological diurnal variability in sea surface temperature
characterized from drifting buoy data. Geosci. Data J. 2016, 3, 20–28. [CrossRef]

44. Brown, O.B.; Minnett, P.J.; Evans, R.; Kearns, E.; Kilpatrick, K.; Kumar, A.; Sikorski, R.; Závody, A. Modis Infrared Sea Surface
Temperature Algorithm Algorithm Theoretical Basis Document Version 2.0; University of Miami: Miami, FL, USA, 1999; Volume 31.

45. Kilpatrick, K.A.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.; Minnett, P.; Evans, R. A decade of
sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [CrossRef]

46. Shibata, A. A change of microwave radiation from the ocean surface induced by air-sea temperature difference. Radio Sci. 2003,
38, 8063. [CrossRef]

47. Gentemann, C.L.; Meissner, T.; Wentz, F.J. Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci.
Remote Sens. 2009, 48, 1009–1018. [CrossRef]

48. Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y. Global Change
Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE 2010, 98, 717–734. [CrossRef]

49. Gentemann, C.L. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res. Ocean. 2014, 119,
2583–2598. [CrossRef]

50. Donlon, C.; Minnett, P.; Gentemann, C.; Nightingale, T.; Barton, I.; Ward, B.; Murray, M. Toward improved validation of satellite
sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [CrossRef]

51. Embury, O.; Merchant, C.J.; Corlett, G.K. A reprocessing for climate of sea surface temperature from the along-track scanning
radiometers: Initial validation, accounting for skin and diurnal variability effects. Remote Sens. Environ. 2012, 116, 62–78.
[CrossRef]

52. Minnett, P.J.; Smith, M.; Ward, B. Measurements of the oceanic thermal skin effect. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011,
58, 861–868. [CrossRef]

53. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

54. Barth, A.; Azcárate, A.A.; Joassin, P.; Beckers, J.-M.; Troupin, C. Introduction to optimal interpolation and variational analysis.
SESAME Summer Sch. Varna Bulg. 2008.

55. Beckers, J.-M.; Barth, A.; Tomazic, I.; Alvera-Azcárate, A. A method to generate fully multi-scale optimal interpolation by
combining efficient single process analyses, illustrated by a DINEOF analysis spiced with a local optimal interpolation. Ocean Sci.
2014, 10, 845–862. [CrossRef]

56. Park, J.; Kim, H.-C.; Bae, D.; Jo, Y.-H. Data Reconstruction for Remotely Sensed Chlorophyll-a Concentration in the Ross Sea
Using Ensemble-Based Machine Learning. Remote Sens. 2020, 12, 1898. [CrossRef]

57. Chi, J.; Kim, H.-C. Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural
networks. GISci. Remote Sens. 2021, 58, 812–830. [CrossRef]

http://doi.org/10.3390/rs10020224
http://doi.org/10.3390/rs12203313
http://doi.org/10.1016/j.isprsjprs.2020.06.008
http://doi.org/10.1080/15481603.2021.1960075
http://doi.org/10.5194/npg-15-61-2008
http://doi.org/10.3390/rs12030480
http://doi.org/10.1038/s41598-021-85582-y
http://doi.org/10.1175/JPO3097.1
http://doi.org/10.1175/JPO-D-20-0068.1
http://doi.org/10.1029/2008EO170002
http://doi.org/10.1175/1520-0485(1995)025&lt;3103:VOCPVA&gt;2.0.CO;2
http://doi.org/10.3390/rs13050888
http://doi.org/10.1016/j.rse.2019.111366
http://doi.org/10.1002/gdj3.35
http://doi.org/10.1016/j.rse.2015.04.023
http://doi.org/10.1029/2002RS002670
http://doi.org/10.1109/TGRS.2009.2030322
http://doi.org/10.1109/JPROC.2009.2036869
http://doi.org/10.1002/2013JC009716
http://doi.org/10.1175/1520-0442(2002)015&lt;0353:TIVOSS&gt;2.0.CO;2
http://doi.org/10.1016/j.rse.2011.02.028
http://doi.org/10.1016/j.dsr2.2010.10.024
http://doi.org/10.5194/os-10-845-2014
http://doi.org/10.3390/rs12111898
http://doi.org/10.1080/15481603.2021.1943213


Remote Sens. 2022, 14, 575 23 of 23

58. Cho, D.; Yoo, C.; Im, J.; Lee, Y.; Lee, J. Improvement of spatial interpolation accuracy of daily maximum air temperature in urban
areas using a stacking ensemble technique. GISci. Remote Sens. 2020, 57, 633–649. [CrossRef]

59. Gao, P.; Wu, T.; Ge, Y.; Li, Z. Improving the accuracy of extant gridded population maps using multisource map fusion. GISci.
Remote Sens. 2022. [CrossRef]

60. Pham, T.D.; Yokoya, N.; Nguyen, T.T.T.; Le, N.N.; Ha, N.T.; Xia, J.; Takeuchi, W.; Pham, T.D. Improvement of Mangrove Soil
Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. GISci. Remote Sens. 2021, 58,
68–87. [CrossRef]

61. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
62. Dabrowski, T.; Lyons, K.; Nolan, G.; Berry, A.; Cusack, C.; Silke, J. Harmful algal bloom forecast system for SW Ireland. Part I:

Description and validation of an operational forecasting model. Harmful Algae 2016, 53, 64–76. [CrossRef] [PubMed]
63. Sutherland, J.; Walstra, D.; Chesher, T.; Van Rijn, L.; Southgate, H. Evaluation of coastal area modelling systems at an estuary

mouth. Coast. Eng. 2004, 51, 119–142. [CrossRef]
64. Nagy, H.; Lyons, K.; McGovern, J.; Pereiro, D.; Mamoutos, I.; Nolan, G.; Dabrowski, T. Recent Progress in Downscaled Local

Ocean Forecast Models for Irish Maritime Users. In Proceedings of the 9th EuroGOOS International Conference, Brest, France,
3–5 May 2021.

65. Winter, C.; Poerbandono, P.; Hoyme, H.; Mayerle, R. Modelling of Suspended Sediment Dynamics in Tidal Channels of the
German Bight. Die Küste 2005, 69, 253–278.

66. Kennedy, J.J.; Smith, R.; Rayner, N. Using AATSR data to assess the quality of in situ sea-surface temperature observations for
climate studies. Remote Sens. Environ. 2012, 116, 79–92. [CrossRef]

67. Kennedy, J.J. A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys. 2014, 52,
1–32. [CrossRef]

68. Merchant, C.J.; Embury, O.; Rayner, N.A.; Berry, D.I.; Corlett, G.K.; Lean, K.; Veal, K.L.; Kent, E.C.; Llewellyn-Jones, D.T.;
Remedios, J.J. A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers. J.
Geophys. Res. Ocean. 2012, 117, C12013. [CrossRef]

69. Le Menn, M.; Poli, P.; David, A.; Sagot, J.; Lucas, M.; O’Carroll, A.; Belbeoch, M.; Herklotz, K. Development of surface drifting
buoys for fiducial reference measurements of sea-surface temperature. Front. Mar. Sci. 2019, 6, 578. [CrossRef]

70. Alerskans, E.; Høyer, J.L.; Gentemann, C.L.; Pedersen, L.T.; Nielsen-Englyst, P.; Donlon, C. Construction of a climate data record
of sea surface temperature from passive microwave measurements. Remote Sens. Environ. 2020, 236, 111485. [CrossRef]

71. Wang, C.; Shu, Q.; Wang, X.; Guo, B.; Liu, P.; Li, Q. A random forest classifier based on pixel comparison features for urban
LiDAR data. ISPRS J. Photogramm. Remote Sens. 2019, 148, 75–86. [CrossRef]

http://doi.org/10.1080/15481603.2020.1766768
http://doi.org/10.1080/15481603.2021.2012371
http://doi.org/10.1080/15481603.2020.1857623
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.hal.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/28073446
http://doi.org/10.1016/j.coastaleng.2003.12.003
http://doi.org/10.1016/j.rse.2010.11.021
http://doi.org/10.1002/2013RG000434
http://doi.org/10.1029/2012JC008400
http://doi.org/10.3389/fmars.2019.00578
http://doi.org/10.1016/j.rse.2019.111485
http://doi.org/10.1016/j.isprsjprs.2018.12.009

	Introduction 
	Study Area and Data 
	Study Area 
	Satellite and In Situ Data 

	Methods 
	Reconstruction of SST 
	Data INterpolate Convolutional AutoEncoder (DINCAE) 

	Data Fusion for Improving Reconstructed SST 
	Performance Evaluation of the Proposed Approach 

	Results and Discussion 
	Performance of SST Reconstruction 
	Improvement of the Reconstructed SST 
	Feature Resolution Analysis 
	Novelty and Limitations 

	Conclusions 
	References

