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Abstract: Speckle is an interference phenomenon that contaminates images captured by coherent
illumination systems. Due to its multiplicative and non-Gaussian nature, it is challenging to eliminate.
The non-local means approach to noise reduction has proven flexible and provided good results. We
propose in this work a new non-local means filter for single-look speckled data using the Shannon
and Rényi entropies under the G0 model. We obtain the necessary mathematical apparatus (the
Fisher information matrix and asymptotic variance of maximum likelihood estimators). The similarity
between samples of the patches relies on a parametric statistical test that verifies the evidence whether
two samples have the same entropy or not. Then, we build the convolution mask by transforming the
p-value into weights with a smooth activation function. The results are encouraging, as the filtered
images have a better signal-to-noise ratio, they preserve the mean, and the edges are not severely
blurred. The proposed algorithm is compared with three successful filters: SRAD (Speckle Reducing
Anisotropic Diffusion), Lee, and FANS (Fast Adaptive Nonlocal SAR Despeckling), showing the new
method’s competitiveness.

Keywords: non-local means; speckle filter; h-φ entropies; asymptotic variance

1. Introduction

SAR (Synthetic Aperture Radar) images are widely used in many environment monitor
applications because they offer some advantages over optical remote sensing images,
such as its acquisition capability being independent of sun light or the weather. In SAR
imagery, the interference of waves reflected during the acquisition process gives rise to
a multiplicative and non-Gaussian noise known as speckle [1], which produces a visual
degradation of the image and hinders its interpretation. The purpose of image noise
removal is to enhance its automatic understanding without blurring edges and obliterating
small details. Reducing speckle is beneficial for SAR image visual interpretation, region-
based detection, segmentation and classification, among other applications [2]. However,
classical methods for noise reduction are not adequate for SAR denoising since this type
of data are heavy-tailed and outlier-prone [3,4]. These features of SAR images make the
modeling of the images with suitable statistical distributions essential. In the literature,
there exists several probability distribution models to describe SAR data, in [5] a summary
of this topic is presented.

The classic Lee filter for SAR image denoising was widespread since it was presented
in [6,7]. It is based on performing operations on the value of the pixels, by sliding a window
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over the image, taking into account the coefficient of variation inside the window. Later it
was improved by incorporating the data asymmetry [8].

A similar type of filter is the Maximum a Posteriori (MAP) based filter, which has
been used to reduce the noise of single-look SAR images, modeling the a priori distribution
of the backscatter with a Gaussian law [9]. Other distributions, such as β and Γ, were
utilized in subsequent works [10,11] with relative success because they are applicable only
in homogeneous areas [12]. Moschetti et al. [13] compared MAP filters, modeling the data
with the G0, GH , and K distributions.

Perona and Malik [14] proposed the anisotropic diffusion filter. Such an approach had
a huge impact on the imaging community because it uses the scale-space and is efficient at
edge-preserving but it was developed for Gaussian noise elimination. Thus, this model is
not proper for multiplicative speckle noise. Based in this idea, Yu and Acton [15] proposed
SRAD (Speckled Reducing Anisotropic Diffusion), a specialized anisotropic diffusion filter
for speckled data. It is based on a mathematical modeling of speckle noise that is removed
through solving a differential equation in partial derivatives.

Cozzolino et al. [16] proposed the FANS (Fast Adaptive Non-local SAR Despeckling)
filter. It is based on wavelets, and it is widely used by the SAR image processing community
for its speed and good performance.

Buades et al. [17] introduced the Non-local Means (NLM) approach. These filters use
the information of a group of pixels surrounding a target pixel to smooth the image by
using a large convolution mask. It takes an average of all pixels in the mask, weighted
by a similarity measure between these pixels and the center of the mask. The NLM
approach has been utilized in many developments of image filtering. For example, Duval
et al. [18] enhanced this idea, highlighting the importance of choosing local parameters
in image filtering to balance the bias and the variance of the filter. In addition, Delon and
Desolneux [19] addressed the problem of recovering an image contaminated with a mixture
of Gaussian and impulse noise, employing an image patch-based method, which relies on
the NLM idea. Lebrun et al. [20] proposed a Bayesian version of this approach and Torres
et al. [21] built non-local means filters for polarimetric SAR data by comparing samples with
stochastic distances between Wishart models. More recently, Refs. [22,23] have approached
the comparison of samples using the properties of ratios between observations, and have
enhanced the filter performance with anisotropic diffusion despeckling.

Argenti et al. [24] made an extensive review of despeckling methods. The authors
compared various algorithms, including non-local, Bayesian, non-Bayesian, total variation,
and wavelet-based filters.

Non-local means filters rely on two types of transformations to compare the samples,
namely: (i) Pointwise comparisons, e.g., the L2 norm or the ratio of the observations [22]
(which requires samples of the same size); and (ii) parameter estimation. In this article, we
propose a technique in line with parameter estimation.

This diversity of proposals generates the need of defining criteria to evaluate the
quality of speckle filters quantitatively. With this objective, Gómez Déniz et al. [25] proposed
theM index. It is a good choice because it does not require a reference image and is tailored
to SAR data.

Due to speckle noise’s stochastic nature, SAR data’s statistical modeling is strategic
for image analysis and speckle noise reduction. The multiplicative model is one of the
most widely used descriptions. It states that the observed data can be modeled by a
random variable Z, which is the product of two independent random variables: X, which
describes the backscatter, and Y that models the speckle noise. Yue et al. [26,27] provide
a comprehensive account of the models that arise from this assumption. Following the
multiplicative model, Frery et al. [28] introduced the G0 distribution which has been widely
used for SAR data analysis. It is referred to as a universal model because of its flexibility
and tractability [29]. It provides a suitable way for modeling areas with different degrees of
texture, reflectivity, and signal-to-noise ratio.
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Three parameters index the G0 distribution: α, related to the target texture, γ, related
to the brightness and called scale parameter, and L, the number of looks, which describes
the signal-to-noise ratio. The two first may vary among positions, while the latter can be
considered the same on the whole image and can be known or estimated.

The entropy, which is a measure of a system’s disorder, is a central concept to infor-
mation theory [30]. The Shannon entropy has been widely applied in statistics, image
processing, and even SAR image analysis [31]. Kullback and Leibler [32] and Rényi [33],
among others, studied in depth the properties of several forms of entropy. Two or more
random samples may be compared with test statistics based on several forms of entropy,
and this is the approach we will follow.

Chan et al. [34] presented the first attempt at using the entropy as the driving measure
in a non-local means approach for speckle reduction. In this work we advance this idea by:

1. Assessing and solving numerical errors that may appear when inverting the Fisher
information matrix;

2. Using a smooth transformation between p-values and weights that improves the
results;

3. Evaluating the filter performance with a metric that takes into account first- and
second-order statistics;

4. Applications to actual SAR images;
5. Comparisons with state-of-the-art filters.

In this work, following the results by Salicrú et al. [35], we develop two statistical tests
to evaluate if two random samples have the same entropy. These tests are based on the
Shannon and Rényi entropies under the G0 distribution. With this information, we propose
a non-local means filter for speckled images noise reduction. We obtain the necessary
mathematical apparatus for defining such filters, e.g., the Fisher information matrix of the
G0 law, and the asymptotic variance of its maximum likelihood estimators.

We evaluate these entropy-based non-local means filters’ performance using simulated
data and an actual single-look SAR image. The new algorithm results are competitive with
Lee, SRAD (Speckle Reducing Anisotropic Diffusion), and FANS (Fast Adaptive Nonlocal
SAR Despeckling), and in some cases, they are better. Moreover, we show that building a
non-local means filter with a proxy, as the entropy, is a feasible approach.

This article unfolds as follows. In Section 2, some properties of the G0 distribution
for intensity format SAR data are recalled, which results in the G0

I distribution. Section 3
introduces the formulae of Shannon and Rényi entropies under the G0

I model, the asymp-
totic entropies distribution, and the hypothesis tests with entropies. In Section 4, the
details of the proposal of entropy-based non-local means filters are explained. Section 5
presents measures for assessing the performance of speckle filters. In Section 6, the results
of applying the proposed despeckling algorithm to synthetic and actual data along with
the results of applying FANS (Fast Adaptive Nonlocal SAR Despeckling), Lee, and SRAD
(Speckle Reducing Anisotropic Diffusion) methods are shown. We also assess their relative
performance. Finally, in Section 7 some conclusions are drawn. We also assess their relative
performance. Finally, in Section 7 some conclusions are drawn. Appendix A provides
information about the computational platform and points at the provided code and data.

2. The G0
I Distribution

Speckle noise follows a Gamma distribution, with density:

fY(y; L) =
LL

Γ(L)
yL−1e−Ly,

denoted by Y ∼ Γ(L, L). The physics of image formation imposes L ≥ 1.
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The model for the backscatter X may be any distribution with positive support. Frery
et al. [28] proposed using the reciprocal gamma law, a particular case of the generalized
inverse Gaussian distribution, which is characterized by the density:

fX(x; α, γ) =
γ−α

Γ(−α)
xα−1e−γ/x,

where α < 0 and γ > 0 are the texture and the scale parameters, respectively. Under
the multiplicative model, the return Z = XY follows a G0

I (α, γ, L) distribution, whose
density is:

fZ(z; α, γ) =
LLΓ(L− α)

γαΓ(−α)Γ(L)
zL−1

(γ + zL)L−α
, (1)

where −α, γ, z > 0 and L ≥ 1. The r-order moments of the G0
I (α, γ, L) distribution are:

E(Zr) =
(γ

L

)r Γ(−α− r)
Γ(−α)

Γ(L + r)
Γ(L)

, (2)

provided α < −r, and infinite otherwise. The G0
I distribution also arises when the observa-

tion is described as a sum of a random number of returns [26,36].
We will study the noisiest case which occurs when L = 1; it is called single-look and

expression (1) becomes:

fZ(z; α, γ) =
−α

γ

(
z
γ
+ 1
)α−1

. (3)

The expected value is given by:

E(Z) = − γ

α + 1
, α < −1. (4)

Chan et al. [37], using a connection between this distribution and certain Pareto laws,
studied alternatives for obtaining quality samples.

We employed the maximum likelihood approach for parameter estimation. Given
the sample z = (z1, . . . , zn) of independent and identically distributed random variables
with common distribution G0

I (α, γ, 1) with (α, γ) ∈ Θ = R− ×R+, a maximum likelihood
estimator of (α, γ) satisfies:

(α̂, γ̂) = arg max
(α,γ)∈Θ

L(α, γ, 1, z), (5)

where L is the likelihood function given by:

L(α, γ, L, z) =
(

LLΓ(L− α)

γαΓ(−α)Γ(L)

)n n

∏
i=1

zL−1
i (γ + Lzi)

α−L. (6)

This leads to α̂ and γ̂ such that:

n
[
Ψ0(−α̂)−Ψ0(1− α̂)

]
+

n

∑
i=1

ln
γ̂ + z2

i
γ̂

= 0, and

nα̂

γ̂
− (1− α̂)

n

∑
i=1

1
γ̂ + z2

i
= 0,

where Ψ0(t) = d ln Γ(t)/dt is the digamma function. We solved this system with numerical
routines, using as an initial solution the moments estimators that stem from Equation (2)
with r = 1/2, 1.
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3. Entropies for the G0
I Distribution

Entropy is an essential concept in information theory, related to the notion of disorder
in statistics [30]. Salicrú et al. [38] proposed the (h; Φ)-entropy class, which generalizes
the original concept and facilitates the computation. In this section, the Shannon and
Rényi entropies for the G0

I distribution, in the single-look case, are computed. Let f be
a probability density function with support Ω, and a r-dimensional parameter vector
θ = (θ1, . . . , θr) ∈ Θ ⊂ Rr, with Θ the parameter space. The (h, φ)-entropy Hh

φ( f , θ) of f is
given by:

Hh
φ( f , θ) = h

[∫
Ω

φ
(

f (x, θ)
)
dx
]

, (7)

being φ : [0,+∞)→ R concave and h : R→ R an increasing function or φ : [0,+∞)→ R

convex and h : R→ R a decreasing function [35]. In this work we use Shannon and Rényi
entropies, which are obtained making:

• Shannon entropy: h(x) = x and φ(x) = −x ln x; and
• Rényi entropy: h(x) = (1− β)−1 ln x and φ(x) = xβ, with β ∈ (0, 1).

The Shannon entropy of a probability density function f with parameters θ = (θ1, . . . , θr)
∈ Θ ⊂ Rr is given by:

HS( f , θ) = −
∫ +∞

−∞
f (z, θ) ln f (z, θ)dz. (8)

Then, for the G0
I distribution, considering θ = (α, γ) and L = 1, using Equation (3),

we have:

HS( fG0
I
, α, γ) = −

∫ +∞

0
− α

γ

(
1 +

z
γ

)α−1
ln
[
− α

γ

(
1 +

z
γ

)α−1]
dz

=
α− 1

α
− ln

−α

γ
, (9)

where −α, γ > 0. The Rényi entropy of order β, the probability density function f is
given by:

HR( f , θ, β) =
1

1− β
ln
(∫ +∞

−∞
[ f (z, θ)]βdz

)
, β ∈ (0, 1). (10)

So, for the single look G0
I distribution, considering θ = (α, γ), using Equation (3), it

becomes:

HR( fG0
I
, α, γ, β) =

1
1− β

ln

(∫ +∞

−∞

[
− α

γ

(
1 +

z
γ

)α−1
]β

dz

)

=
β

1− β
ln
(
−α

γ

)
+

1
1− β

ln
(

γ

β(1− α) + 1

)
, (11)

where −α, γ > 0 and the additional restriction α < −β−1 + 1.

3.1. Asymptotic Entropy Distribution

Pardo et al. [39] obtained the asymptotic behavior of any Hφ
h entropy indexed by

maximum likelihood estimators. We present here a brief explanation of this point, and
any interested readers can refer to [35,39,40]. Consider a random sample of size N from
the distribution characterized by the probability density function f , with support Ω and
a r-dimensional parameter vector θ ∈ Θ ⊂ Rr, where Θ is the parameter space, and the
maximum likelihood estimator θ̂ = (θ̂1, θ̂2, . . . , θ̂r) of θ based on a random sample. Then,
under mild regularity conditions, holds that:

√
N
(

Hφ
h ( f , θ̂)− Hφ

h ( f , θ)
) D−−−→

N→∞
N (0, σ2

H(θ)), (12)
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being σ2
H(θ) = δTK(θ)−1δ, where K(θ) is the Fisher information matrix of f and δ is a

vector given by:

δT =
(
δ1 δ2 · · · δr

)
with δi =

∂Hφ
h (θ)

∂θi
, (13)

K(θ) = E
(
−∂2 ln f (z, θ)

∂θ2

)
,

and N (µ, σ) is the Gaussian distribution with mean µ and variance σ2, and ’ D−→’ denotes
convergence in distribution.

We derived closed formulas of the asymptotic variance for the single look G0
I distribu-

tion, in both cases, Shannon and Rényi entropies. From Equation (3), being f (z; α, γ) the
probability density function of the G0

I ,

ln f (z; α, γ) = ln(−α)− ln γ + (α− 1) ln
(

1 +
z
γ

)
, (14)

where −α, γ > 0. The second-order derivatives are given by:

∂2 ln f
∂α2 = − 1

α2 , (15)

∂2 ln f
∂α∂γ

= − z
γ2 + zγ

, and (16)

∂2 ln f
∂γ2 =

1
γ2 +

α− 1
γ2

[
− z2

(γ + z)2 +
2z

z + γ

]
. (17)

Then, the Fisher information matrix for the G0
I (α, γ, 1) distribution is given by:

K(α, γ) =


1
α2

1
γ(1− α)

1
γ(1− α)

α

γ2(α− 2)

, (18)

which is a positive definite matrix, so it can be inverted:

(
K(α, γ)

)−1
=

(
(α− 1)2α2 αγ(α− 1)(α− 2)

αγ(α− 1)(α− 2) α−1γ2(α− 1)2(α− 2)

)
. (19)

We compute the asymptotic variance of the Shannon entropy from (13), (9), and (19).
We have that:

δT
S =

(
δ1 δ2

)
=

(
∂HS(α, γ)

∂α

∂HS(α, γ)

∂γ

)
=

(
1
α2 −

1
α

1
γ

)
, (20)

leading to:

σ2
HS

=
(α− 1)2[(−2 + 4α3 − γ2 − α2(10 + γ2) + α(5 + 2γ2))

]
α2
[
α(5 + 2γ2)− 2− γ2 − α2(2 + γ2)

] . (21)

In a similar way, for the Rényi entropy, from (11):

δT
R =

(
∂HR(α, γ)

∂α

∂HR(α, γ)

∂γ

)
=

(
β

1− β

( 1
α
− 1

β(α− 1) + 1

) 1
γ

)
, (22)
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which results in:

σ2
Hβ

R
=

(α− 1)2[− 2 + 4β + 4α3β2 − β2(4 + γ2)
][

1 + (α− 1)β
]2[

α(5 + 2γ2)− α2(2 + γ2)− γ2 − 2
] +

α
[
1− 10β + 2β2(7 + γ2 − α2β(−4 + β(14 + γ2))

)](
1 + (α− 1)β

)2(
α(5 + 2γ2)− α2(2 + γ2)− γ2 − 2

) . (23)

The Fisher information matrix, which is involved in computing both σ2
HS

and σ2
Hβ

R
, is

invertible, but it can be ill-conditioned. Writing:

a =
1
α2 , (24)

b =
1

γ(1− α)
, and (25)

c =
α

γ2(α− 2)
, (26)

then we have its eigenvalues given by:

λ1,2 =
(a + c)±

√
(a− c)2 + 4b2

2
,

which are real numbers. Figure 1 shows the values of eingenvalues of the Fisher information
matrix for several values of α and γ parameters, and L = 1. Figure 1a,b show the first and
second eigenvalues, respectively. It can be observed that the second eigenvalue tends to
zero as α → −∞ for all values of γ and then, the matrix inversion becomes unstable for
textureless areas, regardless of scale. Frery et al. [41] noticed that maximum likelihood
estimates were unstable in some areas of the parameter space and analyzed this issue from
the sample size viewpoint.

0.00

0.25

0.50

0.75

1.00

1.25

−8 −6 −4 −2
α

λ 1

γ

1

2

3

5

10

First eigenvalue, L = 1

(a)

0.00

0.02

0.04

0.06

−8 −6 −4 −2
α

λ 2

γ

1

2

3

5

10

Second eigenvalue, L = 1

(b)

Figure 1. Plots of the first and second eigenvalues of the Fisher information matrix for several values
of α and γ, L = 1. (a) First eigenvalue and (b) second eigenvalue.

Such behavior explains why maximum likelihood estimation is numerically unstable
in textureless areas, i.e., where the mean number of backscatterers is huge.
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3.2. Hypothesis Testing Based on h-φ Entropies

Entropies are widely used as feature discrimination [40,42]. In this section, a hy-
pothesis test based on Shannon and Rényi entropies is built. Let X = {x1, . . . , xN1} and
Y = {y1, . . . , yN2} be two random samples of sizes N1 and N2, respectively, from the
G0

I (α, γ, 1) distribution and parameters (α1, γ1) and (α2, γ2), respectively. We are interested
in testing the following hypotheses:

H0 : HM(α1, γ1) = HM(α2, γ2) = v,

H1 : HM(α1, γ1) 6= HM(α2, γ2). (27)

That means, statistical evidence that two random samples have the same entropy is
sought or in other words, if the diversity of two independent random samples is equal.
Let (α̂i, γ̂i), i = 1, 2. be the maximum likelihood estimator of (αi, γi), i = 1, 2. Following
the result of Equation (12) (see [35]) and for a parameter vector of dimension 2, the test
statistic has known asymptotic distribution:

√
Ni
(

HM(α̂i, γ̂i)− v
)

σM(α̂i, γ̂i)
D−−−→

Ni→∞
N (0, 1), i = 1, 2 (28)

Therefore,
2

∑
i=1

Ni
(

HM(α̂i, γ̂i)− v
)2

σ2
M(α̂i, γ̂i)

D−−−→
Ni→∞

χ2
2, (29)

but v is unknown, then the Cochran’s theorem [43] can be applied to obtain:

2

∑
i=1

Ni
(

HM(α̂i, γ̂i)− v
)2

σ2
M(α̂i, γ̂i)

=
2

∑
i=1

Ni
(

HM(α̂i, γ̂i)− v̄
)2

σ2
M(α̂i, γ̂i)

+
2

∑
i=1

Ni(v− v̄)
σ2
M(α̂i, γ̂i)

, (30)

being,

v̄ =

[
2

∑
i=1

Ni

σ2
M(α̂i, γ̂i)

]−1 2

∑
i=1

Ni HM(α̂i, γ̂i)

σ2
M(α̂i, γ̂i)

. (31)

Since the second term of the right side of Equation (30) is χ2
1 distributed and the left

side of the Equation (30) is χ2
2 distributed, we conclude that:

2

∑
i=1

Ni
(

HM(α̂i, γ̂i)− v̄
)2

σ2
M(α̂i, γ̂i)

D−−−→
Ni→∞

χ2
1, (32)

where M ∈ {S, R} are S and R, the Shannon and Rényi entropy, respectively. We are
interested in compare samples of same size N1 = N2 = N then, the test statistic reduces to
(see [38,44]):

SM
(
(α̂1, γ̂1), (α̂2, γ̂2)

)
= N

(
HM(α̂1, γ̂1)− HM(α̂2, γ̂2)

)2

σ2
M(α̂1, γ̂1) + σ2

M(α̂2, γ̂2)
. (33)

Then, the null hypothesis can be rejected with significance level η if:

P(χ2
1 > s) ≤ η, (34)

where s is the observed test statistic. The p-value is P(χ2
1 > s),M ∈ {S, R}.

4. Speckle Reduction by Comparing Entropies

The proposed method for despeckling images is based on testing whether two random
samples z1 ∼ G0

I (α1, γ1, 1) and z2 ∼ G0
I (α2, γ2, 1) have the same diversity. We then compare

the Shannon and Rényi entropies, which are scalars that depend on the parameters.
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Non-local means filters use a large convolution mask of size d× d with d = 2 ∗ n + 1,
n = 1, 2, . . . taking an average of all pixels in the mask, weighted by a similarity measure
between these pixels and the center of the mask.

Let Z be the noisy image of size m×m, then the filtered image X̂ in position (x, y) is
given by:

X̂(x, y) =
∑x+n

i=x−n ∑
y+n
j=y−n Z(x + i, y + j)w(i, j)

∑x+n
i=x−n ∑

y+n
j=y−n w(i, j)

, (35)

where X̂ estimates the noiseless image X, and w(i, j) i, j = 1, . . . , d are the weights.
In our proposal, we build an image filter by computing the mask w in each step of the

algorithm, using the test statistic from Equation (27) with significance level η. For simplicity,
we will describe the implementation using square windows, but the user may consider any
shape. We defined two sets: The search and the estimation windows. The search window
Wi has fixed size n× n and is centered on every pixel i = 1, . . . , m2. At every location of
this search window, we define estimation patches around each pixel. These windows may
vary in size, e.g., in an adaptive scheme.

Figure 2 illustrates an instance of such implementation with n = 9. The left grid
represents the image, while the right grid shows the mask that will be applied to the central
pixel (identified in red cross-hatch).

Figure 2. Left: Search window and estimation patches. Right: Resulting convolution mask to be
applied on the search window to compute a single filtered value corresponding to the central pixel
(cross-hatched in red).

The central pixel is identified with red cross-hatch, and its estimation window has size
3× 3; denote these observations as z0 = (z0,1, z0,2, . . . , z0,9). We also show two estimations
windows; those corresponding to the pixels identified with orange and green cross-hatches
and have, respectively, dimensions 5 × 5 and 3 × 3, and their observations are z1 =
(z1,1, z1,2, . . . , z1,25) and z2 = (z2,1, z2,2, . . . , z2,9), respectively.
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We compare the pairwise diversities of the samples zj, j = 1, 2, summarized as
S
(

H(θ̂0), H(θ̂0)
)

in Figure 2, with respect to z0 estimating by maximum likelihood the
parameters (α, γ) from the G0

I distribution. We obtain (α̂0, γ̂0) from z0, (α̂1, γ̂1) from z1, and
(α̂2, γ̂2) from z2; this step is summarized as zj 7→ θ̂j in Figure 2. Then, both the Shannon and
Rényi entropies are estimated (summarized as θ̂j 7→ H(θ̂j)) and the test statistic is obtained.
The weight w1 (w2 respectively) stems from comparing the samples z0 (z2 respectively)
and z0. Finally, we transform the observed p-values in the weights w1 and w2 by using a
smoothing function.

Each p-value may be used directly as a weight w but, as discussed by Torres et al. [21],
such a choice introduces a conceptual distortion. Consider, for instance, the samples z1 and
z2. Assume that, when contrasted with the central sample z0, they produce the p-values
p1 = 0.05 and p2 = 0.93. In this case, the first weight will be significantly smaller than
the second one, whereas there is no evidence to reject any of the samples at level η = 0.05.
Torres et al. [21] proposed using a piece-wise linear function that maps all values above η to
1, a linear transformation of values between η/2 and η, and zero below η/2. In this work,
we propose a smooth activating function with zero first- and second-order derivatives at
the inflexion points. The “smoother step function” defined by Ebert [45] is given as:

fsmoother(x) =


0 if x < 0,
6x5 − 15x4 + 10x3 if 0 ≤ x ≤ 1,
1 if x > 1.

(36)

This function connects in a smooth manner the points (0, 0) and (1, 1). We modify
fsmoother in order to connect (η/K, 0) and (η, 1), for every K ∈ N, and define the weight w
as a function of the observed p-value as the result of the following activating function:

Fη,K(p) = fsmoother

( p− η/K
η − η/K

)
. (37)

This function is zero for p < η/K, and is one above η. The parameter K controls the
transformation’s steepness, as shown in Figure 3. From our experiments, we recommend
K = 3.
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W
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Figure 3. Transformation between p-values and weights for η = 0.07 and K ∈ {2, 3, 10}.
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Algorithm 1 shows the steps of the method.

Algorithm 1 Despeckling by similarity of entropies.

1: Input: Original noisy image Z of size m×m, d, k, d > k sizes of the large and small
sliding windows, respectively

2: for i = 1 to m2 do
3: Consider a sliding window Wi of size n× n around pixel i
4: Let zi

0 be the central pixel of Wi
5: Consider a k× k neighborhood of zi

0, named W0
i

6: Compute the maximum likelihood parameter estimates of the G0
I parameters, (α̂0

i , γ̂0
i ),

the entropy and the asymptotic variance for the sample W0
i

7: for j = 1 to d2 do
8: Consider W j

i , patches of size k× k inside the large window Wi, corresponding to
the neighborhoods of each pixel zj ∈Wi, as Figure 2 shows

9: Compute the estimates (α̂
j
i , γ̂

j
i), the entropy, and its asymptotic variance of the

sample W j
i

10: Compute the statistic Sj
i , using Equation (33), and pj

i , its p-value using its asymp-
totic distribution χ2

1

11: Compute the (yet to be normalized) weight wj
i = Fη,K(pi

j)

12: end for
13: Divide all the weights by ∑d2

j=1 wj
i

14: Compute the estimated noiseless observation x̂i = ∑n∈W j
i

wn
i zi

15: end for
16: return x̂i, i = 1, . . . , m2

Figure 4 shows the heatmap and histogram of the weights of a sliding window over an
edge of the original image. Figure 4a shows the cropping of the image where the weights
were computed. Observations on the edge, and close to it have a strong influence on the
filtered data, while those far or with a different underlying distribution weigh less.
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Figure 4. Original image patch, heat map, and histogram of weights over an edge, before normaliza-
tion. (a) Original data. (b) Heat map. (c) Histogram of weights.

5. Filter Quality

We used the ratio image, which is the point to point division between the noisy
image and the filtered image, to measure noise reduction quality. It is given by I = Z/X̂,
where Z and X̂ are the original and filtered images, respectively. Under the multiplicative
model, the perfect filter produces a ratio image I which is pure speckle, i.e., a collection
of independent and identically Γ(1, 1) distributed random variables, with no presence of
patterns or geometric structures.
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5.1. First-Order Statistic

The first-order statistic component of the quality measure employs the equivalent
number of looks and the mean value over homogeneous areas of the original and filtered
images. An effective despeckling method should increase the equivalent number of looks
and preserve the mean value. Given a textureless and homogeneous image area with
sample mean µ̂ and sample standard deviation σ̂, the equivalent number of looks can
be estimated as ÊNL = µ̂2/σ̂2. We automatically select N small homogeneous areas
Ai, 1 ≤ i ≤ N, then the ENL residual for each area Ai, is estimated:

r
ÊNL

(i) =

∣∣∣ÊNLZ(i)− ÊNLI(i)
∣∣∣

ÊNLZ(i)
, i = 1, . . . , N, (38)

where ÊNLZ(i) and ÊNLI(i) are the estimated ENL taking the sample from Ai for the
original image Z and the ratio image I, respectively. The relative residual due to deviations
from the ideal mean, which is 1, is:

rµ̂(i) =
∣∣1− µ̂I(i)

∣∣, i = 1, . . . , N, (39)

where µ̂I(i) is the mean value for the region Ai in the ratio image. The first-order residual
is the sum of those two quantities:

r
ÊNL,µ̂

=
1

2N

N

∑
i=1

(
r

ÊNL
(i) + rµ(i)

)
. (40)

The perfect filter would produce r
ÊNL,µ̂

= 0.

5.2. Second-Order Statistic

The remaining geometrical content in the ratio image I is measured with the homo-
geneity value from Haralik’s co-occurrence matrices [46], which is given by:

h =
M

∑
i=1

M

∑
j=1

1
1 + (i− j)2 p(i, j), (41)

where p(i, j) is the (i, j)-th element of the co-occurrence matrix of size M × M. The co-
efficient h is computed under the null hypothesis, which implies that the probability
distribution of the ratio image I is invariant under random permutations. Then, if there is
no structure in I, h will not change after permutations.

Let h0 be the homogeneity of the original ratio image I, hm, 1 ≤ m ≤ g the homogene-
ity of the m-th permutation of I, and g the total amount of permutations. The absolute
value of the relative variation of h0, in percentage can be used as a measure of a distance
from the null hypothesis and is given by:

δh = 100

∣∣∣∣∣h0 − hg

h0

∣∣∣∣∣, (42)

where hg = g−1 ∑
g
m=1 hm. As δh increases, the larger the geometric structure that will

remain in the radio image. Finally, the statistic to measure filter quality proposed in [25]
combines δh and r

ÊNL,µ̂
in the following way:

M0 = r
ÊNL,µ̂

+ δh. (43)

The ideal filter producesM0 = 0, and the lack of quality of a filter can be measured
by the observed value ofM.
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6. Results

In this section, we present the results of applying the proposed filters. We also evaluate
them using the metric presented in Section 5. Three of the most successful despeckling
methods are SRAD (Speckle Reducing Anisotropic Diffusion) [15], Enhanced Lee [8], and
FANS (Fast Adaptive Nonlocal SAR Despeckling) [16] algorithms. We compare their
efficiency with the performance of the entropy-based filters. In all cases, the images are
equalized for improved visualization.

6.1. Simulated Data

In this Section we present results of applying the filters to simulated data. We consider
two phantoms: One with large areas (Figure 5), and another with strips of varying width
(Figure 6). The observations deviate from the G0

I distribution, obtained according to the
recommendations presented in [37].

(a) (b) (c)

(d) (e) (f)

Figure 5. Simulated image generated with G0
I (−4, 10, 1), G0

I (−4, 1, 1), G0
I (−1.5, 10, 1), and

G0
I (−1.5, 1, 1) laws (top-left, top-right, bottom-left, and bottom-right, respectively), and the result

of applying the filters based on Shannon entropy, on Rényi entropy, and with the SRAD (Speckle
Reducing Anisotropic Diffusion), Enhanced Lee, and FANS (Fast Adaptive Nonlocal SAR despeck-
ling) filters. (a) Original image. (b) Shannon entropy-filtered image. (c) Rényi entropy-filtered image,
β = 0.75. (d) SRAD (Speckle Reducing Anisotropic Diffusion)-filtered image. (e) Lee-filtered image.
(f) FANS (Fast Adaptive Nonlocal SAR Despeckling)-filtered image.
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(a) (b)

Figure 6. Results of applying the proposed filters to the background and stripes image. (a) Phantom
image. (b) Shannon entropy filter.

Figure 5 is adequate for assessing the filter performance on large areas. Figure 5a
shows the original data, each half of the top of the image was generated with G0

I (−4, 10, 1)
and G0

I (−4, 1, 1) distributions, respectively. Each half of the bottom of the image was
generated with G0

I (−1.5, 10, 1) and G0
I (−1.5, 1, 1) distributions, respectively. Figure 5b

shows the filtered image using the Shannon entropy with patches of size 7× 7, a sliding
window of size 11× 11, η = 0.15 and K = 3. Figure 5c shows the filtered image with Rényi
entropy and β = 0.75, patches of size 7× 7, a sliding window of size 11× 11, η = 0.15,
and K = 3. Table 1 shows the ENL (Equivalent Number of Looks) estimates and the mean
value for the original and smoothed images. Figure 5d–f show the results of applying
SRAD (Speckle Reducing Anisotropic Diffusion), Enhanced Lee, and FANS (Fast Adaptive
Nonlocal SAR Despeckling) filters.

Table 1 shows that the estimated ENL increases, while the mean is almost the same.

Table 1. Estimates of the ENL (Equivalent Number of Looks) and mean value for images from
Figure 5.

Figure ÊNL µ̂

Figure 5a 0.53 5.48
Figure 5b 12.51 5.47
Figure 5c 13.09 5.53
Figure 5d 115.92 0.00031
Figure 5e 210.37 61.61
Figure 5f 27.71 61.74

Table 2 shows the evaluation metrics for each filter. The best method for each metric
is highlighted with a gray background. It can be observed that the metric values for the
proposed filters are competitive, and the Shannon entropy-based filter is the winner.
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Table 2. Filter evaluation metrics for the image of Figure 5a.

Filter r
µ̂,ÊNL h0 hg δh M0

SRAD 1.620 0.497 0.470 5.397 7.017
Enhanced Lee 0.128 0.544 0.541 0.503 0.631

FANS 0.567 0.177 0.174 1.945 2.512
Shannon Entropy 0.112 0.919 0.920 0.113 0.226

Rényi Entropy 0.155 0.899 0.901 0.173 0.328

Figure 7 shows, in a semilogarithmic scale, the pixels values of one column of the
original (orange) and filtered (light blue) images for a Shannon entropy-based method
(Figure 7a) and Rényi entropy-based method (Figure 7b). The horizontal black straight
lines are the theoretical mean of the data computed using Equation (4). Each plot shows
two sets of boxplots: One pair to the left, corresponding to the original (orange) and filtered
(light blue) values in the darker half of the image, and another pair to the right showing a
summary of the original and filtered values in the brighter half. The effect of the filter is
noticeable: The spread of the data is reduced, while the transition between halves is sharp,
i.e., there is little blurring.
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(b)

Figure 7. One column image data for the original, Shannon entropy, and Rényi entropy-filtered
images. The black horizontal straight lines are the theoretical mean values of the data, in orange
the original data, and in light blue the filtered data. (a) Original and Shannon smoothed images.
(b) Original and Rényi smoothed images.

Figure 6 shows the results of applying the proposed filters to a phantom image which
is adequate for assessing the performance on relatively small features. This phantom was
proposed by Gomez et al. [47].

The image has 500× 500 pixels, and is divided in four blocks: Upper left, upper right,
bottom left, and bottom right. Table 3 shows the background and stripes parameters in
each block. Notice that in the left half the background and stripes have the same mean
value. This is a challenging situation for any filter.
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Table 3. Parameters of the simulated data in Figure 6a.

Left Right

α γ α γ

Top Background −2 1 −2 5
Stripes −10 9 −2 50

Bottom Background −3 20 −3 10
Stripes −9 80 −6 250

The ability of the filter based on the Shannon entropy to distinguish areas with the
same mean but different roughness is noticeable in Figure 6. The edges between areas are
also well preserved. For the sake of brevity, we omit the results produced by the filter based
on the Rényi entropy, because they are similar.

Tables 4 and 5 show the estimated ENL, mean values, and evaluation metrics for these
images. It can be observed the filter ability to increase the equivalent number of looks while
preserving the mean value.

Table 4. Estimates of the ENL and mean value for images from Figure 6.

Figure ÊNL µ̂

Figure 6a 0.45 1.3
Figure 6b 20.05 1.12

Table 5. Filter evaluation metrics for the actual data of Figure 6.

Filter r
µ̂,ÊNL h0 hg δh M0

Shannon Entropy 0.05 0.9223 0.9238 0.16 0.210
Rényi Entropy 0.11 0.927 0.928 0.15 0.270

6.2. Data from Actual Sensors

Figure 8 shows the results of applying the despeckling method to actual data. Figure 8a
corresponds to the original image. Figure 8b,c are the results of applying the despeckling
method with Shannon entropy and with Rényi entropy, respectively. The used parameters
are: n = 11, k = 7, η = 0.15, β = 0.75, and K = 3.

Figure 8d shows the result of applying the FANS (Fast Adaptive Nonlocal SAR De-
speckling) filter, Figure 8e shows the SRAD (Speckle Reducing Anisotropic Diffusion) filter,
and Figure 8f shows the Lee filter. Figure 9 shows the ratio images; Figure 8b–f correspond
to Shannon entropy, Rényi entropy, FANS (Fast Adaptive Nonlocal SAR Despeckling), as
well as SRAD (Speckle Reducing Anisotropic Diffusion) and Lee filters, respectively.

Tables 6 and 7 show the estimated ENL, mean values, and evaluation metrics for these
images. Note the filter ability to increase the equivalent number of looks while preserving
the mean value.

Figure 10 shows details of the original and filtered images. Visually, Shannon, Rényi,
and Enhanced Lee provide the best speckle reduction. Regarding detail preservation, SRAD
(Speckle Reducing Anisotropic Diffusion) seems the best one. The Shannon filter seems
to provide the best balance between speckle reduction and detail preservation. Figure 11
shows the ratio images of these details and confirms our previous comments.
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Table 6. Estimates of the ENL and mean value for images from Figure 8.

Figure ÊNL µ̂

Figure 8a 0.495 0.0016
Figure 8b 7.056 0.0013
Figure 8c 0.745 0.0015
Figure 8d 0.38 0.011
Figure 8e 2.92 0.0015
Figure 8f 10.55 0.003

Table 7. Filter evaluation metrics for the actual data of Figure 8.

Filter r
µ̂,ÊNL h0 hg δh M0

SRAD 81.412 0.999 0.999 0.002 81.414
Enhanced Lee 0.206 0.550 0.546 0.675 0.880

FANS 0.535 0.211 0.195 7.561 8.096
Shannon Entropy 0.392 0.997 0.996 0.185 0.411

Rényi Entropy 0.387 0.997 0.997 0.014 0.402

(a) (b)

(c) (d)

(e) (f)

Figure 8. Original image and filtered version with the Shannon entropy, Rényi entropy, FANS (Fast
Adaptive Nonlocal SAR Despeckling), SRAD (Speckle Reducing Anisotropic Diffusion) and Enhanced
Lee filters. (a) Original HH (Horizontal-Horizontal polarization) data. (b) Smoothed image with the
Shannon entropy. (c) Smoothed image with the Rényi entropy β = 0.75. (d) Smoothed image with the
FANS (Fast Adaptive Nonlocal SAR Despeckling) filter. (e) Smoothed image with the SRAD (Speckle
Reducing Anisotropic Diffusion) filter. (f) Smoothed image with the Enhanced-Lee filter.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Original and ratio images. (a) Original HH (Horizontal-Horizontal polarization) data.
(b) Ratio image from the Shannon entropy filter. (c) Ratio image from the Rényi entropy filter.
(d) Ratio image from the FANS (Fast Adaptive Nonlocal SAR Despeckling) filter. (e) Ratio image
from the SRAD (Speckle Reducing Anisotropic Diffusion) filter. (f) Ratio image from the Lee filter.

(a) (b) (c)

(d) (e) (f)

Figure 10. Details of the original and filtered images. (a) Original HH (Horizontal-Horizontal
polarization) data. (b) Smoothed image with the Shannon entropy. (c) Smoothed image with
the Rényi entropy β = 0.75. (d) Smoothed image with the FANS (Fast Adaptive Nonlocal SAR
Despeckling) filter. (e) Smoothed image with the SRAD filter. (f) Smoothed image with the Enhanced
Lee filter.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Details of the original and ratio images. (a) Original HH (Horizontal-Horizontal polariza-
tion) data. (b) Ratio image from the Shannon entropy filter. (c) Ratio image from the Rényi Entropy
filter. (d) Ratio image from the FANS (Fast Adaptive Nonlocal SAR Despeckling) filter. (e) Ratio
image from the SRAD (Speckle Reducing Anisotropic Diffusion) filter. (f) Ratio image from the
Enhanced Lee filter.

Figure 12a shows an intensity single-look L-band HH (Horizontal-Horizontal) polar-
ization E-SAR image. This image has a complex structure, which is challenging to filter.
There are structures with strong return embedded in the central dark areas. The result
of applying the filter based on the Shannon entropy with a search window of side 9 and
patches of side 5 is shown in Figure 12b. This filter reduces the speckle drastically while
preserving the structures. Notice, in particular, that the filter enhances subtle differences
within the dark areas, and that it does not smear the edges between them and the surround-
ing brighter region. In Figure 12 we show the ratio image. It is noteworthy that, in spite of
the complexity of the image, there is little remaining structure. This result suggests that
most of the relevant information has been retained in the filtered image.

(a) (b) (c)

Figure 12. Results of applying the filter based on the Shannon entropy to an actual image from the
E-SAR sensor. (a) Actual image with a corner reflector. (b) Smoothed image. (c) Ratio image.

Table 8 presents the quantitative analysis results of applying the Shannon and Rényi
filters to the image shown in Figure 12a. The results are similar, with a slight advantage of
the Shannon filter over the Rényi. This relative improvement is related to the preservation
of structure.
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Table 8. Filter evaluation metrics for the actual data of Figure 12a.

Filter r
µ̂,ÊNL h0 hg δh M0

Shannon Entropy 0.18 0.31 0.27 13.20 13.40
Rényi Entropy 0.17 0.37 0.32 13.51 13.68

7. Conclusions and Future Work

We proposed a new non-local means filter for single-look speckled data based on the
asymptotic distribution of the Shannon and Rényi entropies for the G0

I distribution.
The similarity between the diversities of the central window and the patches is based

on a statistical test that measures the difference between the entropies of two random
samples. If two samples have the same distribution in a neighborhood, then there are no
image edges, the diversity is lower, and the zone can be blurred to reduce speckle. This
approach does not require using patches of equal sizes, and they can even vary along the
image. The mask for speckle noise reduction is built with a smoothing function depending
on the computed p-value.

We tested our proposal in simulated data and an actual single-look image, and we
compared it with three other successful filters. The results are encouraging, as the filtered
image has a better signal-to-noise ratio, it preserves the mean, and the edges are not severely
blurred. Although the filter based on the Rényi entropy is attractive due to its improved
flexibility (the parameter β can be tuned), it produces very similar results to those provided
by the use of the Shannon entropy that is simpler to implement.

In future works, we will assess this filter’s performance with several criteria in cases of
contaminated data, and we will consider other measures, as the Kullback–Leibler distance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14030509/s1, The R code that implements our proposal, along
with data examples, is available as Supplementary Material.
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Appendix A. Computational Information

Simulations were performed using the R language and environment for statistical
computing version 3.3 [48], in a computer with processor Intel© Core™, i7-4790K CPU
4 GHz, 16 GB RAM, System Type 64–bit operating system. The R code that implements our
proposal, along with data examples, is available as Supplementary Material.
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