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Abstract: Evapotranspiration (ET) plays a crucial role in water balance within the global hydrological
cycle. Timely assessment of ET products can provide the scientific basis for quantitative analysis
of hydrological cycle processes and water resources assessment. In this paper, four high spatial
resolution remote sensing ET products—the Moderate-resolution Imaging Spectroradiometer global
terrestrial evapotranspiration product (MOD16), the ET product based on Penman–Monteith–Leuning
equation version 2 (PML-V2), the ET product based on the Breathing Earth System Simulator (BESS)
and the ET product of the Global LAnd Surface Satellite (GLASS)—were firstly assessed using the
eddy covariance (EC) of different vegetation types in the Lancang–Mekong River Basin (LMRB). To
fully assess the performances of these four products, spatiotemporal inter-comparisons and literature
comparisons were also conducted across different climatic zones. The results are summarized as
follows: (1) MOD16 does not perform well as compared to the other three products, with its Root
Mean Square Error (RMSE) being higher than GLASS, PML-V2 and BESS, which are approximately
0.47 mm/8-day, 0.66 mm/8-day, and 0.90 mm/8-day, respectively; (2) the performance of each
product varies across different vegetation types, and even within the same climate zone. PML-V2
performs best in evergreen broadleaf forests, BESS performs best in deciduous broadleaf forests and
croplands, and GLASS performs best in shrubs, grasslands and mixed vegetation; (3) each product
can well reflect the spatial difference brought by topography, climate and vegetation over the entire
basin but all four ET products do not show either a consistent temporal trend or a uniform spatial
distribution; (4) ET ranges of these four products over LMRB are consistent with previous literature
in evergreen broadleaf forests, deciduous broadleaf forests, needleleaf forests and mixed forests in
other regions with the same climate zones, but they show great differences in croplands, grasslands
and shrubs. This study will contribute to improving our understanding of these four ET products in
the different climatic zones and vegetation types over LMRB.

Keywords: evapotranspiration; accuracy assessment; Lancang–Mekong; river basin; eddy covariance;
literature comparison
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1. Introduction

Terrestrial evapotranspiration (ET) is an important biophysical process in the land–
atmosphere system. As the second largest component of the global hydrological circle, it
returns around 60–70% of precipitation to the atmosphere [1]. However, it is also one of the
most uncertain components in the global water cycle [2–4]. Thus, accurately estimating ET
is necessary for better quantification and allocation of water resources, which is of great
significance to the sustainable utilization and management of global water resources in an
era of growing climate change. Generally, the Penman–Monteith (PM) algorithm and the
Priestley–Taylor (PT) algorithm are the two most commonly used methods for estimating
ET, though the two algorithms have been proposed for more than four decades [5–10].
Extensive studies have been conducted to improve the PM algorithm from different aspects,
such as stomatal conductance [7], soil moisture [10], temperature difference between day
and night [7,10,11], etc. However, to date, accurate estimation of actual ET at regional scales
is still challenging [12].

In general, the methods for estimating regional ET can be grouped into four categories:
upscaling of observed ET data, basin ET estimation based on the water balance theory,
meteorological-data-derived ET and remote-sensing-data-derived ET. Although measure-
ments such as the evaporator, scintillometer, Bowen ratio measuring system and flux tower
with eddy covariance can provide accurate and dense vapor exchange at site and local
scales, upscaling the observed ET to meet the accuracy demand at regional and global scales
is hard [13]. Firstly, footprints of these measurements are rather small to represent a regional
extent. Additionally, regions covered by enough ET measurements for various land cover
types are very limited around the globe due to the expensive cost of instrument installation
and maintenance. Actual ET estimation based on the water balance theory can provide an
accurate regional result using measured precipitation and runoff datasets [14]. However, it
cannot provide gridded ET results which may be more needed in water management, such
as irrigation and reservoir operations. The meteorological-data-derived methods simulate
actual ET based on robust physical mechanism models, such as the aerodynamic algorithm,
the PM algorithm and the PT algorithm. The aerodynamic model dynamically integrates
atmospheric water demand (i.e., vapor pressure deficit), and air and plant constraints
(i.e., canopy resistance and aerodynamic resistance) [15]. The PM model calculates ET
based on the principle of energy balance and water vapor transmission, and fully consid-
ers atmospheric physics and vegetation physiological characteristics [5,11,16,17]. The PT
model is a simplified PM algorithm, which uses a dimensionless coefficient (0–1.26) instead
of the complicated surface resistance and aerodynamic resistance in PM model [18,19].
These ET algorithms usually require meteorological forcing data with high temporal reso-
lution, such as European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA)
interim, Climatic Research Unit (CRU) reanalysis, a Global Land Data Assimilation Sys-
tem (GLDAS) dataset, Reanalysis datasets from the National Centers for Environmental
Prediction and the National Center for Atmospheric Research (NCEP/NCAR), and Global
Modeling and Assimilation Office Modern-Era Retrospective analysis for Research and
Applications (GMAO-MERRA). However, subjected to the coarse spatial resolution of
these meteorological forcing data, the spatial resolution of their derived ET is also coarse.
Remotely sensed imagery, with its extensive data archive at much lower cost and higher
spatial resolution, has been extensively applied for ET estimation at regional scales. The
Surface Energy Balance (SEB) model and the surface temperature–vegetation index triangle
model (Ts-VI) are also often used in remote-sensing-derived ET calculation in addition
to the PM and PT algorithms [20,21]. Meanwhile, remote-sensing-derived ET can also
provide a relatively higher temporal resolution at daily or even shorter time intervals. At
present, a good number of remote-sensing-derived ET products are available at global
scales, such as the water balance (WB) ET product (0.5 ◦) developed by Zeng [22], the
Global Land Evaporation Amsterdam Model (GLEAM) (0.25◦) product [23,24], the ET
product developed by Raoufi and Beighley (2017) which derived from remotely sensed
land surface temperature (0.05◦ and 0.25◦) [6], the Penman–Monteith–Leuning ET product
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(PML) (0.5◦) [25], the Moderate-resolution Imaging Spectroradiometer global terrestrial
evapotranspiration product (MOD16) (500 m) [11,26], the ET product based on the Penman–
Monteith–Leuning equation version 2 (PML-V2) (500 m) [7,9], the ET product based on
the Breathing Earth System Simulator (BESS) (1 km) [27], the ET product of the Global
LAnd Surface Satellite (GLASS) (1 km) [28], etc. Among these remote sensing ET products,
quite a few can provide a relatively high spatial and temporal resolution, such as MOD16,
PML-V2, BESS, and GLASS.

Although these remote-sensing-derived ET products were all globally validated by
their developers, they are still subject to further assessment before their application in a
given region owing to several reasons [29,30]. Firstly, flux sites used in global validation are
limited. For example, the number of flux sites used in the global validation of BESS, MOD16,
PML-V2, and GLASS is 33, 46, 95, and 120, respectively. Secondly, it was not feasible to
focus on a certain region during the global validation of these actual ET products. Studies
have been conducted extensively to compare and assess different ET products at regional
and local scales [31–33]. Nevertheless, there is a lack of consistency in the performance
of ET products across different geographic regions [34,35]. For example, Khan et al. [36]
compared the performances of MOD16, GLDAS ET and GLEAM in East and Southeast Asia,
and found that the deviation of ET products is about 1.5–5.5 mm/8-day, and GLDAS shows
lower uncertainties. Zhao et al. [37] assessed ET products from Australia’s Commonwealth
Scientific and Industrial Research Organization (CSIRO), GLDAS, TerraClimate and MOD16
over the Murray–Darling Basin in Australia, and found that the ET product from CSIRO
performs best in this area. Zhao et al. [37] also found that MOD16 underestimates ET
at 138.52 mm/year, especially in some arid areas with sparse vegetation. Wu et al. [29]
compared five ET products derived from different methods in the Amazon River Basin
during 1982–2011, and found that a machine-learning-derived ET product records the
best performance at both site level and basin scale. Yin et al. [30] compared the accuracy
of eight ET products (including MOD16, PML-V2 and BESS) in the Yellow River Basin
and found that the Simplified Surface Energy Balance (SSEBop) model, after regional
optimization, is most consistent with water balance evapotranspiration. MDO16 and SEB-
based ET products were found to record a poor performance at the Murray–Darling Basin
and in Northern China compared with global scales [37,38]. Therefore, the inconsistent
performances of global actual ET products necessitate a comprehensive assessment before
being applied at local or regional scales.

Eddy covariance observation has been recognized as an effective way to evaluate actual
ET products [4,29,36,39]. It can directly observe latent heat and sensible heat simultaneously,
which other measurements such as a scintillometer and Bowen ratio system cannot offer.
Although site flux observations can provide direct validation, they cannot entirely be relied
upon owing to the uncertainties brought by complex data processing algorithms, and the
mismatch between footprint and estimated pixel values [39–41]. Thus, other supplementary
validations or comparisons are necessary to fully evaluate the performances of global actual
ET products [42,43]. Inter-comparison across climate zones is an important and indirect
approach [29,30], which can assess the spatial consistency among different ET products.
Using ET observations from other regions with the same or similar climate zones is another
potential approach to assessing the performance of ET products in areas with few or even
no flux sites.

The Lancang–Mekong River (LMR) originates from the Tanggula Mountains in China
and passes through Myanmar, Laos, Thailand, Cambodia and Vietnam. The river finally
flows into the South China Sea from Ho Chi Minh City. As the largest transboundary river
in Southeast Asia, LMR has attracted much attention from the world [44–46]. First of all,
competition for water resources in this basin is obvious, especially for countries in its lower
reaches. The rapid development of industry and agriculture in Southeast Asia has resulted
in an increased demand for water resources. As a result, several dams have been built in
the lower reaches of LMR as a step to better manage its water resources [47]. Characterized
by diverse climate zones and complex vegetation types, it is challenging to accurately
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estimate the water budget in the LMR basin (LMRB). LMRB covers major climate types of
the globe, including the equatorial climate zone, the warm temperate climate zone, snow
and the polar climate zone from the south to the north. Meanwhile, the basin is rich in
vegetation types, including tropical rainforests, tropical seasonal forests, subtropical forests,
temperate deciduous forests, coniferous forests, savannas, alpine meadows, etc. Overall,
the complexity and diversity of climate zones and land cover types makes this basin a
representative study area for the evaluation of global ET products. Besides, although
quite a lot of studies have explored the performances of global remote-sensing-derived ET
products in different regions and basins, there is no such assessment for LMRB, despite its
huge economic returns and ecosystem services. Hence, the objectives of this study are to:
(1) evaluate the performances of four remote-sensing-derived ET products (i.e., MOD16,
PML-V2, BESS and GLASS) based on Eddy Covariance (EC) observations, inter-comparison
and comparisons with ET from literature in other regions with the same climate zones; and
(2) analyze the potential reasons and uncertainties for the performance differences between
the four products.

2. Materials and Methods
2.1. Study Area

Located in Southeast Asia, LMRB covers approximately 81.2 × 104 km2 (Figure 1)
with a main stream length of 4880 km, making it the fifth longest river in Asia. Landforms
are diverse across the basin, including the Tibetan Plateau, the Yunnan–Guizhou Plateau,
the Xiengkhouang Plateau, the Chuor Phnum Dangrek and the Mekong Delta region. The
upper reach of LMRB is dominated by subtropical evergreen broadleaf forests, mountainous
evergreen needle forests, alpine grassland, and alpine rocks and snow. The lower reach
is dominated by tropical evergreen broadleaf forests, shrubs, wetlands and farmlands.
With a population over 0.32 billion, LMRB provides a major source of water supply and
is regarded as “the Golden Waterway” for the shipping industry in Southeast Asia. The
annual mean ET is around 1000 mm/year over the basin. Figure 1 presents the elevation
map, location of ET stations, and map of the major land cover types over LMRB.
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2.2. Data
2.2.1. Land Cover Data

The land cover data used in this study were derived from a Moderate-resolution
Imaging Spectroradiometer (MODIS) land cover type product (MCD12Q1), which is also
the source of input of land cover to the four remote sensing ET products [48]. The dataset
is updated yearly with a spatial resolution of 500 m. Land cover classification of MCD12Q1
was conducted using a supervised classification algorithm based on the International
Geosphere-Biosphere Programme (IGBP) classification scheme, with 1860 training samples
around the world. In order to better compare the ET values obtained in this study with
those of previous studies, the IGBP classification scheme was modified to fit the major land
cover types over LMRB (Table 1). The percentage area of each land cover type in 2019 is
presented in Table 1.

Table 1. Land cover types and percentage coverage in LMRB in 2019.

Land Cover Used in This Study IGBP Land Cover Area Ratio

Evergreen Broadleaf Forests Evergreen Broadleaf Forests 24.83%
Deciduous Broadleaf Forests Deciduous Broadleaf Forests 1.63%

Needleleaf Forests
Evergreen Needleleaf Forests 0.59%
Deciduous Needleleaf Forests 0.00%

Mixed Forests Mixed Forests 1.76%

Shrubs

Closed Shrublands 0.01%
Open Shrublands 0.00%
Woody Savannas 13.31%
Savannas 12.54%

Grasslands Grasslands 17.69%
Permanent Wetlands Permanent Wetlands 1.51%

Croplands Croplands 22.49%
Cropland/Natural Vegetation Mosaics 1.90%

Urban and Built-up Lands Urban and Built-up Lands 0.40%
Permanent Snow and Ice Permanent Snow and Ice 0.03%
Barren Lands Barren 0.52%
Water Bodies Water Bodies 0.80%

2.2.2. Remote Sensing Evapotranspiration Products

Four high spatial resolution remote-sensing-derived ET products (MOD16, PML-V2,
BESS and GLASS) were used in this study (Table 2). In order to make the spatial resolution
of all products consistent, GLASS and BESS were downscaled to 500 m using the nearest
neighbor resampling method [49]. Table 2 presents the characteristics of the remote sensing
data and methods used in this study.

Table 2. Characteristics of the remote sensing data and methods used in this study.

Product Temporal
Resolution

Estimation
Method

Spatial
Resolution Period References

MOD16 8-day/year PM 1 500 m 2000-Present [11,26]
PML-V2 8-day/year PM 1 500 m/0.01 2000–2020 [7,9,25]

BESS 8-day/month PM 1 1 km 2001–2015 [27]
GLASS 8-day BMA 2 1 km/0.01 2000–2018 [28]

1 PM: Penman–Monteith algorithm; 2 BMA: Bayesian Multimodel Average algorithm.

1. MOD16

MOD16 calculates ET using a semi-empirical method based on the PM algorithm [11,26].
During the calculation, ET is divided into wet-canopy evaporation, vegetation transpiration
and soil evaporation. The process of interception is actually not included in MOD16 directly
as it is calculated only under wet canopy evaporation conditions. Compared with previous
algorithms, the latest MOD16 algorithm improves the calculation of vegetation cover
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fraction, stomatal conductance, soil heat flux and night temperature [11]. In addition,
during the calculation of soil evaporation, the soil surface is divided into wet and moist
soil surfaces. However, MOD16 only considers the vegetation-covered area, and ignores
barren or sparsely vegetated areas and non-vegetated areas.

2. PML-V2

PML-V2 was improved by Zhang et al. [7,9] on the basis of PML [25]. Unlike MOD16,
PML-V2 also calculates canopy interception, besides soil evaporation and vegetation tran-
spiration. In addition, PML-V2 couples the gross primary productivity (GPP) model to
achieve the goal of carbon constraint on evapotranspiration [7]. The validation results
of 95 flux stations around the world show that the RMSE of PML-V2 on a global scale is
0.73 mm/day. The accuracy of ET estimation has been improved in PML-V2 compared to
PML and MOD16 [9]. Details of PML-V2 can be found in Zhang et al. (2019) [9].

3. BESS

BESS is a biophysical model that integrates an atmospheric radiative transfer model, a
two-leaf canopy radiative transfer model and an integrated carbon assimilation-stomatal
conductance-energy balance model [27]. Similar to PML-V2, BESS also couples carbon
and water to better simulate the transfer of water vapor from the leaf to the atmosphere.
In addition, BESS separately calculates carbon assimilation on sunlit and shaded leaves.
Unlike PML-V2 and MOD16, which calculate the emissivity based on air temperature,
BESS uses two constants of the emissivity of the leaf and the soil, which are 0.98 and 0.94,
respectively. In addition, BESS adopts a second-order Taylor equation to calculate the
saturated vapor pressure, which could help to obtain an accurate latent heat compared with
the traditional PM model in which it is estimated by the first-order linearization equation,
especially when the temperature difference between air and leaves is higher than 5 ◦C [50].

4. GLASS

GLASS is calculated by using the Bayesian averaging method to assign weight to
5 process-based algorithms [28], including the MOD16 ET algorithm [11], the revised PM
algorithm [51], the PT-JPL algorithm [52], the revised PT algorithm [18] and the semi-
empirical PM algorithm [53]. Previous literature found the Bayesian algorithm to better
improve the accuracy of ET estimation as it can obtain a good fitting weight for a set of
station observations with the predictive probability density function [28]. Unlike the former
three ET products, GLASS forces the energy balance closure using the Bowen ratio method.

2.2.3. Eddy Covariance ET

A total of 11 EC sites were obtained to evaluate the ET of each product over LMRB. As
there are only three sites available within the basin, other sites were selected surrounding
LMRB. These sites cover the major vegetation types over the basin. The detailed site and
data information is provided in Table 3. In summary, there are three evergreen broadleaf
sites, two deciduous broadleaf sites, three crop sites, a grass site, a shrub site and a mixed
vegetation site. It is worth noting that ET data of four sites from FluxPro were from the
literature, and only monthly data were available at these sites [54,55]. The quality of all the
ET data was well controlled. In this study, only data acquired during the daytime were
used. Daytime was defined as periods corresponding to shortwave radiation greater than
10 W/m2. In order to match the temporal scale of ET products, EC observations were
upscaled to 8-day and monthly time scales. Energy balance correction was conducted by
using the Bowen ratio method [56]. Soil heat flux was not considered during the energy
balance correction as it was negligible at 8-day and monthly scales [9,25].
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Table 3. Characteristics of the flux sites used in this study.

Site Name Latitude (◦N) Longitude
(◦E) Elevation (m) Vegetation

Type Time Span Source

Yuanjiang 23.48 102.18 481 Shrub 2013.6–2015.12 [57]
SKR 14.49 101.92 543 EBF 1 2002–2003 ASIAFlux

XSBNRa 21.96 101.21 750 EBF 2003–2016 [58]
Ailaoshan 24.54 101.03 2505 EBF 2009–2013 [59]

MKL 14.58 98.84 231 DBF 2 2003–2004 ASIAFlux
XSBNRu 21.91 101.27 580 DBF 2010.7–2012.12, 2016 [60]

prt007 13.59 99.51 99 Cropland 2011.8–2017.7 FluxPro
ctt007 16.90 99.43 129 Cropland 2012.1–2017.9 FluxPro
pst007 17.06 99.70 59 Cropland 2004.7–2009.3 FluxPro
dtt030 16.94 99.43 117 MV 3 2003.2–2016.2 FluxPro

QZ-SETORS 29.77 94.74 3326 Grassland 2008.1–2016.12 -
1 EBF: evergreen broadleaf forests; 2 DBF: deciduous broadleaf forests; 3 MV: mixed vegetation.

2.3. Methods
2.3.1. Validation

Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Residual
Error (MRE) were used to evaluate the accuracy of the four ET products.

RMSE =

√
∑n

i=1(Xmodel,i − Xobs,i)
2

n
(1)

MAE =
∑n

i=1
∣∣(Xmodel,i − Xobs,i)

∣∣
n

(2)

MRE =
∑n

i=1(Xmodel,i − Xobs,i)

n
(3)

where n represents the number of samples; Xobs,i represents the observed (EC) value; and
Xmodel,i represents remote sensing product value, which was calculated by the mean ET of
four 500 m × 500 m pixels nearest to the EC site.

To test whether the accuracy of the four ET products exhibits significant differences,
multiple comparisons with significance tests, at a confidence level of 95%, were conducted
by using a two-way analysis of variance (ANOVA) test in SPSS Statistics 26.0 software
(International Business Machines Corporation in Armonk, New York, USA). Homogene-
ity of variance tests were examined before the implementation of multiple comparisons.
During the multiple comparisons, the Least Significant Difference (LSD) model was imple-
mented if the homogeneity of variance was significant, while the Tamhane T2 model was
implemented if the homogeneity of variance was not significant.

2.3.2. Inter-Comparison of the Four ET Products

The spatial distribution of the four ET products was compared across the four seasons;
spring (March–May), summer (June–August), autumn (September–November) and winter
(December–February of the next year). Pearson correlation was conducted spatially among
the four products to examine their spatial consistency. The temporal trends of annual aver-
age ET of the four products were calculated using the linear regression method. Spearman’s
rank analysis was conducted before linear regression. If the correlation coefficient was not
significant, then the corresponding linear trend was not reliable and was not conducted.

2.3.3. Comparison with Studies from the Same Climates

The ET observations from the same climate zones were collected and used to compare
the ET in LMRB. These ET observations were collected from the literature by searching
the keywords “evapotranspiration”, “eddy covariance”, and different vegetation function
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types in Web of Science. Köppen–Geiger Climate classification was applied in this study
to classify the ET values from the literature for a better comparison with this studied
basin. The main types of Köppen–Geiger Climate classification include equatorial, arid,
warm temperate, snow and polar climates. In this study, a new climate scheme with three
types was proposed to better compare ET values from the literature with ET values from
four ET products over LMRB. In the new climate scheme, equatorial, and snow and polar
climates were unchanged while, warm temperate and arid were merged into a new type,
namely warm climate. During the process of literature searching, only study sites that
had the same climate zone included in the new climate scheme were selected to make the
comparison. Finally, 39 EC sites of multi-year average ET from the literature were obtained
(Appendix A). Comparisons between literature-derived ET values and ET from the four
products were conducted based on the same climate zone. Boxplots with mean, maximum
statistics and minimum statistics were also used in the comparison.

3. Results
3.1. Performance Assessment Based on Eddy Covariance

Overall, the RMSEs of all four products are less than 8 mm and 31 mm at 8-day
and monthly scales, respectively (Figure 2), implying that the RMSE of each product is
approximately less than 1 mm per day. Residuals between predicted ET and observed ET of
the four products indicates an overall overestimation of GLASS and an underestimation of
the other three products. The accuracy of MOD16 is the lowest among the four ET products,
with an 8-day RMSE of 0.47 mm, 0.90 mm and 0.66 mm higher than that of PML-V2,
BESS and GLASS, respectively (Figure 2(a1,b1,c1,d1). Besides, its monthly RMSE is also
higher than that of PML-V2, BESS and GLASS, at around 4.66 mm, 6.33 mm and 7.72 mm
(Figure 2(a2,b2,c2,d2), respectively. The poor performance of MOD16 can be further proven
by the boxplot of absolute error, in which it has much higher values of statistical indicators
(i.e., mean value, maximum value and minimum value) than the other three products
(Figure 3). The main source of the differences between MOD16 and the other three products
comes from regions with low observed ET (i.e., <20 mm at an 8-day scale and <80 mm at
a monthly scale) where MOD16 has a much higher overestimation than PML-V2, GLASS
and BESS. It is worth noting that the difference between MOD16 and GLASS is significant
(at the level of α = 0.05) both at 8-day and monthly scales. Correspondingly, they have the
largest MAE discrepancy of 0.93 mm and 6.72 mm, respectively, among all the product
comparisons. No significant difference is found among PML-V2, BESS and GLASS both at
8-day and monthly scales (Table 4) as the RMSE and MAE of PML-V2, BESS and GLASS are
very close; correspondingly, they have the largest RMSE difference at less than 0.43 mm and
3.06 mm, respectively. This can also be reflected by the boxplot of absolute error in which
the statistical distributions of these three products are approximately close (Figure 2(a1,a2)).
At an 8-day scale, GLASS has the lowest MAE of 0.66 mm per day, while BESS has the
lowest RMSE of 0.87 mm per day. At a monthly scale, GLASS has both the lowest MAE
(17.18 mm) and RMSE (22.71 mm). The monthly MAE (19 mm) and RMSE (24.10 mm) of
BESS is slightly higher than that of GLASS, respectively. The good performance of BESS
and GLASS indicates a slight advantage than the other products over LMRB.
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Figure 3. Boxplots of mean absolute error (MAE) for all four ET products and EC ET in 8-day (a–c,g,h)
and monthly (d–f,i–l) scales.

Table 4. Multiple comparison test of the four ET products using the mean absolute error of all sites
and various vegetation types.

Vegetation
Types Time Scales MOD16 vs.

PML-V2
MOD16 vs.

GLASS
MOD16 vs.

BESS
PML-V2 vs.

GLASS
PML-V2 vs.

BESS
GLASS vs.

BESS

All sites
8-day 0.112 0.019 * 0.064 0.993 1.000 0.993

Monthly 0.124 0.001 * 0.034 * 0.579 0.999 0.805

EBF
8-day 0.018 * 0.934 0.122 0.205 0.967 0.665

Monthly 0.726 0.553 0.574 0.346 0.362 0.975

DBF
8-day 0.714 0.987 0.307 0.701 0.165 0.315

Monthly 0.788 0.141 0.243 0.228 0.367 0.760

Shrub
8-day 1.000 0.534 0.939 0.446 0.862 0.988

Monthly 0.954 0.148 0.303 0.164 0.331 0.673

Grassland
8-day 0 * 0 * 0.935 0.213 0.002 * 0 *

Monthly 0.031 * 0.001 * 0.348 0.407 0.958 0.239

Cropland Monthly 0.097 0.116 0.071 0.927 0.881 0.809

MV Monthly 0.207 0.004 * 0.193 0.624 1.000 0.459

* indicates a significant difference at 95% confidence.
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It is obvious that the performances at 8-day scales are highly consistent with per-
formances at monthly scales in each land cover type for all the four products (Figure 3
and Table 5). This is also consistent with their performance when using all the land cover
sites. ET performance comparison of the four products in different land cover types indi-
cates that no product can perform best for all the land cover types (Table 5 and Figure 3).
For evergreen broadleaf forests, PML-V2 performs best because it has both the lowest
8-day (6.61 mm) and monthly (22.01 mm) RMSE among the four products. For deciduous
broadleaf forests, BESS performs best with its 8-day and monthly RMSE of 6.49 and 21.45
mm, respectively. BESS also performs best for croplands as it has the lowest monthly
RMSE of 22.35 mm among the four products. For shrubs, grasslands and mixed types,
GLASS has consistently the lowest RMSE among the four products. Although GLASS,
BESS and PML-V2 have their corresponding best performance with some land cover types,
no significant MAE difference is found among the three products in all the land cover types
except cropland, in which a significant MAE difference is found both between BESS and
GLASS and between BESS and PML-V2 (Table 4). It is worth noting that MOD16 does not
have the best performance in any land cover type as it records the highest RMSE in almost
all land cover types, and significant MAE differences are mostly found between MOD16
and the other three products (Table 4).

Table 5. Evaluation results of ET products in diverse vegetation types.

Time
Scales Products Indicators All Sites EBF DBF Shrub Grassland Cropland MV

8-day

MOD16
RMSE 7.86 7.62 7.80 9.26 4.93 - -
MAE 6.19 6.05 6.44 7.56 4.10 - -

PML-V2
RMSE 7.39 6.61 7.53 10.09 3.54 - -
MAE 5.45 5.28 6.11 7.76 2.73 - -

BESS
RMSE 6.96 7.02 6.49 8.74 4.36 - -
MAE 5.44 5.85 5.59 6.94 3.70 - -

GLASS
RMSE 7.20 7.13 7.41 8.21 3.34 - -
MAE 5.26 5.58 5.79 6.52 2.39 - -

Monthly

MOD16
RMSE 30.43 26.19 30.59 30.49 16.47 40.10 38.82
MAE 23.90 20.74 25.49 23.78 13.36 31.97 31.00

PML-V2
RMSE 25.77 22.01 25.95 32.37 10.81 25.55 27.65
MAE 19.64 17.48 21.71 23.51 8.63 19.92 21.47

BESS
RMSE 24.10 23.70 21.45 24.34 12.77 22.35 28.77
MAE 19.00 19.55 18.35 18.94 10.85 19.14 22.66

GLASS
RMSE 22.71 24.46 25.13 22.64 10.45 27.65 22.58
MAE 17.18 18.93 19.59 16.95 7.13 22.36 18.38

3.2. Performance Based on Inter-Comparison

Overall, all four products do not show a uniform spatial pattern, although a consis-
tently low ET in the north and high ET in the south can be observed (Figure 4). However,
each product can well reflect the spatial differences brought by topography, climate and
vegetation over the entire basin. Great spatial differences can be found in local regions. The
multi-year average ET of GLASS is around 100 to 300 mm higher than that of the other three
products in the Xiengkhouang Plateau and the Boloven Plateau, where evergreen broadleaf
forest is the dominant land cover type. MOD16 presents the lowest multi-year average
ET in the Korat Plateau, the Chuor Phnum Dangrek and the Mekong Delta Region, where
the land cover is dominated by croplands. Spatial differences among the four products
are more obvious in the seasonal average ET. In spring, MOD16 also presents the lowest
average ET in the Korat Plateau, Chuor Phnum Dangrek and Mekong Delta Region. In the
other three seasons, the largest spatial disagreement among the four products is distributed



Remote Sens. 2022, 14, 479 12 of 25

in the Xiengkhouang Plateau, Boloven Plateau and Mekong Delta region. For example, the
summer ET of GLASS is around 100 to 200 mm higher than for the other three products in
the Xiengkhouang Plateau and Boloven Plateau.
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The annual average ET ranges from 800 to 1400 mm/year across the basin, according to
all four products (Figure 4(a1–a4)). The highest spatial agreement among the four products
can be observed in the up reach, dominated by grasslands with an annual average ET range
of 400 to 600 mm/year. The ET of all products in the Three River Source Region of the up
reach is relatively low (around 100 to 200 mm) as this region belongs to the snow and polar
climate zone, with a mean altitude higher than 4000 m. The spatial distribution of the ET of
MOD16 and PML-V2 is well consistent in summer and winter (Figure 5), especially in the
Xiengkhouang Plateau, Korat Plateau and Boloven Plateau.

The spatial correlation shown in Figure 6 further indicates a great spatial difference
among the four products during 2001–2015. Spatial correlations between MOD16 and
BESS, between PML-V2 and GLASS, and between GLASS and BESS show great spatial
discrepancies. For example, high positive spatial correlations can be observed in the Korat
Plateau, while negative correlations can be found in the Mekong Delta region between
PML-V2 and GLASS. Conversely, negative spatial correlations can be observed in the Korat
Plateau, while positive correlations can be found in the Mekong Delta region between
MOD16 and BESS. A general negative spatial correlation between PML-V2 and BESS can be
observed, especially in the upper reach, the Korat Plateau and the Chuor Phnum Dangrek.

Figure 7a shows comparisons of the annual ET of the four products over the entire
basin in different land cover types. The four products show a comparable annual ET range
of needleleaf forests, shrubs and grasslands with mean yearly ET of 717.2 mm (Figure 7(a3)),
1054.0 mm (Figure 7(a4)) and 698.9 mm (Figure 7(a6)), respectively. The annual ET range
of MOD16 and PML-V2 is comparable in evergreen broadleaf forests with a mean yearly
ET of around 1200 mm, while those of BESS and GLASS are much lower and higher, with
their mean yearly ET of 1019.0 mm and 1359.2 mm, respectively (Figure 7(a1)). Specifically,
BESS is 177.4 mm lower than the average of the four products, while GLASS is 162.8 mm
higher than the average of the four products. In addition, the annual ET ranges of MOD16,
BESS and GLASS are comparable in deciduous broadleaf forests with a mean yearly ET of
around 1150 mm, while that of PML-V2 is much lower (Figure 7(a2)). Specifically, PML-V2
is 175.78 mm lower than the average of the four products. A large discrepancy in the annual
ET range between MOD16 and GLASS on croplands can also be found (Figure 7(a5)).
The mean yearly ET of PML-V2 and GLASS on cropland are around 1040 mm and are
comparable, though the annual ET range of the former is much broader than the latter
(Figure 7(a5)).
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GLASS and BESS (f) over the entire basin.

The average yearly ET of the four products over the entire basin is around 1000 mm
during the studied period (Figure 7b). The annual ET difference between MOD16, PML-
V2 and BESS is relatively small, while the annual ET difference between GLASS and the
other three products is significant. Specifically, the annual ET of the entire basin from
GLASS fluctuates around 1100 mm during the period of 2001–2015, which is around 150
to 200 mm higher than that from the other three products (Figure 7b). The annual ET of
the four products over the entire basin shows an increasing trend, with 3.8 mm per year
(Figure 7b). Significant differences can be found in the trends of the annual ET of the four
products. MOD16 and PML-V2 show significantly increasing trends (at a confidence level of
α = 0.1), while BESS and GLASS do not show significant trends. PML-V2 increases by about
261.4 mm in 15 years (9.46 mm/year), and MOD16 increases by 83.69 mm (16.74 mm/year)
during 2001–2015. It should be noted that the linear trends of BESS and GLASS are not
presented in Figure 7b, as their Spearman’s rank correlation coefficients are not significant;
namely their linear trends are not reliable.
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(a2), needleleaf forests (a3), shrubs (a4), croplands (a5), and grasslands (a6) over LMRB; (b) inter-
annual variation of the four products and trend of MOD16, PML-V2, and the average ET during
2001–2015.

3.3. Performance Based on Literature Comparison

Figure 8 shows the results of the multi-year average ET comparison from different
climate zones between the four products, and the ET values from the literature in other
regions. In the equatorial climate zone, the multi-year average ET of evergreen broadleaf
forests, with the four products, ranges from 1000 mm to 1400 mm, with a mean value
of 1226.90 mm, which is comparable to the ET of the same climate from the literature
(Figure 8a). However, the ET discrepancy between the products and the literature is larger
in shrubs and croplands (Figure 8a). Specifically, the multi-year average ET (1127.23 mm)
of the four products is much higher than that from the literature with a similar climate
(802.86 mm) in shrubs, while it is much lower than that from the literature in croplands.
This is reasonable, as croplands are more easily affected by human activities, and shrubs
are more diverse in density compared to evergreen broadleaf forests. Thus, the multi-year
average ET of evergreen broadleaf forests is more stable than that of shrubs and croplands
in the same equatorial climate zone.

In the warm climate zone, the multi-year average ET of deciduous broadleaf forests
(721.16 mm) and needleleaf forests (751.09 mm), with the four products, is also comparable
to corresponding ET from the literature (Figure 8b). Similarly to the equatorial climate
zone, the ET discrepancy between the products and the literature is also larger in croplands
(Figure 8b). The multi-year average ET from the four products can be as much as 240.84 mm
lower than ET from the literature over croplands. A great gap between ET from the products
and ET from the literature can also be found in grasslands in the warm climate zone
(Figure 8b). Specifically, the multi-year average ET from the products is around 290.76 mm
higher than that from the literature in grasslands. The discrepancy between ET from the
products and ET from the literature on croplands and grasslands in the warm climate
zone may be explained by their disturbance differences due to human activities, such as
irrigation and grazing in different regions. It is worth noting that the ET of croplands in
the warm climate zone is lower than that in the equatorial climate zone regardless of the
products and the literature. This ET difference is largely attributable to climate differences.
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In the snow and polar climate zone, ET from the products for all three land cover types
(needleleaf forests, mixed forests and grasslands) is comparable to their corresponding
ET from the literature (Figure 8c). This is because there is basically no human activity in
this kind of cold climate region. The multi-year average ET of needleleaf forests is around
500 mm for all four products and the literature, which is comparable to that of mixed
forest and grasslands in this region. It should be also noted that the annual average ET of
needle leaf forests and grasslands in this cold climate region is much smaller than their
corresponding annual average ET in the warm climate zone.

4. Discussion
4.1. Possible Reasons for the Inconsistent Performance of the Four Products
4.1.1. Inconsistency of Model Inputs

One main reason for the inconsistent performance of the four products could be the
difference in the input datasets and their usage (Table 6). Firstly, the meteorological driving
data for each ET product are different. For example, the meteorological driving data
of MOD16, PML-V2 and BESS come from GMAO-MERRA, GLDAS and NCEP/NCAR,
respectively. These three datasets have different temporal and spatial resolutions (Table 6).
Previous studies suggested that GMAO-MERRA may overestimate the net radiation and
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shortwave radiation in the tropical climate region, while GLDAS may overestimate the net
radiation and underestimate the incoming shortwave radiation [61]. The meteorological
elements used in these three products are also different. MOD16 requires air temperature,
atmosphere pressure, relatively humidity and downward shortwave radiation. BESS
requires air temperature and wind speed. In addition to the same meteorological elements
as required by MOD16, PML-V2 also requires precipitation, downward longwave radiation
and wind speed.

Table 6. The major input datasets of MOD16, PML-V2, and BESS.

Product Type MOD16 PML-V2 BESS

Meteorological
Inputs

GMAO-MERRA (1◦×1.25◦)
Ta, Pair, RH, RS↓

GLDAS_2.1 (0.25◦×0.25◦)
Prcp, Ta, Pair, RS↓, RL↓, WS

NCEP/NCAR (2.5◦×2.5◦)
Ta, Tdp, LST, WS

Remote
Sensing
Inputs

LAI MOD15A2 (1 km/8 day) MCD15A3 (500 m/4 day) MCD15A2 (1 km/8 day)
FPAR MOD15A2 (1 km/8 day) - -

Albedo MOD43C1_collection5
(0.05◦/16 day) MCD43A3 (500 m/8 day) MCD43B3 (1 km/16 day)

Albedo QC - - MCD43B2 (1 km/16 day)
Emissivity - MOD11A2 (500 m/8 day) -

LC MOD12Q1-UMD
(1 km/year) MCD12Q1-IGBP (500 m/year) MCD12Q1-IGBP (500 m/year)

LST - - MO(Y)D11_L2 (1 km/5 min)
Aerosol - - MO(Y)D04_L2 (10 km/5 min)

Water vapor - - MO(Y)D05_L2 (5 km/5 min)

Cloud - - MO(Y)D06_L2 (1 km or
5 km/5 min)

Atmospheric
Profile - - MO(Y)D07_L2 (5 km/5 min)

FCI - - POLDER 3 (6 km/month)

Carbon dioxide
concentration \ NOAA-GAMSMMD

(global/year) 370 ppm

LAI: Leaf Area Index; FPAR: the Fraction of Absorbed Photosynthetically Active Radiation; Albedo QC:
BRDF/albedo quality; LC: land cover; LST: land surface temperature; FCI: Foliar Clumping Index; Ta: air
temperature; NOAA-GAMSMMD: NOAA globally averaged marine surface monthly mean data; Tdp: dew point
temperature; Pair : air pressure; Prcp: precipitation; RH: relative humidity; RS↓: downward shortwave radiation;
RL↓: downward longwave radiation; WS: wind speed.

Secondly, the remote sensing input datasets of these ET products are inconsistent.
Although all ET products use the same land cover product (MOD12Q1), only MOD16
integrates it into the ET algorithm. The biome property thresholds of leaf stomata, VPD
and other related factors are set on the basis of land cover type in MOD16, while PML-V2
and BESS just used the land cover product to construct a mask of the terrestrial area. The
sources and usage of LAI in these products are also different. LAI in both MOD16 and
BESS comes from Terra, while PML-V2 comes from a combination of Terra and Aqua.
Consequently, the spatial and temporal resolution of the three input LAI datasets are also
different. For example, the spatiotemporal resolution of MCD15A3 (500 m/4 day) in PML-
V2 LAI is better than that of MOD15A2 and MCD15A2 (1 km/8 day) in MOD16 and BESS.
In addition, LAI is used to upscale the leaf conductance (including stoical, cultural and leaf
boundary layer conductance) to canopy conductance in MOD16, while it is used to divide
the total available energy into canopy absorption and soil absorption in PML-V2. Unlike
MOD16 and PML-V2, LAI is used to estimate the downward longwave radiation and net
radiation absorbed by the shaded and sunlit leaves in BESS. Additionally, the input albedo
and emissivity datasets of each ET product are inconsistent. In terms of albedo, MCD43A3
is used in PML-V2, with a spatial resolution of 500 m and a temporal resolution of 8 days,
while MOD43C1 (0.05◦/16 days) and MCD43B3 (1 km/16 days), with lower spatial and
temporal resolution, are used in MOD16 and BESS, respectively. The higher spatiotemporal
resolution of albedo in PML-V2 is most likely to obtain a more accurate radiation energy in
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simulating ET. Emissivity is used to calculate longwave radiation and net radiation. The
algorithms of MOD16 and PML-V2 are same in calculating net radiation, but different in
downward longwave radiation and upward longwave radiation. The downward longwave
radiation of MOD16 is calculated by using the Stefan–Boltzman equation, which uses an
empirical relationship to calculate atmospheric emissivity based on air temperature, while
it directly comes from GLDAS in PML-V2 [62]. Similarly to MOD16, air emissivity is
calculated by using a different empirical function related to air temperature in BESS [62,63].
In terms of upward longwave radiation, surface emissivity is set as a constant of 0.97
in MOD16, while it comes from MOD11A2 in PML-V2. Upward longwave radiation in
BESS is calculated using constants of leaf and soil surface emissivity (i.e., 0.98 and 0.94,
respectively) and land surface temperature from MOD11 L2 and MYD11 L2. Furthermore,
compared with other products, BESS also requires other remote sensing datasets, including
clouds, water vapor, aerosols, etc. These datasets are used in the Atmospheric Radiative
Transfer Model to obtain downward shortwave radiation. It is worth noting that BESS
also uses foliage clumping index rather than LAI to separate the proportion of shade and
sunlit leaves.

Thirdly, carbon dioxide fertilization is considered in PML-V2, while it is not considered
in both MOD16 and BESS. Carbon-dioxide concentration in BESS is set as a constant of
370 ppm, while carbon-dioxide concentration in PML-V2 is derived from the NOAA
globally averaged marine surface monthly mean data. We suggest that PML-V2 is more
reasonable with regards to this aspect, as carbon dioxide fertilization was proved to increase
ET, which is coupled with net primary production [7,64,65].

4.1.2. Inconsistency of Model Structures

The second reason for the inconsistent performance of these products comes from
differences in model structures and algorithms. Firstly, BESS does not include evaporation
from canopy interception, while both MOD16 and PML-V2 do. Canopy interception is an
important part in ET besides canopy transpiration and soil evaporation. Previous studies
showed that canopy interception could account for as much as 30% of total precipitation in
tropical forests [66]. Thus, the omission of canopy interception could bring a large error in
tropical forests. It is worth noting that MOD16 does not fully consider evaporation from
canopy interception, as it is set to 0 if relative humidity is less than 70%.

Secondly, both PML-V2 and BESS couple with photosynthesis to constrain canopy
surface resistance in the PM equation, while MOD16 does not. A missing carbon and water
coupling process can bring large errors in estimating ET, especially when vegetation is
subject to environmental stress (e.g., drought, heatwave, cold, etc.) [67]. Although both
PML-V2 and BESS have considered the process of carbon and water coupling, their idea
for calculating leaf photosynthesis is different. PML-V2 adopts the “big-leaf model” while
BESS adopts the “two-leaf model” in which leaves are divided into shaded and sunlit
leaves. In addition, BESS induces a clumping index, rather than LAI, to distinguish the
structure of the canopy.

Thirdly, the method of calculating canopy surface resistance is different in MOD16,
PML-V2, and BESS. Both PML-V2 and BESS apply the Ball–Woodrow–Berry equation [68]
to calculate stomatal conductance, while MOD16 applies an empirical equation constrained
by air temperature and atmosphere pressure. It should also be noted that PML-V2 uses
relative humidity to constrain stomatal conductance in the Ball–Woodrow–Berry equation,
while BESS uses vapor pressure deficit.

Fourthly, MOD16 considers ET in the night while both PML-V2 and BESS do not.
Previous study suggested that leaf stomata are closed in the night and, thus, the leaf
does not have a transpiration process in the night [11]. However, recently, more and more
research has supported the existence of stomata opening in the night for some plants [69–71].
Thus, MOD16 seems be more reasonable in this aspect.
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It should be noted that we are unable to compare the input data and model structure
differences between GLASS and the other three products, as it is produced by fusing several
products instead of having independent model input and algorithms.

4.2. Uncertainties in Assessment Method

EC is widely used to evaluate actual ET around the world. However, final flux data
from EC may be not consistent with the actual condition at times. This gap may result
from instrument sensitivity, weather conditions, and gap filling methods. Eddy covariance
instruments generally have two types of analyzers: open-path CO2/H2O analyzers, and
closed-path CO2/H2O analyzers. However, gaps exist in the observed data of the two
analyzers, due to their different working mechanisms for calculating vapor and gas flux.
Different types of EC instruments were installed at the flux sites in this study. For example,
closed-path CO2/H2O analyzers (LI-6262, LI-COR) were installed in SKR and MKL, while
open-path CO2/H2O analyzers (LI-7500) were installed in XSBNRa and QZ-SETORS. This
may lead to uncertainties the assessment result. Unfavorable weather conditions such as
snow, rain fall, and hurricanes can influence the stability of instruments and lead to wrong
records. The advective condition should also be paid more attention, as it can destroy the
energy balance by introducing extra energy [72,73]. Wind speed has an influence on the
source area of EC observation, and then brings errors for EC observation [74]. Different
filling methods of EC gap data could also lead to discrepancy from actual ET [75]. Mean di-
urnal variation (MDV), look-up tables (LookUp), nonlinear regressions (Regr.) and artificial
neural networks (ANN) are commonly used to gap-fill EC data [14,76,77]. However, previ-
ous studies have found that these methods can lead to quite large inconsistencies [75,77].
Falge et al. (2001) also suggested the need to standardize gap-filling methods to improve
the comparability of flux data products, after comparison of seven gap-filling methods [75].

All of the sources of uncertainty further lead to a fundamental problem with EC; that
is, the energy balances determined using EC are generally “unclosed”, with the summary of
sensible and latent heat fluxes often underestimating available energy by 20% or more [78].
Previous studies have shown that the energy balance closure ratio of forest stations in
ChinaFLUX and ASIAFLUX is around 70–90% [79]. Thus, quite a lot of researchers have
suggested that the closure issue of measured energy fluxes must be resolved before it is used
to evaluate energy and water exchange products [73,78,80]. Currently, two main methods
are commonly used to “correct” energy imbalance. The first is called the residual method,
which assumes that sensible heat is correct, and that the residual from the subtraction
of available energy from the summary of sensible heat and latent heat can be taken as
the underestimation of latent heat [78]. The second is called the Bowen ratio method,
which assumes that the EC technique provides correct estimates of the Bowen ratio (the
ratio of sensible heat to latent heat), thus the residual can be proportionally assigned to
original sensible heat and latent heat [81–83]. However, there is no consistent answer on
which method is better to close the energy budget to date. Additionally, inconsistency in
calculating the available energy can be also found in previous studies [9,32,34]. The main
question is, under what conditions can soil heat flux and heat storage in vegetation be
neglected in calculating the available energy? Some studies have found that latent heat
underestimation results from neglecting soil heat, and that canopy heat storage could be
rather large [84,85].

An additional three points should be noted in terms of the uncertainties of product
assessment using EC data. The first is the well-known scale mismatch problem. The
footprints of EC water vapor exchange are often not well matched with corresponding
remote sensing ET pixels. Thus, the site-to-pixel assessment method used in most studies
may not be reasonable. In this study, we used a grid with a window size of 2 × 2 instead of
just one pixel to match the flux site. This may be more reasonable, especially if the grid is
homogenous. The second is the mixture problem. In this study, the finest spatial resolution
of ET products is 500 m. This means it is unable to avoid mixed land cover types in such a
coarse pixel. The evaluation result can be largely affected if selected flux sites cannot well



Remote Sens. 2022, 14, 479 20 of 25

represent the underlying land cover types in their corresponding remote sensing ET pixels.
The last point is the representative problem. The selected flux site may be able to represent
the actual water vapor exchange in its corresponding grid, but it may be not able to present
all of the pixels with same land cover inside the study region. Thus, the assessment result
would be more robust if more flux sites were available for the product evaluation. However,
a problem facing all regions of the world is that existing flux sites are currently extremely
limited. This study further conducts a comparison of flux data from other regions with
the same climate zone, which could be an alternative solution to evaluating ET products.
However, it should be noted that the area of the climate zones varies from year to year, and
the time period chosen affects the results.

4.3. Future Directions

One possible future direction is to improve the accuracy of input datasets in calculating
ET. The calculation of ET requires several variables, such as meteorological elements, land
cover types, leaf area index, and land surface albedo, etc. Currently, these input datasets
have different temporal and spatial resolutions at global and regional scale. Besides, current
accuracies of some input datasets (e.g., precipitation, leaf area index) can hardly meet the
demand of a highly accurate ET product. More research is needed to produce more accurate
input datasets by improving their consistency in temporal and spatial resolutions and their
algorithms. The second possible future direction is to fuse existing ET products. As shown
in this study, most ET products perform best with a particular land cover type. The accuracy
of the newly fused products would most likely be improved if a good fusion method were
to be implemented or developed. A Generalized Three-Cornered Hat (GTCH) model may
be a good candidate, as it can evaluate the uncertainty of more than three different datasets
without an observation value [86]. Thirdly, more research is needed to improve the existing
ET algorithms. Water balance in the soil–plant–atmosphere continuum is needed to be
considered a priority. This is because water absorption from the soil layer and water storage
change in the plant could greatly influence the escape of water from the leaf stomata [87].
The nitrogen cycle may be considered in the ET algorithm besides carbon and water, as
coupling nitrogen deposition is found to improve the rate of photosynthesis [88]. When
more carbon-dioxide is assimilated due to increased nitrogen supply, more water needs to
transpire out from the stomata. Last, but not least, autocorrelation of series data should
be conducted before conducting a linear trend, to evaluate its independence. If serial
correlation is present in the time series data, it can considerably impact the outcome of
trend analysis. Positive autocorrelation can artificially induce a trend in a time series, while
negative autocorrelation can weaken the trend [89].

5. Conclusions

In this study, four high spatial resolution ET products (MOD16, PML-V2, BESS, and
GLASS) were assessed and compared over LMRB, based on eddy covariance evaluation,
spatiotemporal inter-comparison, and literature comparison. Results obtained reveal that
MOD16 does not perform well as compared to the other three ET products. No significant
differences are found among the other three products. The performance of each product
varies across the different vegetation types, even within the same climate zone. In addition,
the four ET products show neither a consistent temporal trend nor a uniform spatial
distribution. The inconsistent performance of the four ET products over LMRB may be due
to various reasons, including model inputs, model algorithms and assessment methods. In
order to achieve more precise management of water resources, it is necessary to provide
input data with high temporal and spatial consistency, and to optimize the estimation
algorithm to improve the accuracy of ET products over LMRB.
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Appendix A

Table A1. Information of 39 EC sites collected from literature.

Code Country Vegetation
Type Locations ET

(mm/Year) Period Köppen
Climate 1

Modified
Climate Zone
Used in This

Study

1 Cambodia EBF 12◦44′N, 105◦28′E 1140 2003–2004 Aw Equatorial
2 Malaysia EBF 4◦12′N, 114◦02′E 1545 2001–2002 Af Equatorial
3 Malaysia EBF 2◦58′N, 102◦18′E 1287 2003–2010 Af Equatorial
4 Cambodia EBF 12◦44′N, 105◦28′E 1140 2004 Aw Equatorial
5 Thailand EBF 18◦25′N, 99◦43′E 977 2007–2009 Aw Equatorial
6 Vietnam EBF 11◦27′N, 107◦24′E 1519 2011–2017 Aw Equatorial
7 China DBF 41◦59′N, 101◦07′E 653.4 2014 BWk Warm
8 China DBF 29◦31′N, 112◦55′E 1033 2010–2012 Cfa Warm
9 China DBF 35◦01′N, 112◦28′E 579 2006–2010 Cwa Warm
10 China DBF 39◦32′N, 116◦16′E 571 2006–2009 Cwa Warm
11 Indonesia Cropland 1◦08′S, 102◦50′E 1058 2001–2003 Af Equatorial
12 Brazil Cropland 29◦45′S, 53◦9′W 998 2003–2004 Cfa Warm
13 Bangladesh Cropland 24◦44′N, 90◦25′E 997 2007 Am Equatorial
14 China Cropland 28◦26′N, 116◦00′E 1174 2016–2017 Cfa Warm
15 Philippines Cropland 14◦8′N, 121◦16′E 1441 2008–2009 Af Equatorial
16 Japan Cropland 36◦03′N, 140◦01′E 956 2005 Cfa Warm
17 Brazil Shrub 15◦56′S, 47◦53′W 1060 2001–2003 Aw Equatorial
18 Australia Shrub 12◦30′S, 130◦45′E 958 1996–1998 Aw Equatorial
19 Venezuela Shrub - 2 732 2000–2001 Aw Equatorial
20 Venezuela Shrub - 2 771 2000–2001 Aw Equatorial
21 Brazil Shrub 15◦56′S, 47◦57′W 840 2001–2002 Aw Equatorial
22 Venezuela Shrub - 2 538 1999–2000 Aw Equatorial
23 Venezuela Shrub - 2 721 1999–2000 Aw Equatorial
24 Mongolia Grassland 47◦45′N, 107◦20′E 176.95 2003–2004 Dwc Snow and polar
25 China Grassland 33◦53′N, 102◦08′E 580 2010 Dwb Snow and polar
26 China Grassland 27◦10′N, 100◦14′E 434 2012–2013 Cwb Warm
27 China Grassland 35◦57′N, 104◦08′E 386 2007–2012 Dwb Snow and polar
28 China Grassland 38◦03′N, 100◦28′E 556.6 2013–2015 ET Snow and polar

http://asiaflux.net/
http://asiaflux.net/
http://www.naro.affrc.go.jp/org/niaes/amen/
http://csdata.org/
https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
https://developers.google.com/earth-engine/
http://www.geodata.cn/
http://environment.snu.ac.kr/
https://lpdaac.usgs.gov/products/mcd12q1v006/
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Table A1. Cont.

Code Country Vegetation
Type Locations ET

(mm/Year) Period Köppen
Climate 1

Modified
Climate Zone
Used in This

Study

29 China Grassland 38◦25′N, 98◦19′E 270.6 2011 ET Snow and polar
30 China Grassland 37◦36′N, 101◦18′E 390 2002–2005 BSk Warm
31 China Grassland 31◦39′N, 92◦01′E 417 2014/2017 ET Snow and polar
32 China Grassland 34◦24′N, 100◦24′E 505.65 2007–2008 Dwc Snow and polar
33 China Grassland 37◦40′N, 101◦20′E 420.2 2002–2005 BSk Warm
34 China Grassland 30◦51′N, 91◦05′E 495.55 2004–2005 ET Snow and polar
35 China NF 3 26◦44′N, 115◦03′E 787 2003–2010 Cfa Warm
36 Japan NF 3 34◦58′N, 136◦00′E 752 2001–2007 Cfa Warm
37 Japan NF 3 42◦44′N, 141◦31′E 494 2002–2003 Dfb Snow and polar
38 China MV 40◦22′N, 115◦56′E 580.75 2006–2009 Dwb Snow and polar
39 China MV 42◦24′N, 128◦05′E 525 2005–2007 Dwb Snow and polar

1 Köppen Climate code: the letters A, B, C, D and E indicate the main climates, the letters W, S, f, s, w and
m indicate the precipitation, and the codes h, k, a, b, c, d, F and T indicate the temperature. A: equatorial,
B: arid, C: warm temperate, D: snow, E: polar, W: desert, S: steppe, f: fully humid, s: summer dry, w: winter dry,
m: monsoonal, h: hot arid, k: cold arid, a: hot summer, b: warm summer, c: cool summer, d: extremely continental,
F: polar frost, T: polar tundra.; 2 The precise location is not available, but it can be inferred in the map of literature
(https://doi.org/10.1093/treephys/28.3.425 (accessed on 6 August 2021)).; 3 NF indicates needleleaf forests.
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