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Abstract: Recently, hyperspectral image (HSI) classification has become a hot topic in the geographical
images research area. Sufficient samples are required for image classes to properly train classification
models. However, a class imbalance problem has emerged in hyperspectral image (HSI) datasets
as some classes do not have enough samples for training, and some classes have many samples.
Therefore, the performance of classifiers is likely to be biased toward the classes with the largest
samples, and this can lead to a decrease in the classification accuracy. Therefore, a new deep-learning-
based model is proposed for hyperspectral images generation and classification of imbalanced data.
Firstly, the spectral features are extracted by a 1D convolutional neural network, whereas a 2D
convolutional neural network extracts the spatial features and the extracted spatial features and
spectral features are catenated into a stacked spatial–spectral feature vector. Secondly, an autoencoder
model was developed to generate synthetic images for minority classes, and the image samples were
balanced. The GAN model is applied to determine the synthetic images from the real ones and then
enhancing the classification performance. Finally, the balanced datasets are fed to a 2D CNN model
for performing classification and validating the efficiency of the proposed model. Our model and the
state-of-the-art classifiers are evaluated by four open-access HSI datasets. The results showed that
the proposed approach can generate better quality samples for rebalancing datasets, which in turn
noticeably enhances the classification performance compared to the existing classification models.

Keywords: hyperspectral images; images generation; images classification; imbalanced data;
deep learning

1. Introduction

Hyperspectral images (HSI) are characterized by high resolution, high dimension, and
rich spatial and spectral information captured by various wavelengths with the spectrum in
hundreds of adjacent bands [1]. The applications of HSIs are popularly used in numerous
areas, such as sea ice detection, ecosystem monitoring, vegetation species analysis, and
classification tasks [2,3].

Recently, HSI classification has become an interesting topic in research and industrial
aspects [4,5]. However, the image classification task is complex [6]. HSI obtains huge
number of wavebands which increases the challenge on classification models to obtain
higher accuracy results, especially with the lack of training samples. Traditional methods
depend on the experience of experts and the adjustment of hypermeters to manually design
and extract main features. Machine learning approaches have been applied in image
classification, including multiple logistic regression, Ada boost, support vector machines,
etc. [7]. In addition, using deep-learning-based approaches can efficiently obtain highly
robust and discriminative features in an automatic parameter tuning and data-driven
manner [8]. They can provide more accurate classification results than other learning
methods [9,10]. However, hyperspectral images suffer from class imbalance, and images
have high dimensions and contain rich spectral information. Thus, research in hyperspectral
image classification HSIC should consider the following challenges:
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1. Existing hyperspectral image datasets have an imbalanced-class issue. There are classes
with insufficient samples for training, which makes the classification models biased
toward the majority classes and influences the classification accuracy and results.

2. Hyperspectral images have high dimensionality. Therefore, feature extraction is
another challenging issue. How can we develop a strategy to capture the spatial
features and spectral features effectively? Once spatial–spectral features are extracted
well, the classification accuracy can be improved, and significant details about the
structure of the locations can be obtained.

3. During HSI classification, which deals with a huge number of images and their fea-
tures, traditional models usually adopt a 3D conventional network to perform image
classification. However, the 3D conventional-based classifier is a time-consuming
method. There is a need to adopt a classifier that can efficiently perform classification
tasks with less required time consumption.

Considering the class imbalance problem in HSI datasets, this article proposes a novel
deep-learning-based model to provide a solution for the class imbalance issue for HSI
classification. The proposed model applies a 1D_2D convolutional network for extracting
the spatial–spectral features. Moreover, autoencoder and GAN networks are adopted
for producing synthetic images of minority classes and then rebalancing the datasets.
Finally, a 2D convolutional network is adopted for applying the image classification on the
balanced datasets.

To sum up, this paper has the following contributions:

1. Proposing an innovative 1D_2D convolutional-based method for obtaining the spatial
and spectral features from hyperspectral images. A 1D CNN network is adopted to
extract the spectral features, whereas a 2D convolutional network is used to capture
the spatial features. Finally, the two features are concatenated and stacked into one
feature vector.

2. The autoencoder GAN-based model is proposed to solve the class imbalance issue,
and synthetic images are generated to rebalance the minority classes and the datasets.
Compared to the sample number in the majority class, an encoder cell would be
determined and developed to produce samples for each minority class equal to the
sample number in the majority class. The GAN model would be used to recognize
the real samples and synthetic samples to enhance the results of the loss function, and
improve the training convergence.

3. We introduce a simpler and more efficient way of HSI classification. A 2D CNN-
based classifier is adopted for classifying hyperspectral images. The 2D convolutional
network costs less time consumption and takes less space for the training process.
The balanced images, including the synthetic and the real images, are fed into the
proposed classifier for performing the image classification task.

4. Our model is validated using four hyperspectral datasets, including Salinas, Indian
Pines, Botswana, and Kennedy Space Center. Our model is validated and compared
with several state-of-the-art classifiers. Statistical significance is also estimated to
examine classification performance obtained by the proposed model.

The remainder of this article is structured as following. In the next section, the related
work is briefly reviewed. Section 3 describes our proposed model in detail. Experiment
settings and information on datasets are illustrated in Section 4. The obtained results are
presented in Section 5 and followed by the discussion in Section 6. Finally, the conclusions
are summarized in Section 7.

2. Related Work

Many works in the literature address the class imbalance issue in HSI datasets. Here
is a brief introduction to the research related to feature extraction, image generation, and
classification for imbalanced data in HSI.
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2.1. Feature Extraction Methods

The feature extraction process plays a vital role in HSI classification. A lot of methods
have been proposed, and many approaches have been developed for enhancing classi-
fication performance. Convolutional neural networks have been considered for feature
extraction approaches [11,12]. The automatic architecture of CNNs for the HSI classi-
fication was introduced in [13], which designed a 1D_3D Auto-CNN-based model to
automatically obtain the features from the original image cube. The authors in [14] used
a Gabor-filtering-based combination and a CNN-based model to obtain the spectral and
spectral features, leading to a performance improvement. Zhang et al. [15] applied a 3D-
based FractalNets method and the residual connections to extract the spatial–spectral
features properly. Gao et al. [16] introduced a dual-branch-based feature extraction method
along with an attention classification method for performing multiscale classification. The
authors applied constructing multiple residual-like connections to assist in extracting the
features at a granular level. Seydgar et al. [17] adopted ConvLSTM and 3D CNN methods
to obtain the spatial–spectral features in HSI. Authors in [18,19] presented a 3D-CNN-based
approach for HSI classification by applying 3D convolutional networks to properly obtain
the spatial–spectral features.

Except for the CNN-based models, Vision-Transformer-related methods have become
a new scheme for feature extraction in HSI. Dalal et al. [20] developed a transformation
reduction (ETR) for reducing the dimensionality and classification complexity in HSI.
Wang et al. [21] developed a Transformer network named UNetFormer for real-time urban
scene segmentation and image classification. In [22], a bilateral awareness network for
semantic segmentation was developed to increase the image resolution and improve the
classification performance of HSI. In [23], a feature reduction method called improving
distribution analysis (IDA) was developed for reducing data complexity and dimensionality
of hyperspectral images. The correlation between related data is increased and the distance
between big and small data is decreased, followed by increasing the value’s location inside
the group range of the hyperspectral images.

Using the above studies’ feature extraction methods provided novel results for HSI
classification can increase the classification accuracy. However, they lead to increases in the
time consumed and the storage resources used, especially in the 3D CNN-based models.
Thus, there is a need to develop a feature extraction strategy that can fully extract more
valuable spatial and spectral features and alleviate the computational burden and time and
storage resources.

2.2. Hyperspectral Image Classification on Imbalanced Data

For HSI classification, a lot of research used classical pattern recognition, machine
learning, and deep-learning models.

In [24], the authors introduced a CNN patch-free-based method for classification. A
CNN content-guided model was proposed for HSI classification. Roy et al. developed a
novel model named HybridSN. The model can extract the spectral features and the spatial
features by combining the 3D convolutions and the 2D convolutions with lightweight
spatial–spectral residual features to reduce the parameters used for the sample training
process of classification [25]. The authors in [26] presented a 3D coordination attention-
based learning method for HSI classification. In that approach, the attention mechanism
can obtain the long-distance dependence of horizontal directions, spatial position, and
the important difference between various spectral bands. AL-Alimi et al. [27] proposed a
hyperspectral image classification framework adopting a meta-learner method for training
multi-class datasets using hybrid and multi-size kernel convolutional neural networks.
Ma et al. [28] presented a spatial–spectral kernels-based generation network for producing
spatial and spectral kernels using image characteristics, which were utilized to enhance the
classification accuracy.

Although such outstanding results were obtained by previous models solving classifi-
cation issues, there is a need to propose a new approach which can tackle the issue of the
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class imbalance in HSI datasets. The class imbalance issue can make the classification result
biased toward learning the information from the majority classes and ignoring the minority
classes [29]. The classification measures, such as overall accuracy (OA), and Kappa metric,
etc., can be poorly presented for minority classes.

Several methods have been developed to address the class imbalance issue [30,31].
For example, sampling-based approaches are widely adopted due to their simple structure.
These approaches are often adopted for preprocessing the imbalanced datasets before
training to achieve better classification accuracy. Solving the imbalanced dataset approaches
can be divided into two types, namely, undersampling and oversampling methods [32].

The undersampling-based methods mainly decrease the samples in the majority class
to rebalance the samples in datasets. Singh et al. [33] proposed a SMOTE and centroid-
based clustering method for undersampling the majority of class samples in the HSI
datasets. In the study [34], a random feature subspace was used to perform an oversampling
method for training samples and data enhancement. An ensemble-based learning model
was developed by merging random feature selection with a convolutional network for
performing image classification.

The oversampling-based methods increase the number of instances in the minority
class by data augmenting or sample replication methods. For instance, Zhu et al. [35]
adopted the GAN model to produce new samples for training the network and enhancing
classification accuracy. In [36], a multiple-category spatial–spectral-based GAN approach
was proposed. Two generator cells were utilized to extract the spectral features and
the spatial features for the adversarial objectives for various classes. In [37], the authors
introduced a new Caps-TripleGAN model to generate new images using a 1D_3D GAN
and then classified the hyperspectral images using a capsule net-based model. Xue [38]
presented a GAN-based image classification model using a 3D convolutional network
and a 3D convolutional residual network. Roy et al. [39] developed a 3D adversarial
oversampling-based model for HSI classification. The image samples were produced using
a 3D hyperspectral patch. Then, a 3D-CNN-GAN-based classifier was used to perform the
classification task.

Overall, although the above classification methods obtained outstanding results, the
3D convolution-based approaches have several drawbacks. For instance, with the growing
number of 3D convolutions, the consumed time is getting longer. In addition, the over-
whelming features can lead to an overfitting issue and influence the classification accuracy.
Although the methods mentioned above adopted adversarial training for classification,
they did not provide an effective solution for the minority classes. Therefore, there is still a
need to produce image samples for each class and try to solve the class imbalance issue in
HSI datasets.

3. The Proposed Model

This section introduces our model, and the detailed structure of the proposal is illus-
trated in Figure 1.

Our model contains three modules, namely, a feature extraction module, a data-
balancing module, and a classification module. Firstly, the hyperspectral image size is
reduced, then the main spectral features and the spatial features are extracted to understand
the implicit feature distribution of the hyperspectral images. Secondly, the real images, rep-
resented by spatial–spectral features, are fed to an autoencoder module. The image labels
are input with the minority class images, and a labeled latent vector is generated for each
minority class. Thirdly, the GAN model receives the labeled latent vector, which represents
the image features and the real images, then generates synthetic images and, in turn, recog-
nizes the real images from the synthetic images. Finally, the balanced images are fed into
the classification model for performing classification and obtaining classification results.
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Figure 1. Architecture of the proposed model.

3.1. Feature Extraction

For better capturing the features of HSI, the feature extraction process considers three
steps: spatial feature extraction, spectral feature extraction, and feature fusion. Figure 2
illustrates the feature extraction module.

Figure 2. The architecture of the feature extraction module.

Spatial features can play a vital role in the classification accuracy of HSI. As shown
in Figure 2, spatial feature extraction begins with selecting the suitable spatial window
size for the images. The original size of hyperspectral images (H × W × D, indicate
height, width, and bands for an HSI) is considered, and images with a new spatial window
would be selected (become M × N × D). Then, the new-sized images are fed to the
latent convolutional layers as input data. The 2D convolutional neural networks capture
spatial features using reduced-size images. Table 1 illustrates the parameter settings of the
convolutional layers for spatial feature extraction.
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Table 1. The parameters setting of convolution layers for spatial feature extraction.

Layer Input Channels Output Channels Kernel Size Previous Layer

Input 1 1
2D CNN 1 1 32 3 × 3 Input

carpooling 1 32 32 2 × 2 2D CNN 1
2D CNN 2 32 64 3 × 3 carpooling 1

maxpooling 2 64 64 2 × 2 2D CNN 2
2D CNN 3 64 512 3 × 3 maxpooling 2

FullConnected 2D CNN 3

The proposed module of spatial feature extraction contains six layers, and the structure
design is described in Table 1. An output of an ith layer is represented by a feature map
with different output channels, which is fed to the next layer. For the sake of further
enhancing the performance, the Mish learning function is utilized instead of ReLU, as the
Mish function presented more accurate results than ReLU [40]. Mish can be calculated as
the following equation [40]:

Mish(x) = tanh (ln (1 + ex)) × x (1)

where x presents inputs, ln (·) indicates logarithmic function, whereas tanh (·) denotes the
popular function calculated as in the following equation [40].

tanh(x) =
ex − e−x

ex + e−x (2)

Once the ith layer’s structure is a convolution layer, a 2D CNN-based operation is
performed using kernel size 3 × 3 to obtain features and outputs a feature map Oi. This
process can be calculated as function (3) [41]:

Oi = σ(Oi−1 ∗Wi + bi) (3)

where σ(·) represents the Mish activation function, and ∗ is the convolution operation.
Moreover, Oi−1 is the previous layer output, whereas Wi and bi denote weights matrix and
the bias term of the current layer i.

Once an ith layer is maxpooling, the input size of a feature map would be shortened
by replacing a 2 × 2 sized neighborhood region with the region’s maximum value. The
calculation process is performed as in Equation (4):

Oi = maxPool(Oi−1) (4)

Once the ith layer is a full connected layer, the spatial features can be extracted and
are ready for concatenating with spectral features. The spatial features are denoted as
Featurespatial. Mathematically, this step can be calculated as in Equation (5):

Featurespatial=Ofull_connected =σ(Oi−1 ∗Wi +bi) (5)

Similar to the convolution layer above, Oi-1 denotes an output of the previous layer,
whereas Wi and bi represent weights matrix and the bias term of the current layer i.

Regarding spectral feature extraction, the principal components analysis decreases the
dimensions number of the spectral domain. The new size of hyperspectral images would
be reduced (the original size, H ×W × D, becomes H ×W × B, indicating height, width,
and bands). The spectral extraction and spatial extraction have similar architecture as they
contain six layers. In addition, Mish activation is utilized as the learning function in the
convolutional layers as well. The only different aspect to the spectral features extraction
module is to avoid the complexity of commutation, 1D convolutional neural networks
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are used instead of 2D convolutional neural networks. Finally, the fully-connected layer
provides the spectral features, denoted by Featurespectral.

For the sake of facilitating the classification process and enhancing the classifica-
tion accuracy, the captured spatial features and the spectral features are required to be
fused. Let Featurespatial={Sp1,Sp2, . . . ,Spn} represent the extracted spatial features and
Featurespectral={Spe1,Spe2, . . . ,Spem} represent the captured spectral features of a pixel
with b bands. Thus, a spatial–spectral feature (Featurespatial_spectral) of a pixel is generated
by stacking the spectral feature vector Featurespectral with the spatial vector Featurespatial,
which can be obtained by the following equation:

Featurespatial_spectral={Sp1,Sp2, . . . ,Spn,Spe1,Spe2, . . . ,Spem} (6)

In this article, Featurespatial_spectral is used as the feature of real images which would
be fed into the data-balancing module and the image classification module.

3.2. Data Balancing

HSI datasets are considered imbalanced data in which there are majority class and
minority classes. The majority class contains the largest image samples, whereas minority
classes have fewer samples. This can lead to biased results and reduce classification
accuracy. Thus, balancing samples for minority classes becomes vital. With the widespread
use of GAN and autoencoder deep learning models in HSI data augmentation, this article
adopted these two models to produce synthetic images for balancing minority classes.
Figure 3 describes the main features of the data-balancing module.

Figure 3. The data balancing module with autoencoder and GAN.

3.2.1. Autoencoder Network

As depicted in Figure 3, the autoencoder network contains two sub-networks: the
encoder and the decoder. The aim of the encoder is to oversample the images (image
features) of the minority classes by producing new samples, as depicted in Figure 3. The
spatial–spectral stacked features, Gaussian noise, and class information (labels) are fed
to the encoder network. The image class having the largest samples is considered as a
majority class, whereas other classes are labeled as minority classes. Therefore, the images’
number of the majority class would be captured and used to generate images and balance
the shortage in minority classes.
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Suppose the training set has k minority classes. Thus, the encoder network should
have k encoder cells, one Eni cell for each minority class i. Each Eni cell generates Gen_Imi
samples, as Equation (7):

Gen_Imi = Imm − Imi (7)

where Imm represents the samples number of majority class m and Imi for minority class i,
i ∈ [1, k]. Therefore, each Eni cell has the following inputs (Gen_Imi, class label i, Gaussian
noise, and spatial_spectral features of the class samples) and encodes them into a class
latent vector zi. Figure 4. describes the internal architecture of an encoder cell.

Figure 4. The internal architecture of an encoder cell.

The encoder cell contains two convolutions and two maxpoolings, which are two-
dimensional cells. The initial encoded vector obtained by the encoder i is the following
Equation (8):

zi = Eni(xi) = q(zi|xi) (8)

where xi is the stacked features of the minority class i, considering the Gaussian noise and
the class labeli. After calculating mean µwith covariance ε from the stacked features, the
class latent vector zi is Equation (9) is generated by applying Equation (9) [42]:

zi = µi + r ∗ exp(εi) (9)

After extracting the class latent vector zi for each minority class i, the corresponding
decoder Dei would be triggered and fed by the label latent vector zi. Figure 5 describes the
internal architecture of a decoder cell.

Figure 5. The internal architecture of a decoder cell.

The encoder cell contains two transposed convolutions (two-dimensional cells). In the
encoder and the decoder layers, the ReLU activation function is applied, and the Adam
algorithm is chosen as the optimization function. The aim of the decoder Dei is to learn the
training data distribution, then produce image samples.

−
xi = Dec(zi) = p(xi|zi) (10)
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where xi is the generated samples from the label latent vector zi. Finally, we obtain a set of
synthetic images for each minority class i.

3.2.2. Generative Adversarial Networks (GAN) Network

In general, the architecture of a GAN contains two subnetworks, namely, generator
network and discriminator network. The generator network obtains image features and
generates synthetic images. In contrast, the discriminator network obtains synthetic images,
and distinguishes the synthetic images from the real images, and accordingly modifies the
loss function until no difference can be found between generated and real images.

For the sake of decreasing the time complexity of implementing our model and for
simplifying the model design with no influence on model functions, we consider the
decoder network of the autoencoder module as the generator network of the GAN module.
In addition, the decoder network generates image samples for minority classes, as the
generator network should do in the GAN module. Thus, we focus on the discriminator
network. Figure 6 illustrates the discriminator network design.

Figure 6. The illustration of the discriminator network.

According to Figure 6, the discriminator network includes three convolution layers, and
all of these layers are two-dimensional layers. The first and second layers apply the ReLU
activation, whereas the last layer utilizes the sigmoid activation to distinguish image’ types
(real or synthetic). More details about the 2D discriminator design are introduced in Table 2.

Table 2. Parameters setting of convolution layers for the discriminator network.

Layer Input Channels Output Channels Kernel Size Previous Layer

2D Conv_1 32 32 3 × 3
2D Conv_2 32 64 3 × 3 2D Conv_1
2D Conv_3 64 512 3 × 3 2D Conv_2

FullConnected 2D Conv_3

The discriminator network receives the synthetic images generated by the decoder
network and the real images as the input data. With the synthetic and real images, each
image class becomes balanced, can increase the classification results, and performs image
classification well. Therefore, the balanced images, including synthetic and real images,
would also be sent to the classification.

3.3. Classification Module

The classifier network plays a vital role in our proposed model because of the need
to classify the whole balanced image samples (the synthetic and the real ones). Figure 7
describes the design of our classification network.
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Figure 7. Design of our classification network.

As depicted in Figure 7, the classifier network’s design is similar to the discriminator
network, and the only difference is that the last convolution layer used the SoftMax function.
The classifier network calculates the scores of each image class, which are later used to
obtain the value of SoftMax loss. The training and testing process of the classification
network are implemented as follows. Training samples of every balanced image class (the
real images and the samples generated from the autoencoder module for the minority
classes) were used to performing the classification process, and testing data is utilized for
validating the classification accuracy for each classification model.

4. Experiment

This article aims to develop a classification model for HSI, considering the minority
class issue in the image samples. Therefore, we use the autoencoder and the GAN model
to generate samples, balance the image number for each minority class, and improve the
classification performance.

4.1. Datasets

Our study used four hyperspectral imbalanced datasets [43] with various environ-
mental settings to validate the performance of our model, including Indian Pines, Kennedy
Space Center, Salinas, and Botswana. Here is a short description of the datasets.

1. The Indian Pines dataset is collected using the AVIRIS sensor in the Indian Pines area,
Indiana. The dataset includes 224 bands with range wavelength of 0.4–2.5 × 10 −6 m.
Image size is 145 × 145 pixels [43]. More details of the classes and samples of Indian
Pines are listed Table 3 and displayed om Figure 8.

2. The Salinas dataset is collected using AVIRIS sensor in the Salinas area, California.
The Salinas dataset includes 204 bands, and the image size is 512 × 217 pixels [43].
Table 4 introduces more details about the land cover classes along with samples in
the Salinas dataset, whereas Figure 9 shows the ground truth map and pseudo color
image by Salinas dataset.

3. The Kennedy Space Center dataset is gathered using NASA AVIRIS at the Kennedy
Space Center area in Florida. The KSC dataset contains 224 spectral reflectance bands,
and image size is 512 × 614 pixels [43]. Table 5 listed the classes and the samples’
information of the KSC dataset, whereas the corresponding ground truth map and
pseudo color image are depicted in Figure 10.

4. By NASA EO-1 satellite, the Botswana dataset is gathered across the Okavango
delta site. The dataset includes 242 spectral reflectance bands, and the image size is
1496 × 256 pixels. Table 6 details the classes and the samples in the Botswana dataset.
Figure 11 illustrates the ground truth map along with a pseudo color image for the
Botswana dataset.
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Table 3. Classes information of Indian Pines dataset.

Number Land Cover Class Samples

1 Alfalfa 46
2 Corn notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings Grass Trees-Drives 386
16 Stone-Steel-Towers 93

Table 4. Classes information of Salinas dataset.

Number Land Cover Class Samples

1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soil_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_5wk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Table 5. Classes information of KSC dataset.

Number Land Cover Class Samples

1 Scrub 761
2 Willow swamp 243
3 CP hammock 256
4 Slash Pine 252
5 Oak/Broadleaf 161
6 Hardwood 229
7 Swap 105
8 Graminoid marsh 431
9 Spartina marsh 520
10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927
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Figure 8. Indian Pines dataset: (a) ground truth map; (b) pseudo color image.

Table 6. Classes information of the Botswana dataset.

Number Land Cover Class Samples

1 Water 270
2 Hippo Grass 101
3 Floodplain Grasses1 251
4 Floodplain Grasses2 215
5 Reeds1 269
6 Riparian 269
7 Firescar2 259
8 Island interior 203
9 Accacia woodlands 314
10 Accacia grasslands 248
11 Short mopane 305
12 Mixed mopane 181
13 Exposed soils 268

Figure 9. Salinas dataset: (a) ground truth map; (b) pseudo color image.
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Figure 10. (a) Ground truth map; (b) false color image of KSC.

Figure 11. (a) Ground truth; (b) false color image for Botswana dataset.

4.2. Experiment Settings

The experiments in this article were performed on a PC having Intel i7-10750 h with 32 GB
RAM. RTX 2070 GeForce GPU with 11-GB memory. In addition, the Ubuntu 20 operating
system was used for all experiments. Pytorch 1.11, cuDNN 8.4.1 and CUDA 11.3, matplotlib,
and python 3.8 were the tool programming utilized in our experiments. All models performed
by our experiments were applied on Anaconda 3.5 programming environment. Moreover,
Earthpy, a transparent deep learning library, was used to provide for Earth dataset analytics.
Platforms, such as TensorFlow, Keras, and Pandas, were combined into the core framework for
processing and supporting the deep learning methods included in the proposed model.

4.3. Training Settings

The weights for the layers in our proposed model were randomly initialized, and
the model parameters were updated by applying the Adam optimizer [44], along with a
learning rate 0.0002. The maximum number of epochs was assigned to 400 for all datasets.

In our model’s training process, each experiment was run 4000 iterations, and once
the generalization of the synthetic images of the minority classes became stable, the process
terminated. A 25 × 25 × D spatial window was selected for the four datasets, where D
represents the bands’ number.
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Table 7 lists the distribution of training (Train) and synthetic samples (Synth), and the
test samples (Test) of the four datasets. As shown in Table 7, the number of samples of the
training and testing process were different for each dataset. For example, due to Indian
Pines having the biggest number of samples, Soybean-mintill was considered the majority
class. In the experiment, we considered 1500 samples as the sample number for the real
training dataset. Other classes were considered minority classes that need to generate
synthetic samples and rebalance the sample number of every minority class. The testing
samples number considered 1/4 of the training samples for each dataset. The same settings
were conducted for the classes in the other datasets, and more details are described in
Table 7.

Table 7. Samples information of the training and testing process of four datasets.

No

Indian Pines Salina KSC Botswana

Train
Test

Train
Test

Train
Test

Train
Test

Real Synth Total Real Synth Total Real Synth Total Real Synth Total

1 46 1454 1500 375 2009 5491 7500 1875 761 139 900 225 270 50 320 80

2 1428 72 1500 375 3726 3774 7500 1875 243 657 900 225 101 219 320 80

3 830 670 1500 375 1976 5524 7500 1875 256 644 900 225 251 69 320 80

4 237 1263 1500 375 1394 6106 7500 1875 252 648 900 225 215 105 320 80

5 483 1017 1500 375 2678 4822 7500 1875 161 739 900 225 269 51 320 80

6 730 770 1500 375 3959 3541 7500 1875 229 671 900 225 269 51 320 80

7 28 1472 1500 375 3579 3921 7500 1875 105 795 900 225 259 61 320 80

8 478 1022 1500 375 7500 0 7500 1875 431 469 900 225 203 117 320 80

9 20 1480 1500 375 6203 1297 7500 1875 520 380 900 225 314 6 320 80

10 972 528 1500 375 3278 4222 7500 1875 404 496 900 225 248 72 320 80

11 1500 0 1500 375 1068 6432 7500 1875 419 481 900 225 305 15 320 80

12 593 907 1500 375 1927 5573 7500 1875 503 397 900 225 181 139 320 80

13 205 1295 1500 375 916 6584 7500 1875 900 0 900 225

14 1265 235 1500 375 1070 6430 7500 1875

15 386 1114 1500 375 7268 232 7500 1875

16 93 1407 1500 375 1807 5693 7500 1875

4.4. Comparation Models and Evaluation Metrics

For studying the effectiveness of our proposed model on imbalanced datasets, we
conducted model comparisons over several traditional classifiers, such as MLP [44], RF [45],
SVM [46], Ada Boost [47], KNN [48], and DT [49] over machine learning methods, including
LSTM [50], CNN1D [51], and CNN3D [52], and over existing outstanding classifiers, such
as HybridSN [25] and 3D_Hypergamo [39]. The HybridSN model combines 3D and 2D
convolution models for HSI classification. The spatial–spectral features are extracted by 3D
and 2D convolutions, respectively. The 3D_Hypergamo utilizes a 3D-generator network
which contains conditional feature mapping units, namely 3D hyperspectral patches, to
generate new samples for each class, and a 3D classifier is also used to classify the samples
(real and generated) into the corresponding classes.

We estimate the classification performance using popular evaluation metrics, namely,
overall accuracy (OA), average accuracy (AA), and the kappa metric. The OA metric is
calculated by considering the ratio of classified correctly images against total samples
number in the testing dataset. The AA metric denotes the mean of the accuracies of
image class, whereas the kappa metric denotes the weighting of the measured accuracies.
Therefore, we expect that the synthetic samples produced by our model enhanced the
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classification performance and resulted in higher accuracy when comparing with existing
HSI classifiers.

5. Experimental Results
5.1. Classification Results with Compared Models

The classification results of our model are compared with existing outstanding classi-
fiers by the train–test datasets of the four used datasets.

It needs to be mentioned that obtaining classification results by using only the informa-
tion in the articles of classifiers or obtaining details of the codes and the implementations
is very difficult. A lot of parameters and details of implementation were not found in the
articles and could only be obtained by guess once regenerating the experimental results.

Table 8 reports a summary of the accuracy results of the classification models. It
compares state-of-the-art models by various popular metrics. The highest values are
marked with bold across all models.

Table 8. Comparison of classification performance of the compared models and our model.

Method
Indian Pines Salinas Botswana KSC

OA AA Kappa OA AA Kappa OA AA Kappa OA AA Kappa

MLP [44] 90.21 93.11 88.72 92.17 88.38 89.59 80.34 80.19 78.67 71.12 72.79 75.58

RF [45] 83.14 85.15 81.14 83.63 81.23 78.32 83.59 84.99 82.23 83.13 76.76 81.17

SVM [46] 88.32 93.75 87.50 86.36 84.19 81.95 86.25 87.16 85.10 80.51 79.15 78.89

Ada Boost [47] 92.74 96.43 92.44 83.80 71.29 77.69 78.54 77.87 76.71 76.82 77.95 78.12

KNN [48] 91.16 95.16 89.15 89.23 86.86 85.49 89.79 90.65 88.94 85.03 78.83 83.30

DT [49] 80.71 83.14 80.14 79.24 66.54 71.36 89.88 90.79 89.04 85.93 79.86 84.31

LSTM [50] 60.22 58.51 59.68 91.63 88.38 88.8 78.29 77.72 76.44 62.24 62.00 63.24

CNN1D [51] 93.31 96.44 92.31 92.02 89.38 89.31 89.57 90.75 88.71 90.89 86.45 89.85

CNN3D [52] 94.04 95.57 93.89 91.56 88.3 88.71 86.29 87.18 85.15 87.59 82.08 86.17

HybridSN [25] 92.34 95.36 91.46 95.07 93.6 93.46 90.23 91.37 89.42 90.29 85.06 89.18

3D_Hyperamo [39] 94.24 94.64 93.69 93.71 91.08 91.56 94.22 94.81 93.74 90.18 85.02 89.06

Our model 94.47 94.92 94.09 95.48 93.87 94.01 96.74 96.31 96.57 91.57 86.42 90.48

As shown in Table 8, once comparing our model with classifier models using the four
HSI datasets, our model achieves higher results regarding the metrics OA, AA, and kappa.

The Salinas dataset presents a larger spatial size and has the highest number of spectral
bands; therefore, the obtained classification accuracy of Salinas is higher. Regarding the
Indian Pines dataset, the spatial size is smaller along with sixteen classes, which leads to
a lower accuracy performance. The Botswana dataset provides the highest spatial size
among all HSI datasets, Botswana presents the least samples regarding the maps of ground
truth. Thus, the accuracy results in the Botswana dataset are larger than those in the Indian
Pines dataset and the Salinas dataset. The KSC dataset has only thirteen image classes,
which can make the classification task easier than that in the other HSI datasets, and its
overall classification accuracy is still high (reaches 91.57).

Regarding the Indian Pines dataset, our model achieves significant performance
improvements of at least 1.3% and 1.1% regarding the OA and the kappa compared with
the models: HybridSN, CNN3D, and 3D_ Hypergamo, as shown in Table 8. Traditional
classifiers, such as RF and DT, achieved lower OA accuracy results (80.71 and 83.14), and
LSTM achieved the lowest accuracy (60.22), which may show that LSTM networks are
unsuitable for the image classification task. The CNN1D and CNN3D achieved high
results (OA:93.31, 95.57, AA: 96.44, 95.57, and Kappa: 92.31, 93.89). These two models took
advantage of rich information obtained by spectral features and spatial features and then
enhanced the accuracy results.
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In the Salinas dataset, DT shows the worst performance (OA: 79.24, AA: 66.54, and
Kappa: 71.36), and FT and Ada Boost performed better than the DT model. The non-deep-
learning-based approaches, i.e., SVM, KNN, and LSTM, obtained higher results. Moreover,
the proposed model outperformed the deep-learning-based approaches (CNN3D, Hy-
bridSN, and 3D_ Hypergamo) and achieved a high level of 95.48%, 93.87%, 99.3%, and
94.01% for OA, AA, and kappa, respectively.

Our model significantly enhanced OA, AA, and kappa by about 2.7% compared to the
second- and third-best models (HybridSN and 3D_Hypergamo) by the Botswana dataset.
The worst results are recorded by Ada Boost and LSTM, ranging from 76.44–78.54 of OA,
kappa, and AA. The remaining models achieved good results for the three metrics as well.

Regarding the KSC dataset, our model achieved the highest classification results on OA:
91.57 and kappa: 90.48, and the highest value of AA (86.45) was obtained by the CNN1D
model. As expected, again, deep-learning-based approaches, such as CNN3D, HybridSN,
and 3D_Hypergamo, obtained high accuracy results as these methods can effectively reduce
overfitting, and the used parameters can update well during the backpropagation process.

In addition to the results of quantitative classification, classification maps of different
classification models were investigated by data visualization. Figures 12–15 illustrate classi-
fication maps generated by performing the HSI classifiers on the Indian Pine, Salinas, KSC,
and Botswana datasets. The areas with different changes were marked using red triangles.

Figure 12. Classification maps of the real and synthetic Indian Pines dataset by classification models.

Figure 13. Classification maps of the real and synthetic Salinas dataset by classification models.

Regarding classification maps generated for Indian Pines, models with lower accuracy,
i.e., RF, DT, and LSTM, resulted in observed scatter points in the classification maps, such
as in Figure 12c,g,h.
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In the Salinas dataset, Figure 13c,f,g illustrated dark scatter points as a result of the
misclassification of a lot of points located at the center of land-cover areas by the classifiers,
such as RF, Adaboost, and DT.

Figure 14. Classification maps of the real and synthetic KSC dataset by classification models.

Figure 15. Classification maps of the real and synthetic Botswana dataset by classification models.

Figure 14 shows a comparation of classification maps across various classifiers per-
formed on the KSC dataset. Figure 15b,e, and color-changed scatter points in Figure 14h
show the effect of the misclassification of many points by MLP, Adaboost, and LSTM.

Similar results are also observed for the Botswana dataset, as shown in Figure 15. The
classification maps produced by our model are obviously better than those generated by
the other models.

The classification performance of the spatial–spectral-based classifiers can easily out-
perform other HSI models. CNN3D, HybridSN, and 3D_Hypergamo adopted deep net-
works to learn features, which resulted in smoother and higher-quality classification maps.
The classification maps generated by deep-learning-based models show far higher quality
compared to other methods.

By comparing the ground truth maps with classification maps, our model obtained
the highest accuracy results on almost all HSI datasets and achieved significant qualitative
enhancement compared to other maps as well. In addition, our model can also help to
enhance the uniformity of the land-cover areas as depicted in Figures 12–15.

The results prove that our model enhances the feature extraction and training processes
and obviously outperforms the other classifiers well.
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5.2. Training and Complexity Time with the Compared Models

Figure 16 shows the classification accuracy and loss comparisons for 100 epochs for
training and validation.

Figure 16. Accuracy and loss convergence versus epochs of three models.

As shown in Figure 16, our model performs convergence slower than the HybridSN
but faster than the 3D_Hypergamo. The proposed model converged at about 30 epochs,
whereas the HybridSN and 3D_Hypergamo converged at about 40. The HybridSN method
achieves faster results as its simple design of an internal network has three 3D CNN layers
and one 2D CNN layer. The 3D_Hypergamo model has a GAN-based network that needs
settings for a huge amount of hyperparameters, which slows the convergence. In our study,
our model adopted an autoencoder and GAN-based network, leading to an acceptable
convergence speed. Compared with the HybridSN model, our model required analysis
and learning more parameters, leading to slower convergence.

A comparison of the efficiency computation in terms of training and testing times of
our model along with HybridSN and 3D_ Hypergamo is listed in Table 9. Our proposed
model outperformed other models and needs less training time and testing time when
compared to models HybridSN and 3D_Hypergamo.

Table 9. Training in minutes and testing in seconds over the four datasets by the compared models.

Dataset
HybridSN 3D_Hypergamo Our Model

Training (mins) Testing (sec) Training (mins) Testing (sec) Training (mins) Testing (sec)

Indian Pines 2.3 2.1 2.6 2.1 2.2 1.8
Salinas 3.1 2.9 3.2 3.2 3.6 3.25

KSC 2.63 1.9 2.8 2.91 3.7 2.81
Botswana 3.1 2.9 3.34 2.5 2.7 2.18

Table 10 shows the spatial dimension’s impact on our model’s performance on the
four datasets. The 25 × 25 spatial dimensions obviously achieve better results and become
the most suitable for the proposed model.

Table 10. Comparison of the performance of our model with different spatial windows sizes.

Window Indian Pines (%) Salinas (%) KSC (%) Botswana (%)

19 × 19 95.32 95.82 95.38 95.89
21 × 21 96.87 96.19 96.73 97.83
23 × 23 97.92 97.45 96.66 97.38
25 × 25 98.22 99.11 99.62 99.78
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6. Discussion

By analyzing the results achieved by the experiments above, several conclusions are
drawn as follows.

Firstly, 1D CNN and 2D CNN-based networks can achieve better results in feature
extraction compared to other models, such as Ada Boost [47], LSTM [50], CNN1D [51],
HybridSN [25], and 3D_Hypergamo [39], as listed in Table 10. Our approach applied
1D convolutional networks and 2D convolutional networks to obtain the spatial and the
spectral features of HSI. Using 1D convolutional networks to properly extract rich spectral
features, the learning process becomes more effective and easier to implement. In addition,
PCA is utilized to decrease spectral dimensionality to a smaller size, reducing the time
consumed for learning features information. A larger spatial window size (25 × 25) is
used over a 2D convolutional network for extracting spatial features and obtaining rich
information attributed to HSI, then increase the classification accuracy as shown in Table 10.

Secondly, an autoencoder-GAN-based model was adopted to generate new sample
models and to rebalance image class samples. The autoencoder model was applied to
generate synthetic samples for each minority class in HSI datasets. An encoder and decoder
cell were dedicated to a specific minority class, and the generated samples can be validated
and modified using the discriminator network in the GAN network. Therefore, the samples
in the minority classes would be rebalanced, and the sample number could be the same as
the majority class, which leads to better results, as we can find in Table 10 and Figures 12–15.

Thirdly, deep-learning-based approaches, especially CNN-based approaches, achieved
higher classification accuracy results than traditional classifiers, such as MLP [44], RF [45],
SVM [46], Ada Boost [47], KNN [48], etc. This may be due to the deep networks applied
for the training and testing. Models, such as HybridSN [25] and 3D_ Hypergamo [39], and
our approach obtained the highest classification results. All these models designed deeper
CNN models for extracting features and then efficiently learning these features.

Finally, our model can achieve the highest value of classification accuracy on four
used datasets, visually producing cleaner image classification maps, as the mistaken pixel
number is remarkably reduced.

7. Conclusions

This study presents a hypered deep-learning-based HSI generation and classification
model for imbalanced data. The proposed model provides an oversampling approach for
solving class imbalance issues. Our model has three modules, namely, a feature extraction
module, a data-balancing module, and a classification module. In the feature extraction
module, spatial feature extraction begins with the principal components analysis method
to decrease the spatial domain dimensions. The PCA method is followed by a 2D CNN that
captures spatial features. Regarding spectral feature extraction, a 1D CNN was adopted
to extract HSI spatial features, and the process of two feature extractions was performed
synchronously. The two obtained features were fused into one spatial–spectral feature
vector for improving image generation and classification.

GAN and autoencoder deep learning models in the data-balancing module were
applied to produce synthetic images for balancing minority classes. Using the GAN
structure, an encoder cell and a decoder cell were constructed for each minority class to
generate and compensate new images, rebalance the samples, and increase the samples
number to be the same as in the related majority class. A 2D CNN-based classifier was
adopted to categorize the balanced, synthetic, and real samples.

The proposed model was validated using four open-access datasets. The results were
compared with existing outstanding HSI classifiers. The results of our model outperformed
the other classifiers in most cases. Moreover, the performance of our model is more suitable
for imbalanced sets. The classification maps visualized by our proposed model were more
suitable and smoother than those generated by other classifiers.
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Overall, the proposed oversampling approach on minority classes led our proposed
approach to extract more relevant features from various image classes, enhance the classifi-
cation results, and improve remote sensing applications.

In future work, we need to perform more efforts in the following promising research
fields. Firstly, besides developing oversampling techniques for HSI classification, there is
a need to consider undersampling techniques to tackle the imbalance of data issues for
HSI classification. Secondly, we need to study the classification problem in a large-scale
benchmark dataset and investigate the classification performance of the hyperspectral
images. The existing datasets may not be enough for studying the HSI classification issue.
Finally, image decompression is another research field that needs to be considered, as image
decompression can reduce the time needed for the classification task.
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