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Abstract: Precipitation is crucial for the hydrological cycle and is directly related to many ecological
processes. Historically, measurements of precipitation totals were made at weather stations, but
spatial and temporal coverage suffered due to the lack of a robust network of weather stations and
temporal gaps in observations. Several products have been proposed to identify the location of the
occurrence of precipitation and measure its intensity from different types of estimates, based on
alternative data sources, that have global (or quasi-global) coverage with long historical time series.
However, there are concerns about the accuracy of these estimates. The objective of this study is
to evaluate the accuracy of the ERA5 product for two ecoregions of the Canadian Prairies through
comparison with monthly means measured from 1981–2019 at ten weather stations (in-situ), as well
as to assess the intraseasonal variability of precipitation and identify dry and wet periods based on
the annual Standardized Precipitation Index (SPI) derived from ERA5. A significant relationship
between in-situ data and ERA5 data (with the R2 varying between 0.42 and 0.76) (p < 0.01)) was
observed in nine of the ten weather stations analyzed, with lower RMSE in the Mixed Ecoregion. The
Mean Absolute Percentage Error (MAPE) results showed greater agreement between the datasets in
May (average R value of 0.84 and an average MAPE value of 32.33%), while greater divergences were
observed in February (average R value of 0.57 and an average MAPE value of 50.40%). The analysis of
wet and dry periods, based on the SPI derived from ERA5, and the comparison with events associated
with the El Niño-Southern Oscillation (ENSO), showed that from the ERA5 data and the derivation
of the SPI it is possible to identify anomalies in temporal series with consistent patterns that can be
associated with historical events that have been highlighted in the literature. Therefore, our results
show that ERA5 data has potential to be an alternative for estimating precipitation in regions with few
in-situ stations or with gaps in the time series in the Canadian Prairies, especially at the beginning of
the growing season.

Keywords: precipitation; gridded data; observed data; hydrological cycle; ENSO

1. Introduction

Precipitation is a key input to the hydrological cycle and therefore directly affects
all ecological processes that occur on Earth’s surface. Given its importance, knowing
the location and intensity of precipitation is essential information in the spatio-temporal
assessment of this phenomenon [1–4]. Historically, precipitation is measured at surface
weather stations (in-situ), but in countries with a large territorial extension, such as Canada,
where the network of in-situ stations usually is not evenly distributed in the territory
and the historical information varies considerably, relying solely on in-situ data can be
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challenging [5–7]. It should also be considered that the implementation and maintenance
of weather stations means a substantial financial investment, which may be unfeasible in
some locations. To overcome such limitations, there are precipitation estimates that have
global (or quasi-global) coverage with long historical time series [8–10]. These estimates are
based on satellites that observe Earth’s surface, from algorithms that analyze the vertical
profile of the atmosphere [11,12] followed by the combination of satellite information with
information from in-situ stations [13], or through the interpolation and extrapolation of
historical data from different locations that establish spatial and temporal patterns. The
main limitation of the estimates is the reliability of the results since discrepancies between
estimated and measured data have already been observed [14]. It is also worth noting that
the discrepancies between estimated and observed data tend to be greater at high latitudes,
where low-intensity precipitation events (both for rain and snow) are more difficult to
be detected by sensors [15]. Finally, passive sensors may show greater deviations when
estimating precipitation in cold areas due to the characteristics of the ice that covers the
land for long periods of time [12].

By providing historical data systematically, precipitation products benefit several
climatological, hydrological, and environmental studies [8–10]. In the literature, various
precipitation products were used for statistical validation [16–18], to identify extreme
weather events [19–21], and to evaluate climatic variability [22,23]. It is worth mention-
ing that each precipitation product has specific characteristics, such as the coverage
area, time frame, and spatial resolution [8,9], as well as the use of several different
parameterization schemes [24]. Currently, there are several sources of precipitation
data that offer recent and historical gridded information at a range of spatial scales.
Global Precipitation Measurement (GPM) is one of the most widely used products, has
quasi-global scale, and uses hourly data collected by a set of satellites with a spatial
resolution of approximately 10 km [12]. GPM is a continuation of the Tropical Rainfall
Measuring Mission (TRMM), which operated between 1997 and 2015 on an quasi-global
scale with a spatial resolution of approximately 25 km [11]. There are also products
that combine satellite information, precipitation estimates, and information from in-situ
stations, such as the Climate Hazards Group of University of California (CHIRPS), which
has a spatial resolution of approximately 5 km [13,21]. Finally, there are products that
are obtained from the data interpolation, such as Daymet, which covers North America
(NA). Therefore, there are different methods for estimating current and historical precip-
itation in different locations around the globe in a simplified way for the end user, with
a standardized approach, and without the absence of data.

Unfortunately, in certain regions of Earth the availability of precipitation data is limited.
Estimates from GPM, TRMM, and CHIRPS do not cover high latitudes and exclude almost
the entire territory of countries located in high latitudes, such as Canada. Despite covering
all Canadian territory, Daymet’s data is restricted to NA, a fact that makes it impossible to
replicate the same methodology in other parts of the world. In this context of data limitation,
the ECMWF Reanalysis 5th Generation (ERA5), developed by the European Center for
Medium Range Weather Forecasts [25] and published by Copernicus Climate Change
Service, appears as an interesting dataset. This is because precipitation re-analysis data
with spatial resolution of approximately 9 km since 1979 has been globally available [26].
Unlike other reanalysis products, ERA5 has an important remote sensing component.
ERA5 uses as input several observations such as radiance, ozone, wind, temperature, soil
moisture, and humidity, which are collected by geostationary satellites, polar orbiting
satellites, ground-based radargauge, radiosondes, dropsonde, and others [27]. According
to [27] the number of daily observations in ERA5 increased 32 times (from 0.75 million
to 24 million) in a period of 40 years, with the radiation observations made by satellite
being largely responsible for the expressive increase in observations between 1979 and 2019,
which strongly contributes to the improvement of ERA5 model and its results compared to
its predecessors. Despite not being a primary source of data, ERA5 can be understood as a
hub of climate information from several sources that has models to estimate precipitation
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and other climate variables in a systematic way on a global scale and available to the public
free of charge. However, there are still divergences related to the accuracy in cases of
extreme precipitation. As is the case with [28], in which the authors concluded that ERA5
underestimates extreme events, while [29] observed several similarities between ERA5 and
historical data from in-situ weather stations.

A potential derivation of the ERA5 data is the calculation of the Standardized Precipi-
tation Index (SPI) [30], an index widely used for monitoring dry and wet periods, and for
the evaluation of severe droughts [21]. Studies like [31,32] derived the SPI from CHIRPS
time series to detect the occurrence of climatic extremes. This type of study is still rare in
Canada, especially in the Prairies region, an arid but extremely important region for the
country’s agricultural production [33]. We found SPI-based studies applied to Canadian
Prairies like [34,35], both in a national scale but without the use gridded data. To our
knowledge, no other studies were found that derived the SPI based on ERA5 data for the
Canadian Prairies to identify dry and wet periods.

Both the Mixed Ecoregion and the Moist-Mixed Ecoregion are regions located in the
Prairie Provinces of Alberta and Saskatchewan, where livestock and grain production are
fundamental to the local economy and as a source of food for the domestic and foreign
markets [36–38]. Therefore, both ecoregions are highly dependent on precipitation and are
considered regions susceptible to drought [36]. In this context, the objectives of this study
are: (i) to verify the accuracy of the ERA5 product for the Mixed Ecoregion and for the
Moist-Mixed Ecoregion; (ii) to assess the intraseasonal variability of precipitation from the
ERA5 data; and (iii) identify dry periods and wet periods based on the annual SPI derived
from ERA5.

2. Materials and Methods
2.1. Study Area

The study area comprises the Mixed Ecoregion and the Moist-Mixed Ecoregion, located
in the Prairie Provinces of Alberta (AB) and Saskatchewan (SK). The two ecoregions have
a total area of 233,595 km2 (Figure 1), with a predominant dry and cold climate [36]. In
the Mixed Ecoregion, the average winter and summer temperatures are −10 ◦C and 16 ◦C,
respectively, with an annual precipitation of approximately 300 mm [39]. The Moist-Mixed
Ecoregion tends to be less susceptible to long periods of drought than the Mixed Ecoregion,
with average winter and summer temperatures of −11 ◦C and 15.5 ◦C, respectively, with
an annual precipitation of 400 mm [36].
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2.2. Organization and Treatment of the Precipitation Time Series

Daily precipitation data was acquired from the Canadian government website (https://
climate.weather.gc.ca/historica_data (accessed on 1 March 2021)) which provides historical
weather information from more than 8800 weather stations across the country (most with
short or sporadic temporal coverage). In a first verification, 646 meteorological stations
were found in the study area. However, after filtering the consistency of the historical data
for each station, we found only ten stations with a sequence of data without gaps from 1981
to 2019. Therefore, for the present study, daily precipitation information from ten different
in-situ stations located in the study area was used (Table 1).

Table 1. Weather stations used to validate ERA5 data with Station ID, Latitude (◦), Longitude (◦),
Elevation (m), and Ecoregion.

Station Name Province Station ID Latitude (◦) Longitude (◦) Elevation (m) Ecoregion

Taber AB 2315 49.79 −112.12 811 Mixed
Beechy SK 3071 50.83 −107.31 660 Mixed

Rock Point SK 3142 51.15 −107.26 725 Mixed
Swift Current CDA SK 3157 50.27 −107.73 825 Mixed

Coronach SPC SK 3172 49.05 −105.48 756 Mixed
Queenstown AB 2295 50.61 −112.98 940 Moist-Mixed

Buffalo Pound Lake SK 2859 50.55 −105.38 588 Moist-Mixed
Last Mountain CS SK 2942 51.42 −105.25 497 Moist-Mixed

Scott CDA SK 3259 52.36 −108.83 660 Moist-Mixed
Outlook PFRA SK 3318 51.48 −107.05 541 Moist-Mixed

2.3. ERA5 Data

ERA5 is a global atmospheric reanalysis product developed by ECMWF using 4D-
Var data assimilation techniques in the 41r2 cycle [25]. In this study, the recent product
launched by ECMWF designated as ERA5 was used [24]. ERA5 has important changes
compared to ERA-Interim, including improved numerical models, such as the Cycle 41r2,
and data assimilation schemes, greater spatial and temporal resolution, assimilation of more
observations, and improved versions of observations from forcing data sets [41]. The longer
time series is extremely interesting for characterization studies of the climate of a region and
one of the biggest benefits over remote sensing products that have a shorter observation
history. ERA5 estimates for rain and snow are based on a wide range of satellite sensor and
ground-based observational inputs including column water vapor, relative humidity, cloud
liquid water, and precipitation [27]. These data can be extremely useful for obtaining more
accurate results in relation to measurements made only by satellites, as verified by [42]
in temperate regions of China, a region that presents similar characteristics to the area of
interest of this study.

For this study, the ERA5 pixels corresponding to the pairs of coordinates of each of the
weather stations, covering January 1981 through December 2019, were downloaded from
the JavaScript programming interface of the Google Earth Engine platform [43] via the
product “ee.ImageCollection” (“ECMWF/ERA5_LAND/MONTHLY”). Subsequently, the
monthly amounts were added for all the years evaluated and then the 39-year precipitation
data was reduced to the monthly average.

2.4. Standardized Precipitation Index (SPI)

To determine the SPI [30], the Gamma distribution was used and is defined in
Equation (1):

f (x) =
1

Γ(a)βa xa−1e−
x
β (1)

where: a > 0 (a) shape parameter (dimensionless); β > 0 (β) scale parameter (mm); x > 0 (x)

total precipitation (mm); and Γ (α) Gamma function = Γ(a) =
∞∫
0

xa−1e−xdx.

https://climate.weather.gc.ca/historica_data
https://climate.weather.gc.ca/historica_data
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All parameters and the gamma function were adjusted for the cumulative frequency
distribution for precipitation based on ECMWF Reanalysis v5 (ERA5) data on the annual
scale. We calculated the α and β parameters of gamma for each pixel referring to the
location of the weather stations on the annual scale. The maximum-likelihood method
was used for estimating the α and β [44,45]. Calculations of parameters α and β were
performed to find the cumulative probability of an observed precipitation event for the
adopted scale. The cumulative probability is given by Equation (2).

F(x) =
x∫

0

f (x)dx =
1

Γ(a)βa

x∫
0

xa−1e−
x
β dx (2)

The annual SPI values were classified into wet and dry periods, as used by [30],
according to Table 2.

Table 2. General SPI classification [30].

SPI Values Classification

>2.0 Extreme Wet
1.5 to 1.99 Severe Wet
1.0 to 1.49 Moderate Wet

0.99 to −0.99 Normal
−1.0 to −1.49 Moderate Drought
−1.5 to −1.99 Severe Drought

<=−2.0 Extreme Drought

2.5. Statistical Metrics

To compare the precipitation data from weather stations and ERA5, the coefficient
of determination (R2) was used to determine the level of data correlation, with greater R2

values indicating greater similarities between the datasets, the Root Mean Square Error
(RMSE, mm) was used to assess precision and accuracy, with lower RMSE values indicating
greater similarities between the datasets., and the Mean Bias Error (MBE, mm) was used
to identify the average bias in the prediction, with lower MBE values indicating greater
similarities between the datasets. Finally, the Mean Absolute Percentage Error (MAPE),
which is a time series analysis approach using the absolute Euclidean distance between
paired series, was used to identify at which station and when the greatest differences
and greatest similarities occurred, with lower MAPE values indicating greater similarities
between the datasets. The equations are listed below:

R2 = 1− ∑n
i=1
(∣∣Ei −Oi

∣∣)2

∑n
i=1
(∣∣Oi −Oi

∣∣) (3)

RMSE =

√
∑n

i=1(Oi − Ei)
2

n
(4)

where n = number of observations; Oi = i-th value of observed data and Ei = i-th value of
estimated data; and Oi = mean of the observed data.

MBE = 1/n
n

∑
i=1

(Pi −Oi) (5)

where Oi is the observation value and Pi is the forecast value.

MAPE =
100
n
∗

n

∑
i=1

|yi− yi|
yi

(6)
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where yi is the actual observations time series and |yi| is the estimated time series and n is
the number of non-missing data points.

3. Results
3.1. ERA5 Data Validation

The statistical analyses were based on the linear regression that compared the data
of the weather stations versus the ERA5 product (Table 3). To facilitate the comparison,
the tables were grouped by ecoregions, as shown in Table 1. In the Mixed Ecoregion
the R2 coefficient was higher for the Swift Current (0.75, p < 0.001), Rock Point (0.71,
p < 0.001)), and Beechy stations (0.70, p < 0.001). The Taber station presented R2 of 0.51
(p < 0.001) and, finally, the Coronach station had the weakest relationship, where R2

was 0.23 (p = 0.002). In the Moist-Mixed Ecoregion the strongest R2 relationships were
Outlook (0.75, p < 0.001), Queenstown (0.67, p < 0.001), Buffalo (0.53, p < 0.001), and
Scott (0.50, p < 0.001). The Last Mountain station obtained R2 of 0.41 (p < 0.001), the
weakest in this ecoregion. It is worth noting that the smallest RMSE were observed in
the Mixed Ecoregion (Rock Point = 82.90 mm and Taber = 93.67 mm), while the highest
RMSE values were in Coronach (188.51 mm) and Buffalo (203.85 mm), located in the
Mixed and in the Moist-Mixed Ecoregions, respectively. The MBE results were like the
RMSE, with the lowest values (greater proximity to in-situ observations) occurring in
Taber (MBE= 62.81 mm) and Rock Point (MBE = 63.12 mm), both located in the Mixed
Ecoregion. The highest MBE values were also in line with the RMSE results, especially
for Coronach (MBE = 159.49 mm) and Buffalo (MBE = 188.96 mm). The MBE showed that
the ERA5 overestimated the precipitation values in the ten analyzed locations.

Table 3. Linear regression between the observed data and ERA5-ECMWF (mm.yr-1) for the weather
stations located in the Mixed Ecoregion and in the Moist = Mixed Ecoregion.

Mixed Ecoregion Equation R2 Sig RMSE MBE

Beechy y = 0.8931x + 150.88 0.71 p < 0.001 122.63 111.43
Coronach y = 0.4107x + 359.21 0.23 p = 0.002 188.51 159.49

Rock Point y = 0.7525x + 163.71 0.71 p < 0.001 82.9 63.12
Swift Current y = 0.812x + 177.47 0.76 p < 0.001 119.28 109.50

Taber y = 0.6888x + 179.95 0.52 p < 0.001 93.67 62.81

Moist-Mixed
Ecoregion Equation R2 Sig RMSE MBE

Buffalo y = 0.7299x + 273.08 0.53 p < 0.001 203.85 188.96
Last Mountain y = 0.5643x + 274.82 0.42 p < 0.001 140.43 111.65

Outlook y = 0.8719x + 158.3 0.76 p < 0.001 122.67 113.71
Queenstown y = 0.7385x + 206.21 0.67 p < 0.001 109.71 99.32

Scott y = 0.5959x + 252.58 0.51 p < 0.001 123.59 107.99

3.2. Monthly Precipitation—Boxplots and the MAPE

The monthly precipitation boxplots from 1981 to 2019 are presented in Figures 2 and 3.
In the Mixed Ecoregion it was found that the rainy months were May, June (the wettest
of all), and July for both datasets (in-situ and ERA5). The months of April, August, and
September were months of transition in terms of precipitation amount. Finally, the driest
months were January, February, and December. The updated parameterizations of ERA5
were able to identify the outliers of precipitation in the study area in May and in transition
months such as August and September.



Remote Sens. 2022, 14, 6347 7 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 2. Boxplot of monthly precipitation (mm)—First the weather wtation (WS) data, followed by 
the ERA5-ECMWF (ERA) data (mm) in the Mixed Ecoregion for Beechy (a), Coronach (b), Rock 
Point (c), Swift Current (d), and Taber (e) in the period 1981–2019. The horizontal lines inside the 
boxes represent the median and the vertical lines at the top and bottom of the box represent the 
third and first quartiles, respectively. The ends of the vertical lines indicate the maximum (upper) 
and minimum (lower) values, and the isolated points show outliers. 

Figure 2. Boxplot of monthly precipitation (mm)—First the weather wtation (WS) data, followed
by the ERA5-ECMWF (ERA) data (mm) in the Mixed Ecoregion for Beechy (a), Coronach (b), Rock
Point (c), Swift Current (d), and Taber (e) in the period 1981–2019. The horizontal lines inside the
boxes represent the median and the vertical lines at the top and bottom of the box represent the third
and first quartiles, respectively. The ends of the vertical lines indicate the maximum (upper) and
minimum (lower) values, and the isolated points show outliers.
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Figure 3. Boxplot of monthly precipitation (mm)—First the weather station (WS) data, followed by
the ERA5-ECMWF (ERA) data (mm) in the Moist-Mixed Ecoregion for Buffalo (a), Last Mountain
(b), Outlook (c), Queenstown (d), and Scott (e) in the period 1981–2019. The horizontal lines inside
the boxes represent the median and the vertical lines at the top and bottom of the box represent the
third and first quartiles, respectively. The ends of the vertical lines indicate the maximum (upper)
and minimum (lower) values, and the isolated points show outliers.
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We identified that in the Mixed Ecoregion the month of June concentrated the
highest amounts of precipitation in both datasets (20.53% (WS) and 17.76% (ERA5) of the
average annual precipitation of the five analyzed stations). However, the second wettest
month showed divergences between the datasets. While the in-situ data indicated July
(14.21% vs. 12.82%) as the second wettest month, the ERA5 data indicated the month of
May (13.16% vs. 13.44% of the weather station). Regarding the dry months, there was
agreement between both datasets. February was the month with the lowest precipitation
with 3.00% (WS) and 3.23% (ERA5), followed by January with 4.09% (WS) and 4.33%
(ERA5), and by December 4.15% (WS) and 4.39% (ERA5). In the Mixed Ecoregion the
smallest differences between both datasets were observed during the dry period. In
the Moist-Mixed Ecoregion most of the precipitation was concentrated in June, with
19.61% (WS) and 17.63% (ERA5) of the annual average precipitation in the five locations
analyzed. Other months showed relevance during the wet period, such as July 16.58%
(WS) and 15.40% (ERA5), August 13.11% (WS) and 12.07 (ERA5), and May 12.68% (WS)
and 11.75% (ERA5). During the dry period the months that stood out the most were
February 2.38% (WS) and 3.05% (ERA5), January 3.28% (WS) and 4.04% (ERA5), and
December 3.31% (WS) and 3.87 (ERA5). Therefore, wet, and dry periods for both datasets
were similar in terms of monthly records. The only divergence was the month of January
which, from the in-situ data, was considered the second least rainy month and from the
ERA5 data it was the third least rainy month.

The MAPE results help to identify where (which station) and when (which month)
the two datasets had the greatest similarities and greatest divergences. In the Mixed
Ecoregion (Figure 4) the station that presented the greatest similarities between the
in-situ data was Rock Point, with the highest value of R (0.91) being observed in the
month of May and the lowest value of MAPE (23.50) being observed in the month of
June. On the other hand, the station that presented the biggest differences was Coronach.
It is worth noting that, in general, in the Mixed Ecoregion, the month that presented
the highest values of R and the lowest values of MAPE was May, while the month of
February was the opposite.
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Figure 4. Monthly correlation coefficients and MAPE results for stations located in the Mixed
Ecoregion and in the Moist-Mixed Ecoregion. Graphs (A,B) indicate, respectively, the monthly R
values between measurements made by weather stations and ERA5 estimates in the Mixed Ecoregion
and the Moist-Mixed Ecoregion. Graphs (C,D) indicate, respectively, the monthly MAPE values
between measurements made by weather stations and ERA5 estimates in the Mixed Ecoregion and
the Moist-Mixed Ecoregion.
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In the Moist-Mixed Ecoregion (Figure 4) the greatest similarities were observed in
Queenstown, especially in the month of December (R = 0.87) and May (MAPE = 24.70).
The biggest differences were observed at the Buffalo station. It is also worth noting that
excluding Coronach and Taber in the rest of the cases in the two ecoregions, the lowest
MAPE values were observed in June.

3.3. Monthly Maps—ERA5

Figure 5 shows the spatial distribution of precipitation in the Mixed Ecoregion and
in the Moist-Mixed Ecoregion in the period of 1981 to 2019. The highest precipitation
records occurred in the central and southeastern region (SE) of the Mixed Ecoregion and
in the eastern (E) and western (W) regions of the Moist-Mixed Ecoregion. On the other
hand, December (Figure 5L), January (Figure 5A), and February (Figure 4B) were the driest
months. It is also worth mentioning the transition months, such as May (Figure 5E) and
August (Figure 5H). In May, greater precipitation was observed in the central and SE
regions of the Mixed Ecoregion. In the Moist-Mixed Ecoregion, the wettest regions were
E and W. When comparing both ecoregions in the months of May and July, an opposite
spatial pattern is observed.

1 
 

 

Figure 5. Average monthly precipitation—ERA5-ECMWF (mm monthly−1) in the period 1981–2019.

3.4. SPI Derived from ERA5

In this section the SPI was derived from the ERA5 data for the detection of abnormal
events, especially those related to historical El Niño-Southern Oscillation (ENSO) events.
Figures 6 and 7 show the annual-SPI for the ten ERA5 pixels referring to the location of
the weather stations for the period 1981–2019. Different colours describe wet, normal,
and dry periods, according to the classification of the SPI (Table 2). For validation
purposes, the SPI/ERA5 results were compared with years of the occurrence of the
phases (El Niño and La Niña) in the climate variability mode of strong or very strong
intensity. As a reference, the Oceanic Niño Index (ONI) was used, which helps to identify
the El Niño events, responsible for causing a decrease in precipitation in the study
area and La Niña events, which contribute to the opposite effect [46]. For comparison,
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events were categorized as strong and very strong for El Niño and strong events for La
Niña between 1981 and 2019, according to the ONI index. El Niño’s strong years were
1987–1988 and 1991–1992 and the very strong years were 1982–1983, 1997–1998, and
2015–2016. The following years are associated with strong La Niña events: 1988–1989,
1998–1999, 1999–2000, 2007–2008, and 2010–2011.
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Figure 6. SPI derived from ERA5 data for the Mixed Ecoregion for Beechy (a), Coronach (b), Rock
Point (c), Swift Current (d), and Taber (e) in the period 1981–2019.

In this study, the detection of an ENSO event was made by observing at least one
month classified as moderate, severe, or extreme drought/wet. In the Mixed Ecoregion, no
evidence was observed associated with La Niña in 1988–1989 in Taber, moderate events
were detected (El Niño from 1982–1983 in Swift Current) and La Niña (1988–1989 in
Coronach) and the others were classified as severe. During the 1990s, the 1991–1992 El
Niño was classified as moderate in Beechy and the remaining ENSO events were classified
as severe. Finally, in the 2000s the El Niño events (2015–2016) in Coronach and Rock Point,
as well as the 2007–2008 La Niña in Taber were classified as moderate. The other events
indicated by the ONI index in the 2000s were classified as severe.
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Figure 7. SPI derived from ERA5 data for the Moist-Mixed Ecoregion for Buffalo (a), Last Mountain
(b), Outlook (c), Queenstown (d), and Scott (e) in the period 1981–2019.

In the Moist-Mixed Ecoregion, all El Niño events that occurred during the 1980s
and that were highlighted in the ONI index were detected by the SPI derived from
ERA5 data. However, different classifications of SPI were observed: in Scott (1982–1983)
the classification indicated moderate droughts and in the other cases SPI indicated
severe droughts. It is worth mentioning the months of January and February of 1987 in
Last Mountain, Outlook, and Scott where unusual droughts were observed. As in the
findings of [47–49], above normal precipitation was observed in the following summer
after El Niño events. Regarding the La Niña events (1988–1989), severe wet events
were observed in all locations. During the 1990s all ENSO events were detected by the
SPI and classified as severe. In the 2000s, again all ENSO events were detected, but
the 2015–2016 El Niño was classified as moderate in Last Mountain and Outlook, as
were, respectively, the 2007–2008 and 2010–2011 La Niña in Outlook and Queenstown.
The other detected events were classified as severe. Following the pattern suggested
previously, wetter summers were observed shortly after El Niño events during the
1990s and 2000s.

4. Discussion

This study sought to demonstrate whether ERA5 has the potential to fill gaps or
be used in regions of two ecoregions located in the Canadian Prairies with few mete-
orological stations or short time series. To quantify accuracy and precision between
in-situ and ERA5 data, we used four metrics: R2, RMSE, MBE, and MAPE. In this
context, other studies carried out comparative analyses and obtained similar results
(0.25 > R2 > 0.81), such as [50] who performed the validation of the GPM versus in-situ
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stations located in Southern Canada. However, the regression results were lower when
compared to studies carried out in tropical regions of the planet. Studies like [16,51],
obtained R2 > 0.74, when validating the CHIRPS data versus data from in-situ stations
in Brazil. Also in Brazil, [10] in an intercomparison study between data from the Global
Precipitation Climatology Center (GPCC) and in-situ data obtained R2 > 0.82. The
studies carried out in Cyprus by [52,53] also obtained R2 > 0.70, when comparing data
from in-situ stations versus data from CHIRPS and GPM, respectively. Although our
results, when compared to the results mentioned above, show lower coefficients of
determination, it should be noted that the climate in the Canadian Prairies has specific
characteristics, for example, the great distance from the coast, with no maritime effect in
any of the ecoregions (Figure 1), followed by the low variation of the altimetric gradient
(Figure 1 and Table 1), which implies precipitation events of low intensity [54–56] that
normally contribute to the increase in deviation in estimated data. Therefore, physio-
graphic factors have little influence on precipitation, being influenced by atmospheric
circulation, particularly low-pressure systems that are responsible for advected humid-
ity [51]. In this context, ERA5 was able to characterize the precipitation events in the
transition months (April, May, September, and October) and with reasonable results
for June and July in the study area (indicated by the MAPE values and by the monthly
maps), which makes sense due to the precipitation existing in the spring is the result of
atmospheric events of greater scale and that tend to cover a larger area, which would
contribute to a greater similarity of the results, while summer precipitation often occurs
as a result of the warming of the Earth’s surface, having a more local character and,
therefore, with greater spatial variability [57]. All these results combined show that
ERA5 has the potential to fill gaps in time series or as a primary data source in regions
with few weather stations.

Although the determination coefficients are not the highest observed in the litera-
ture, it must be considered that weather stations and ERA5 represent distinct forms of
data acquisition and spatial integration of a phenomenon that has high spatial variability.
It should also be considered that there may be biases in the data from weather stations,
such as technical problems with the equipment and the human factor in conventional
stations, especially in older observations, which affects the consistency of the time series
and increases the error in relation to the observations of ERA5. For example, at the
Buffalo weather station, the precipitation values collected during the winter, mainly in
February, are extremely low compared to the ERA5 observations and to the observa-
tions made by the other weather stations used in this study for the same period, which
suggests a local bias and not that the ERA5’s accuracy was so low. In this context, local
automated precipitation measurements are critical for regional scale rainfall and snow-
fall measurement and are often used for validation of precipitation rates estimated via
satellites (TRMM, PERSIANN-CDR, among others) or climate modeling (GPCC, CRU,
CHIRPS, among others). However, the precipitation measured at gauges is affected
by undercatch, which is generally greater for precipitation in the solid form due to
meteorological factors and/or flaws in their design to measure snowfall [15,58]. In the
literature there are different “gauge-undercatch” correction factors, for example, the
dynamic correction model (uses synoptic observation of variables, such as wind speed
at the edge of the gauge, air temperature, relative humidity and intensity and phase
of precipitation) and the fixed climatology approach [59], and the choice of correction
factor will impact the estimation of multiscale precipitation, mainly at high latitudes [60].
It is well known that gridded precipitation information is designed to produce a full
coverage product [61]. However, when comparing ERA5 data with the Global Historical
Climate Network (GHCN), both distance from shore and elevation difference affect
estimates in the USA, as well as in Canada [61]. ERA5 has less precipitation along the
coast than the GHCN observations and greater amounts observed inland. These results
and information reinforce the importance of data sources that are less susceptible to
possible variations in the quality of the observed data. Even so, it was possible to observe
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similar patterns and significant correlations between the two datasets, which makes
the ERA5 interesting for applications that require precipitation monitoring at a specific
time of year, such as forage insurance projects that are focused on the April through July
period, such as the Forage Rainfall Insurance Program in Saskatchewan.

We used boxplots (Figures 2 and 3) to compare monthly averages derived from ob-
servations made by weather stations and ERA5. In general, it was found that ERA5 had
higher total monthly precipitation, which could be related to its horizontal resolution
(grid spacing) due to the greater information capture power of a grid cell compared
to the punctual information captured by the weather station. Even though the hori-
zontal resolution was improved and with the changes in precipitation and convection
parameterization schemes when compared to the ERA-Interim, it is important to use
the results with caution, since precipitation varies greatly spatially and the results can
contain deviations [24]. Previously, the precipitation scheme was based on [62], being
updated with representation of Mixed-phase clouds [63], and prognostic variables for
precipitating rain and snow [64,65], while the convection scheme was based on [66],
with the large-scale entrainment and coupling process being updated based on the large
redistribution of precipitation from the Hadley cell to the Walker cell and, mainly, the
diurnal cycle [67,68]. The results of June as the wettest month for both Mixed Ecoregion
and Moist-Mixed Ecoregion corroborate the results obtained previously by [69,70], in
which they indicated that the Southern region of the Canadian Prairies is characterized
by greater records of precipitation in June due to the late-spring/early-summer position
of the polar jet stream. In addition, the increase in humidity in Canadian Prairies is due
to the humid air brought in from the Southern United States and the Gulf of Mexico [57].
Studies like [57,70], even without using gridded precipitation data, obtained similar
results, with a greater record of precipitation between May and July in other regions of
the Canadian Prairies. Therefore, the ERA5 data, in addition to presenting results signifi-
cantly correlated with in-situ data at some times of the year, showed some consistency
with results obtained in other studies in terms of identifying the months with the highest
amounts of precipitation.

Monthly maps are important to understand the spatial pattern of precipitation in
the two studied ecoregions. For example, we found that June (Figure 5F) stands out
for being the rainiest month in the two ecoregions, a similar result to those obtained
by [57,70,71]. We also found the regions that registered the lowest precipitation in May
showed the highest records in July, which is important for ecological dynamics, such
as the period of vegetation growth. This type of information is also relevant since both
ecoregions are considered arid and are agricultural production areas, so it is crucial to
rural producers to identify wetter periods [72]. Ref [57] state that although the growing
season of 1954 has one of the highest records of precipitation amount, the crop production
was approximately 30% below normal due to the lack of precipitation at the beginning
of the growing season. As a result, the production cycle was affected due to delays in
the planting, maturation, and harvesting of crops.

The Canadian Prairies are known to be a drought-susceptible region, particularly
in southwestern Saskatchewan and southeastern Alberta [34]. In this context, the
graphs derived from SPI/ERA5 help to identify extreme events during the period
1981–2019. In their study [57] concluded that droughts are caused by a stronger ridge
which blocks the flow of moisture-laden air from the west. Some drought events
were so remarkable, such as the period from 1999 to 2005, that they required specific
characterization studies [72,73]. According to the literature, the period 1999–2005, 2001
drew attention due to the expansion of the drought during the summer, with a peak
in the winter (including the beginning of 2002). Based on the results of this study, it
is possible to affirm that the SPI was able to detect several abnormal drought events,
including the period 1999–2005. Moreover, based on the analysis of the SPI/ERA5
graphs, it was possible to conclude that the ERA5 data were sensitive to drought events,
as observed in Buffalo, Outlook, and Scott. One of the hypotheses that can contribute to
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the extreme event detection capability of ERA5 data is the fact that a pixel integrates
information from a larger area than the area covered by a weather station. These results
are in line with the studies by [70,74].

5. Conclusions

This study performed multiple comparisons to identify whether ERA5 data is a reliable
source of precipitation information in cases of absence of weather stations or gaps in the
historical series. The study area is far from the coast and the topography is generally
flat, factors that contribute to the precipitation being highly dependent on atmospheric
circulation and high temperatures, which results in convective precipitation in the summer
months, as evidenced by data from the weather stations and ERA5.

The results of comparisons showed that ERA5 has the potential to be a source of data
in the Canadian Prairies in cases of gaps in the time series or few meteorological stations in
the studied area, since nine cases of significant relationship (with the R2 varying between
0.42 and 0.76) at the 99% probability level (p < 0.01) between ERA5 and weather stations
data, as well as the results presented by MAPE in which the month of May had the biggest
agreement between both datasets and the month of February with the biggest divergences
in the two studied ecoregions. However, it is noteworthy that, even with the update of the
precipitation and convection parameterizations, the ERA5 data overestimated the monthly
records in the two ecoregions analyzed, which can be a limiting factor for studies that
require greater accuracy of the results, such as precision agriculture. The SPI/ERA5 data
was able to detect wet periods and highlight dry periods due to the spatial coverage of
ERA5 product. Also, a general agreement between SPI/ERA5 and the ENSO events during
the period analyzed was found.
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