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Abstract: Ultra-wideband (UWB) time-of-flight (TOF)-based ranging information in a non-line-of-
sight (NLOS) environment can display significant forward errors, which directly affect positioning
performance. NLOS has been a major factor limiting the improvement of UWB positioning accuracy
and its application in complex scenarios. Therefore, in order to weaken the influence of the indoor
complex environment on the NLOS environment of UWB and to further improve the performance
of positioning, in this paper, we first analyze the factors and characteristics of NLOS formation in
an indoor environment. The NLOS is divided into fixed NLOS influenced by spatial structure and
dynamic random NLOS influenced by human occlusion. Then, the anchor LOS/NLOS information
map is established by making full use of indoor spatial a priori information. On this basis, a robust
adaptive extended Kalman filtering algorithm based on the anchor LOS/NLOS information map is
designed, which is not only effectively able to exclude the influence of spatial NLOS, but can also
optimize the random error. The proposed algorithm was validated in different experimental scenarios.
The experimental results show that the positioning accuracy is better than 0.32 m in complex indoor
NLOS environments.

Keywords: UWB; NLOS; map-aided; adaptive filter; indoor positioning

1. Introduction

With the advancement of technology and the demand for location-based services
(LBS), positioning technology has made a qualitative leap in terms of technology, posi-
tioning accuracy, and availability. In the outdoors, the global navigation satellite system
(GNSS) has achieved great success in positioning in open outdoor areas and has largely
met the demand for location-based services in outdoor scenarios through a variety of
complementary technologies [1]. However, in an indoor environment, where the majority
of human daily activities take place [2], GNSS signals are severely attenuated due to spatial
occlusion, making it impossible for GNSS to provide continuous and reliable positioning,
especially in deeper inner areas where a GNSS signal may be completely blocked [3].
Therefore, a positioning technology that is suitable for inner environments has been the
focus of widespread research, and thanks to the continuous development and popularity of
electronic manufacturing processes and communication technologies, a variety of methods
and techniques for indoor positioning have emerged [4–10]. Compared with other radio
frequency (RF) positioning technologies, UWB is the preferred solution for high accuracy
indoor positioning due to its nanosecond non-sinusoidal narrow pulse characteristics and
high-speed data transmission, which can achieve centimeter-level ranging accuracy, as well
as its penetration, low power consumption and strong anti-interference capabilities [11].
However, in the face of complex spatial structures and variable spatial environments, UWB
and other RF signals are subject to NLOS, multipath effects and other factors, which increase
the signal flight time and can lead to serious errors in the ranging values, directly affecting
UWB positioning accuracy. Many scholars have provided their insights on the research of
NLOS error suppression. Chen investigated the adaptive mitigation through the use and

Remote Sens. 2022, 14, 6338. https://doi.org/10.3390/rs14246338 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14246338
https://doi.org/10.3390/rs14246338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7450-5317
https://doi.org/10.3390/rs14246338
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14246338?type=check_update&version=2


Remote Sens. 2022, 14, 6338 2 of 27

optimization of machine learning models, including deep neural networks (DNN), convo-
lutional neural networks (CNN) and long short-term memory (LSTM). Using the proposed
circularly polarized antenna combined with the optimized LSTM model, a three-anchor
UWB system for autonomous vehicle localization in severe NLOS environments was built
for a 45 m2 area [12], where Li proposed a factor graph-based UWB localization algorithm
based on improved Turkey robust kernel. For UWB data, which are generally larger than
their true value due to barriers, a robust kernel was added to the simple large ranging data
and the square of the residuals was used as the objective function for optimization [13].
Cao proposed a new localization strategy combining calibration, a variational Bayesian
unscented Kalman filter (VBUKF), total least squares (TLS) and a water cycle algorithm
(WCA) in order to improve the localization accuracy of UWB localization systems in com-
plex subsurface environments [14]. Liu proposed a method for tracking errors of variables
such as position, velocity and orientation using a complementary Kalman filter (CKF) to
fuse and filter UWB and IMU (inertial measurement unit) data [15].

In general, improving the positioning accuracy of the system by efficiently identify-
ing and eliminating NLOS errors has been the focus of research, but the use of a priori
information on the structure of interior spaces is still lacking. Aiming at complex structure
in interior spaces and the interference of random human flow in the environment, in this
paper, a localization method with antidifference adaptive extended Kalman filtering based
on the anchor LOS/NLOS information map is proposed. The main contributions of our
research are as follows:

• Firstly, the main characteristics of NLOS in an indoor environment are analyzed. The
NLOS is divided into static NLOS influenced by spatial structure and dynamic NLOS
generated by the random occlusion of the human body.

• Secondly, using the indoor spatial structure relationship and combining it with the de-
ployment location of anchors, we can quickly and easily establish anchor LOS/NLOS
information mapping and accurately distinguish LOS/NLOS anchors.

• Finally, the established LOS/NLOS information map anchors are combined with
adaptive antidifference filtering to perform the online preferential positioning of
anchors and measure the degree of anomalies of measured values. Furthermore, an
adaptive extended Kalman filtering algorithm based on an LOS/NLOS information
map is designed and the system performance is verified.

The remainder of this paper is organized as follows: Section 2.1 analyzes the ranging
error characteristics of UWB in different NLOS environments and proposes a solution.
Section 2.2 designs the method for the fast establishment of an LOS/NLOS information
map for indoor anchors. Section 2.3 describes the localization solution algorithm for
UWB. Additionally, Section 2.3.3 depicts the design of a localization algorithm based
on the anchor LOS/NLOS information map to solve the NLOS occlusion effect of indoor
building structures. The improved algorithm that can optimize both spatial NLOS occlusion
effects and dynamic human occlusion effects is described in detail in Section 2.3.4. The
detailed experimental setup and discussions are reported and analyzed in Section 3. Finally,
Section 4 summarizes the work by drawing several conclusions and provides an outlook
for future research.

2. Methodology
2.1. NLOS Effect Analysis of UWB Ranging

The ranging accuracy of UWB depends mainly on the accuracy of the signal time of
flight (TOF). In an LOS environment, since there is no occlusion between the transceiver
devices, the direct signal has the shortest distance and requires the least energy attenuation
compared to the multipath signal, and the UWB has high ranging accuracy due to its own
nanosecond narrow pulse characteristics. In an NLOS situation, the signal propagation
path is more complex, as shown in Figure 1 for the anchor (Anc 1), and the direct path is
blocked by spatial obstacles; the signal propagation path changes to transmission, reflection
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and diffraction, and the change of propagation medium or path causes the TOF ranging
values to generate different degrees of positive errors [16].
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Figure 1. Schematic diagram of LOS and NLOS propagation of UWB signals.

The numerous NLOS situations that affect UWB ranging signals can be divided into
two main categories based on their characteristics: one is the effect of complex indoor
building structures and the other is the effect of dynamic random occlusion. Common
building structures in general include concrete walls, columns, doors and glass. Similar to
walls, wooden doors and glass, which have limited thickness, UWB is relatively easy to
transmit and the ranging error is relatively stable, and in this case, the method of modeling
the propagation error is generally used to optimize the ranging error [17]. However, the
columns, which play a load-bearing role in the building structure, are generally made
of steel and concrete and are large in size. The NLOS propagation signal caused by this
scenario is very complex and affects UWB ranging not only in a wide range but also with
unstable error variations [12]. Therefore, error modeling with fixed features is no longer an
effective solution and eliminating affected ranging information in the case of redundant
ranging anchors will help improve localization accuracy. The most common dynamic
random NLOS is human occlusion; for example, pedestrians passing through places such
as stations and shopping malls can occlude the ranging signal. This NLOS has random,
short times and low impact characteristics [2], so the targeted design of an adaptive robust
filtering algorithm will be an effective solution.

2.2. Indoor UWB Anchor LOS/NLOS Information Map Establishment

It is well known that indoor areas comprise complex spatial structures, but in this work,
by examining these structural relationships deeply and using the information of the various
features, the extreme helpfulness of carrying out positioning in the unique complexity of an
indoor environment will be demonstrated. The spatial geometry, semantics, feature points
and other information contained in the spatial model can be used to guide and modify
the positioning effect in the indoor positioning process [18–20]; therefore, the use of this
method has also become an effective method to improve positioning results. Currently, the
most common ways of using spatial information are map matching (MM) algorithms and
map aiding (MA) algorithms. Map matching algorithms project the user’s location onto a
map and match the movement trajectory to the features on the map, thus reducing the error
in location estimation [21]. The map-aiding algorithm uses the structural information in
the map as constraints—for example, users cannot pass through walls, partitions, obstacles,
etc.—and then it corrects the loss in the navigation results and improves the accuracy
of the navigation solution [22]. Attia Mohanmed and Adel Moussa et al. used the map
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structure to correct the heading information of a gyroscope and improved its accuracy [23].
Klepal and Beauregard proposed the “through-the-wall” method to assist in localization
solutions, which takes advantage of the specific constraint that pedestrians cannot pass
through obstacles, such as walls and partitions, while walking, and thus corrected the
localization information [24]. Zhu researched an adaptive UWB positioning error map
construction method, using the idea of fingerprint positioning to range UWB on spatial
grid points, classifying the size of spatial grid points in a hierarchical manner according to
the distribution of error values and further establishing an error model of a non-uniform
positioning error grid to correct the positioning effect [25]. Wang used a map line segment-
matching algorithm for the NLOS identification of UWB signals based on the spatial
relationship between the anchor and the tag, observed the change in the range value
and adjusted the observed value by setting a threshold. The method uses the idea of an
antidifference algorithm to improve the localization effect, but the construction of spatial
information is more cumbersome and not fully utilized [26]. Based on the literature [25], Liu
proposed and implemented an indoor positioning system (IPS) based on a digital twin with
UWB signals. Based on the constructed digital twin, the optimal anchor layout, adaptive
error map construction, and positioning error mitigation are achieved [27]. Though the
study does not take into account the instability of NLOS errors, the strategy in using
the new technology for building a map quickly is worth studying. Obviously, a priori
information can be obtained by creating a map with appropriate guidance information and
helps to achieve project objectives.

Obtaining a priori information, such as an LOS/NLOS information map of UWB
anchors, in positioning scenarios with good redundancy in the deployment of anchors
in the positioning environment allows the NLOS ranging errors due to the fixed spatial
structure in the room to be effectively excluded.

This paper makes full use of the a priori information of indoor spatial structure
features and anchor deployment locations. The ray-tracing method is used to quickly
and conveniently distinguish the NLOS areas of UWB anchors and further establish the
LOS/NLOS information map of anchors. The LOS/NLOS information map is used in the
localization solution to accurately select all LOS anchors at the tag location and eliminate
the ranging information of NLOS anchors, thus improving the localization accuracy.

Today, with the promotion and application of LiDAR equipment, the collection and
map building of indoor environments have become fast and accurate. In this paper, as
shown in Figure 2a, in a typical indoor office scene of 812 m2 with a complex spatial
structure, a LiDAR backpack device fusing a 16-line velodyne LiDAR and panoramic
camera, as shown in Figure 2b, was selected for fast information collection, with the
collection process taking about 1 min. Excluding the movable objects in the scene, such
as chairs and cartons, the modeling software was able to quickly generate a simple two-
dimensional plan of the fixed structure of the experimental site. As shown in Figure 2d,
the black rectangle is the load-bearing column of the building with a minimum side length
of 76 cm. The modeling error is between 3–5 cm when using a laser rangefinder with a
ranging accuracy of ±2 mm for calibration.

The LOS/NLOS of the anchor is determined by whether the line connecting the
positioning tag to the anchor intersects with the spatial structure of the obstacle. If there is
an intersection, the tag is blocked during the ranging process and the location of the tag
relative to the anchor is NLOS; otherwise, it is LOS.
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Figure 2. Experimental scene information collection and map building. (a) Experimental site; (b)
LiDAR backpack; (c) local features of the site; and (d) site plan.

Taking a small square grid with a side length of 0.5 m in the scene area as an example,
with each vertex of the square used as the location where the positioning tag is located
(hereafter referred to as grid points), then the LOS/NLOS situation of the anchors must be
analyzed. As shown in Figure 3, the grey squares are 0.5 × 0.5 m grids, A0 is where the
anchor is located and the black squares Z0 and Z1 are the square columns at the site. Taking
Z1 as an example, Z00, Z01, Z02 and Z03 are the corner angles of the square column. The
two-dimensional equations of the four edges of the columns, i.e., Z00Z01, Z01Z02, Z02Z03
and Z03Z00, can be calculated by bringing in the coordinates of the angles of the column.
Taking edge Z00Z01 as an example, the equation of the line for this edge is expressed as:

y− yz00

yz01 − yz00

=
x− xz00

xz01 − xz00

{
x ∈ (xz00 , xz01)
y ∈ (yz00 , yz01)

(1)

In the expression, (xz00 , yz00) is the two-dimensional coordinate of point Z00 and
(xz01 , yz01) is the two-dimensional coordinate of point Z01.Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 28 
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D1–D13 in Figure 3 are example grid points, and the equation for the line from the
anchor to the grid point is expressed as:

y− yDi

yA0 − yDi

=
x− xDi

xA0 − xDi

{
x ∈

(
xA0, xDi

)
y ∈

(
yA0, xyDi

) (2)

where (xA0, yA0) is the two-dimensional coordinate of point A0 and
(
xDi , yDi

)
is the two-

dimensional coordinate of point Di.
This paper can determine whether the grid point is an LOS point of anchor by cal-

culating whether Equations (1) and (2) intersect. It can be seen clearly from Figure 3 that
the line from D1–D9 to the anchor A0 does not intersect the column boundary, so D1–D9 is
the LOS point for anchor A0, and the description value of the LOS of anchor is defined as
“1”. Whereas the line between D10–D13 and the anchor A0 intersects the column boundary,
D10–D13 are NLOS points for anchor A0, defining the description value of the NLOS of
anchor as “0”. In the same way, the other anchor in the space is traversed to obtain in-
formation on the situation of the anchors deployed at the spatial grid points. Each grid
point contains information in the form of a matrix of 1 row and n columns with the value
“0” or “1”, n being the number of anchors deployed in the environment. Finally, the map
information database of LOS/NLOS of anchor will be generated.

2.3. UWB Positioning Solution Algorithm
2.3.1. Extended Kalman Filter

The Kalman filter (KF) uses the minimum mean square error as the best criterion
for estimation, provided that the system is considered linear and that the system and
the measurement noise are assumed to obey a Gaussian distribution in the filtering
process [28,29]. In practice, almost all systems are nonlinear, and the best approach to
this problem is to linearize the nonlinear function around the mean value of the current
estimated state. The extended Kalman filter (EKF) linearizes the nonlinear system locally
and is suitable for weakly nonlinear systems. The core idea is to perform a first-order
Taylor expansion of the nonlinear function at the filter value and then apply the KF to
complete the solution on this basis. EKF is widely used because of its simplicity, speed and
robustness [30]. The localization solution for the EKF can be found in the literature [31].

2.3.2. Adaptive Robust Kalman Filter

In indoor space activities, the trajectories of pedestrians will inevitably intersect. When
pedestrians approach, the body obscuring the RF range will cause sudden transient changes
in the measured value, which is generally random and of short duration. To address this
problem, an adaptive robust extended Kalman filter (AREKF) algorithm is proposed in this
paper to design a robust factor to identify and weaken the effects of range anomalies, while
estimating and correcting the system noise in real time, which can effectively attenuate the
effects of errors caused by random NLOS and improve the positioning accuracy and the
robustness of the positioning effect.

The key technique of AREKF is to construct the observation weight matrix and rea-
sonable adaptive factors so that the observation information, state information and their
components can be effectively balanced for the optimization of state parameter valuation.

The expression for the innovation Vk in the EKF is shown in Equation (3):

Vk = zk − h(xk,k−1) (3)

Starting from the definition of the estimation error covariance, the theoretical expres-
sion of the innovation covariance matrix is:

PZ
k = E

[
VkVT

k

]
(4)
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PZ
k is the calculation of the current measured value and state estimation value, which

reflects the real situation of the current measured value.
Meanwhile, the innovation covariance obtained from the algorithm recursive calcula-

tion can be expressed as:
Pc

k = HkPk,k−1HT
k + Rk (5)

The adaptive factor sk, according to the difference between PZ
k and Pc

k , is defined as:

sk =
diag

(
PZ

k
)

diag
(

Pc
k
) (6)

Using the adaptive factor sk to adjust the measurement noise of the system, the
adjusted expression for R̃k is:

R̃k =


1 sk ≤ k0

sk
k0
×
[

k1−k0
k1−sj

]2
k0 ≤ sk ≤ k1

+∞ sk ≥ k1

(7)

where k0 and k1 are robust parameters. We choose students of different heights and genders
to conduct random occlusion tests on the ranging signals, and the optimization is best
when k0 is taken as 2.5–3.5 and k1 is taken as 3.5–4.5 by the solution.

The filtering gain K̃k of AREKF is thus expressed as:

K̃k = Pk,k−1Hk

(
HkPk,k−1HT

k + R̃k

)−1
(8)

Bringing (8) into the EKF state update estimation and posterior estimation covariance
matrix equations to perform state estimation and error covariance matrix updates. Thus, the
robust estimation effect of the UWB distance model is achieved in order to further realize
the robust performance of the filtering and improve the accuracy of the filtering solution.

2.3.3. Positioning Algorithm Based on Anchor LOS/NLOS Information Map

The obstruction of ranging signals by indoor spatial structures can seriously affect
the accuracy of ranging, and if the NLOS ranging values are brought into the positioning
algorithm, the solution can seriously deviate from the true values. The anchor LOS/NLOS
information map is constructed to describe the LOS relationship between the location of
the positioning tag and the positioning anchor in the region, from which it is possible to
visualize which anchors are not affected by the spatial structure. Therefore, under the
premise that the number of anchors can complete the localization solution, the accuracy
of the localization solution is effectively improved by excluding the NLOS anchor range
values and using only the LOS range values for the solution.

The process of the EKF algorithm based on the anchor LOS/NLOS information map
(Map-EKF) is as follows: Firstly, obtain the initial position point or the estimated position
for the current moment from the previous moment in the positioning process (hereafter
referred to as the estimated point). Next, set the radius value, using the estimated point as
the center of the circle, and circle the area adjacent to the estimated point. Then, extract
grid point information in the LOS/NLOS information map for the adjacent area. Then,
aggregate the LOS/NLOS of the anchors corresponding to the grid points in the region. The
anchors are then selected based on the aggregation, and the range values of the LOS anchors
are brought into the observation equation in the EKF, while the filter gain is constrained
using the LOS/NLOS aggregation of the anchors. The EKF update process is used to
correct the estimated values and obtain the final filtering results. The block diagram of the
algorithm is shown in Figure 4.
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Figure 4. Block diagram of Map-EKF.

Taking the 0.5 × 0.5 m grid map building as an example, since the results of indoor
positioning do not coincide with the collection point on the map every time, the nearest
neighbor method is used. The anchor LOS/NLOS of the grid points within a certain range
of the initial positioning point or the filtered estimated position point are then found. Based
on the calculation results, the LOS anchors are selected and then the localization solution is
performed to correct the previously estimated positions.

The grid on the anchor LOS/NLOS information map is a square with side length of
0.5 m and its diagonal length is about 0.707 m. Therefore, in the nearest neighbor fusion
scheme, a circle is drawn with a radius of 0.71 m with the estimated point as the center,
and the grid points contained in the circle are selected as the nearest neighbor points of
the estimated point. As shown in Figure 5, the blue points are map grid points and the
red points are localization position estimation points when the estimation points overlap
with any grid point, as shown in Figure 5a, containing nine nearest neighbor points at this
time, which is the situation that covers the maximum number of nearest neighbors. When
the estimated point is located at the center point of the square grid, as shown in Figure 5b,
it contains four nearest neighbors at this time, which is the situation that covers the least
number of nearest neighbors. It can be seen that when using a circle with a radius of 0.71 m
to set the nearest neighbor region, the interval of the number of nearest neighbor points n
can be obtained as n ∈ [4, 9].
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Figure 5. Location estimation point proximity area selection range. (a) Situation 1 and (b) Situation 2.

Since the maximum number of nearest neighbor points is nine, A is set as a matrix
with m rows and nine columns, where the number of rows m indicates the number of
anchors built in the positioning space and the elements of the matrix consist of two values
of “0” or “1”. For example, if a total of 8 anchors are built in space, the value of m is
taken as “8” and, assuming that the proximity of the estimated location contains 4 grid
points, the grid points in the anchor LOS/NLOS information map are taken as shown in
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Table 1 and the value of A is taken as shown in Equation (9), in which the columns with 1–4
points are the LOS and NLOS values of the 8 anchors corresponding to the 4 grid points,
because there are not enough columns, so the columns with 5–9 points are all supplemented
with “1” values. Similarly, when m < 9, all 9-m columns in A are supplemented with “1”
values. Assuming that the proximity range of the location estimation position contains
nine grid points, the grid points are shown in the anchor LOS/NLOS information map as
demonstrated in Table 2 and the value of A is taken as shown in Equation (10). It can be
seen that the actual number of LOS anchors obtained should be less than or equal to that in
real-world conditions because the LOS/NLOS situation of the anchors in a certain range
around the estimated point is found and the solution achieved.

A =



0 0 0
1 1 1
0 0 0

0 1 1
1 1 1
0 1 1

1 1 1
1 1 1
1 1 1

1 1 1
0 0 1
0 0 0

0 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1


(9)

A =



1 1 1
0 0 0
1 1 1

1 1 1
0 1 0
1 1 1

1 1 1
1 1 0
1 1 1

1 1 1
0 0 1
1 1 1

1 1 1
1 1 0
1 1 1

1 1 1
1 0 0
1 1 1

1 1 1
0 0 0

1 1 1
0 0 0

1 1 1
0 0 0


(10)

Table 1. Example of values for locating the estimated point proximity area containing four grid points.

Grid Point A0 A1 A2 A3 A4 A5 A6 A7

D1 0 1 0 1 0 0 1 1
D2 0 1 0 1 0 0 1 1
D3 0 1 0 1 1 0 1 1
D4 0 1 0 0 1 1 1 1

Table 2. Example of values for locating the estimated point proximity area containing nine grid points.

Grid Point A0 A1 A2 A3 A4 A5 A6 A7

D1 1 0 1 1 0 1 1 0
D2 1 0 1 1 0 1 1 0
D3 1 0 1 1 1 1 1 0
D4 1 0 1 1 1 1 1 0
D5 1 1 1 1 1 1 1 0
D6 1 0 1 1 0 1 1 0
D7 1 1 1 1 1 1 1 0
D8 1 1 1 1 0 1 1 0
D9 1 0 1 1 0 1 1 0

Let NL be a matrix of m rows and one column, indicating the LOS/NLOS of the
anchor obtained based on the grid point information of the nearest neighbor area of the
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estimated location point. The value of each row in NL is the result and operation of the
row elements in A matrix; taking Equation (10) as an example, the value of NL is:

NL =
[
1 0 1 1 0 1 1 0

]T (11)

According to the Equation (11), the anchor correlation indicates that the location
estimation point is the LOS anchor for anchors A0, A2, A3, A5 and A6, while A1, A4 and
A7 are NLOS anchors.

In the EKF process, the NL value is used to modify the filter gain K value to select the
positioning anchors. Taking Equation (11) as an example, the ranging information of three
anchors A1, A4 and A7, is discarded and the ranging values of anchors A0, A2, A3, A5 and
A6 are selected to solve the positioning algorithm, so that the interference of NLOS can be
excluded to improve the positioning solution accuracy.

2.3.4. Robust Adaptive EKF Algorithm Based on Anchor LOS/NLOS Information Maps

The algorithm based on the anchor LOS/NLOS information map can effectively
eliminate the impact of the errors of the NLOS measurements of the anchor caused by the
indoor spatial structure. The use of the robust adaptive algorithm can effectively solve the
problem of random NLOS errors caused by the blocking of RF signals by pedestrians in the
surrounding environment. Therefore, these two methods are combined to design the robust
adaptive EKF algorithm based on the anchor LOS/NLOS information map (Map-AREKF),
which makes full use of the a priori information of the physical space and the idea of robust
filtering, so that the effects of fixed NLOS spatial errors and dynamic random NLOS human
errors in the positioning process can be attenuated. The software flow of the algorithm is
shown in Algorithm 1.

Algorithm 1. Adaptive EKF Algorithm Code Based on Anc LOS/NLOS Information Map

1 Initialization parameters (T,M,Q,R,F,P0)
2 Acquire starting position (x0,y0,z0) or initial positioning

(
xk−1,yk−1,zk−1

)
3 Import anchor LOS/NLOS information map
4 for t = 1:M
5 for k = 1:len
6 Set the radius of adjacent area r = 0.71
7 Get the grid points contained in the adjacent area
8 Import the anchor LOS/NLOS data near the initial positioning point NL
9 end for
10 xk,k−1=f

(
xk−1,k−1,uk

)
11 Pk,k−1=FkPk−1,k−1FT

k+Qk
12 Vk=zk−h

(
xk,k−1

)
13 PZ

k =E
[
VkVT

k
]
; Pc

k=HkPk,k−1HT
k+Rk

14 sk=diag
(
PZ

k
)
/diag

(
Pc

k
)

15 Use self-adaption factor sk to adjust the measurement noise
~
Rk of the system

16 ~
Kk=Pk,k−1Hk

(
HkPk,k−1HT

k+
~
Rk

)−1

17 Modify
~
Kk according to MI to obtain K’

k
18 xk,k=xk,k−1+K’

k
(
zk−h

(
xk,k−1

))
19 Pk,k=(I−KkHk)Pk,k−1
20 end for

3. Experiments and Discussions

This section chooses two different indoor complex environments with different char-
acteristics as experimental sites and conducts two types of experiments, one type without
pedestrian random interference and the other with pedestrian random interference, at each
experimental site. The algorithm proposed in Section 2.3.4 of this paper is compared with
the conventional algorithm and the robust EKF algorithm (REKF) designed in the study [31]
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in order to verify the efficiency of the algorithm proposed in this paper in complex indoor
NLOS scenarios.

3.1. Experimental Scheme and Error Statistics Method
3.1.1. Experimental Design

Experimental Site 1 shows an indoor environment, as shown in Figure 6a, with
Figure 6b as the view from above. The anchors are located as red dots A0–A7 in the
figure, the black squares are seven columns in the space and the presence of the columns
has a severe NLOS impact on the positioning anchor. The experimental site has typical
features of underground parking lots, subway stations and other such environments and
is highly representative. The walking route in the experiment is shown in Figure 6b as a
red dashed line, starting from the d1 position point, passing through points d2–d10 and
finally ending at point d6. The whole route contains 10 straight lines and 9 right-angle
bends, forming a closed circuit, and the total length is 71.5 m.
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Figure 6. Experimental Site 1 environment and experimental route. (a) Site environment and (b) site
plan and experimental path.

Experimental Site 2 is the indoor environment shown in Figure 7a, with Figure 7b
as the view from above. This scene is a typical indoor office environment. In addition to
columns, it also has office desks, iron cabinets, refrigerators, printers, wooden cabinets and
other facilities. The scenario is very complex, which is more likely to cause the multipath
effect of signals. The anchors are located as shown by the red dots A0–A5 in the figure and
the walking route in the experiment is shown in Figure 7b as a red dashed line, starting
from the d1 position point and ending at point d9. The whole route contains 9 straight lines
and 7 right-angle bends and the total length is 71.5 m.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 28 
 

 

  
(a) (b) 

Figure 7. Experimental Site 2 environment and experimental route. (a) Site environment and (b) site 

plan and experimental path. 

Two experimental schemes were designed for this scenario. The first one is without 

random pedestrian interference. During the experiment, the experimenter pushes the 

trolley forward by hand while bending down. The purpose is to avoid NLOS interference 

caused by the experimenter’s body on the ranging, and the experiment aims to consider 

only the effect of spatial NLOS on localization. The second experimental scheme involves 

random pedestrian interference. Unlike Experimental Scheme 1, in this experiment, 

pedestrians randomly appeared around the tag as interference, creating random human 

NLOS effects. It can be seen that UWB positioning in the second experiment is not only 

affected by spatial NLOS but also is interfered with by dynamic and random pedestrian 

NLOS. The effect of NLOS can be more easily compared and analyzed through different 

experimental designs. To sum up, four experiments were conducted in this paper, and the 

experimental design is shown in Table 3. 

Table 3. Experimental design. 

Experiment Number Experimental Site Experimental Scheme 

1 site1 scheme1 

2 site1 scheme2 

3 site2 scheme1 

4 site2 scheme2 

The UWB module selected for the experiment is the LinkTrackP module from 

NoopLoop, which uses a bidirectional ranging method to reduce the ranging errors 

caused by clock asynchronization with a sampling frequency of 10–100 Hz, an operating 

frequency band of (4243.2–4742.4) GHz and a communication distance of 500 m. 

3.1.2. Systematic Error Correction and Error Statistics Method 

In order to improve the accuracy of the experimental test, the systematic errors of the 

UWB anchors need to be corrected before the experiment is implemented. This paper uses 

polynomial data fitting to correct the systematic errors. 

Taking Anc1–4 as an example, Figure 8a shows the ranging error of four anchors 

under LOS and Figure 8b shows the error effect after polynomial fitting. From the figures, 

it can be seen that the errors of all ranging points are within 0.09 m, and the general error 

range is within 0.05 m. It should be noted that after polynomial fitting, the ranging error 

is significantly reduced, weakening the influence of the device systematic error, which can 

further improve the overall UWB positioning accuracy and experimental effect. Through 

testing, the positioning accuracy of LOS scenes with the dilution of precision (DOP) value 

below 1.5 can reach 10 cm. 

Figure 7. Experimental Site 2 environment and experimental route. (a) Site environment and (b) site
plan and experimental path.



Remote Sens. 2022, 14, 6338 12 of 27

Two experimental schemes were designed for this scenario. The first one is without
random pedestrian interference. During the experiment, the experimenter pushes the
trolley forward by hand while bending down. The purpose is to avoid NLOS interference
caused by the experimenter’s body on the ranging, and the experiment aims to consider
only the effect of spatial NLOS on localization. The second experimental scheme involves
random pedestrian interference. Unlike Experimental Scheme 1, in this experiment, pedes-
trians randomly appeared around the tag as interference, creating random human NLOS
effects. It can be seen that UWB positioning in the second experiment is not only affected
by spatial NLOS but also is interfered with by dynamic and random pedestrian NLOS. The
effect of NLOS can be more easily compared and analyzed through different experimental
designs. To sum up, four experiments were conducted in this paper, and the experimental
design is shown in Table 3.

Table 3. Experimental design.

Experiment Number Experimental Site Experimental Scheme

1 site1 scheme1
2 site1 scheme2
3 site2 scheme1
4 site2 scheme2

The UWB module selected for the experiment is the LinkTrackP module from NoopLoop,
which uses a bidirectional ranging method to reduce the ranging errors caused by clock
asynchronization with a sampling frequency of 10–100 Hz, an operating frequency band of
(4243.2–4742.4) GHz and a communication distance of 500 m.

3.1.2. Systematic Error Correction and Error Statistics Method

In order to improve the accuracy of the experimental test, the systematic errors of the
UWB anchors need to be corrected before the experiment is implemented. This paper uses
polynomial data fitting to correct the systematic errors.

Taking Anc1–4 as an example, Figure 8a shows the ranging error of four anchors under
LOS and Figure 8b shows the error effect after polynomial fitting. From the figures, it
can be seen that the errors of all ranging points are within 0.09 m, and the general error
range is within 0.05 m. It should be noted that after polynomial fitting, the ranging error is
significantly reduced, weakening the influence of the device systematic error, which can
further improve the overall UWB positioning accuracy and experimental effect. Through
testing, the positioning accuracy of LOS scenes with the dilution of precision (DOP) value
below 1.5 can reach 10 cm.

Due to the limitations of the experimental conditions, it was not possible to obtain the
real position of the corresponding ephemeris during the movement of the tag; therefore, the
ephemeris information of each path section and the stopping point was obtained through
timing in the experiment, and it was assumed that walking on each path section during
the experiment represented a uniform motion, then the relative true value (hereinafter
referred to as RT) coordinates were calculated by using the length of each path section and
the corresponding number of ephemeris. Evidently, the RT coordinates may experience
some loss compared with the true position, but the method is a useful tool for comparative
analysis when using the limited equipment of the experimental conditions.
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Figure 8. Error plot of polynomial fitting results. (a) Distance measurement error and (b) error
after correction.

The root means square error (RMSE) of the multi-frame UWB positioning results is
used to express the stability of the algorithm, which is calculated as shown in Equation (12):

RMSE =

√
n

∑
t=1

‖Pt,uwb − Pt,RT‖2

n
(12)

where Pt,uwb, (xt, yt) is the positioning results for each frame UWB positioning algorithm
and Pt,RT , (x′t, y′t) is the coordinates of the RT values of the motion derived from the
ephemeral moments.

3.2. Availability Analysis of Experimental Path UWB Anchors

Taking Experimental Site 1 as an example, the NLOS range of anchors under the
influence of indoor columns can be seen directly using the ray method, as shown in
Figure 9. The top left corner marks the color of the corresponding anchor of NLOS area,
demonstrating that the different locations of the deployment of anchors make a great
difference to the size and distribution of the NLOS area. According to the NLOS map
created in Section 2.2, the availability of anchors in the experimental path is obtained.
The path starts from point d1, moves from d2 to d10 and ends at d6. There are 142 points
in total, and they are calculated at 0.5 m intervals, as shown in Figure 10, where the
horizontal axis represents the path traversed from the movement start point, d1, to the
movement end point, d6, and the vertical axis shows the LOS of anchors A0–A7 at the
corresponding path locations.
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3.3. Comparison and Analysis of Algorithms

The path and anchor deployment in Experiments 1 and 2 are shown in Figure 6b, and
the path and anchor deployment in Experiments 3 and 4 are shown in Figure 7b. The four
experiments, respectively, use EKF, the REKF designed in the study [31], the Map-EKF
designed in Section 2.3.3 and the Map-AREKF designed in Section 2.3.4 for positioning
calculation and all carry out comparative analyses.

3.3.1. Experiment 1 Results and Analysis

Figure 11 shows the solved results of the tag movement trajectory in Experiment 1,
where the solid red line is the real trajectory of the walk, the black box is the location of the
square column in space and the red dot is the location of the UWB anchors. In the figure,
the blue star is the localization trajectory solved by the EKF algorithm, the black circle is
the localization trajectory solved by the REKF algorithm, the green star is the localization
trajectory solved by the Map-EKF and the magenta triangle is the localization trajectory
solved by the Map-AREKF. From the figure, it can be seen that the localization solutions
of the EKF and REKF algorithms show serious deviations in the d3-d4, d4-d5 and d6-d7
segments. The reason for this is that the columns in this region block the LOS communica-
tion between the anchor and the tag, thus generating serious NLOS errors. Meanwhile, the
Map-EKF and Map-AREKF algorithms, which filter the LOS/NLOS situation of the anchor,
can effectively avoid the influence of NLOS errors, so the solution results of these two
algorithms are close to the real trajectory, which also intuitively illustrates the effectiveness
of the algorithms designed in this paper.
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Figure 11. Comparison of the solution results of four localization algorithms for Experiment 1.

Using RT to calculate the ranging errors of each anchor, the errors are shown in
Figure 12. It can be seen that the ranging values are seriously deviated by the NLOS caused
by the spatial structure. In particular, the anchor A6 has a ranging error of more than 10
m in part of the epochs in the d6-d7 section which, combined with the spatial structure
analysis, shows that the error is due to the influence of NLOS caused by Columns 5 and 6.
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Figure 12. Range error of each anchor in Experiment 1.

The LOS selection for each anchor in the Map-EKF and Map-AREKF algorithm is
shown in Figure 13. The horizontal axis in the figure depicts the Experiment 1 trajectory.
For example, di-di represents a pause at di point, di-di+1 represents a uniform motion from
di point to di+1 point. The vertical axis shows the LOS cases of the eight anchors A0–A7 at
the corresponding path positions. Figure 14 shows the combination of Figures 12 and 13
for the comparative analysis of the ranging error and the LOS selection for each of the
eight anchors A0–A7. The horizontal axis of the figure shows the movement trajectory
situation of Experiment 1; the red star indicates the range error value of the anchor, which
corresponds to the scale of the left vertical axis, and the blue star indicates the LOS/NLOS
selection of the anchor by the algorithm, which corresponds to the classification of the
right vertical axis. It is obvious from the figure that the algorithm based on the anchor
LOS/NLOS information map selects the LOS/NLOS case of anchor well, determines the
range information of the anchor as the NLOS case when the range deviation occurs and
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keeps the range value of the LOS anchor by eliminating the range value of the NLOS anchor,
thus effectively ensuring the solution accuracy of positioning.

Figure 13. LOS selection of each anchor under the path of Experiment 1.
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Figure 14. Comparison of LOS selection and the ranging error of each anchor on the path of
Experiment 1. (a) A0 situation; (b) A1 situation; (c) A2 situation; (d) A3 situation; (e) A4 situation; (f)
A5 situation; (g) A6 situation and (h) A7 situation.

The absolute error of the trajectory coordinates solved by the four positioning algo-
rithms and the RT trajectory is shown in Figure 15. From the figure, it can be seen that the
error of the algorithm based on the anchor LOS/NLOS information map is significantly
smaller than that of EKF and REKF, where the small part of the error of the REKE position
is slightly smaller than that of EKF, illustrating the effectiveness of the algorithm for picking
LOS anchors and demonstrating that the robust algorithm is not very good at eliminat-
ing the ranging error and achieving the improvement of the positioning performance of
the severe NLOS errors caused by the spatial structure. In addition, it can be seen that
the errors at the end of path di remain smaller than the errors on the path, because the
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coordinates of RT at the moment of inflection are accurate, while the position on the path
between two adjacent points is derived from the number of epochs, which itself has a
certain level of error.
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Figure 15. Absolute error of the algorithm.

The error probability statistics of the four localization algorithms are shown in Fig-
ure 16. As can be seen, 72% of the localization errors of the EKF algorithm are within 1 m
and 90% are within 1.57 m; the REKF algorithm has a positioning error of 75% within 1 m
and 90% within 1.4 m; 80% of the localization errors of the Map-EKF algorithm designed in
this paper are within 0.3 m and 94% of the localization errors are within 0.4 m; and in the
Map-AREKF algorithm based on the adaptive improvement, 82% of the localization errors
are within 0.3 m and 95% are within 0.4 m, which is slightly better than the Map-EKF. In
conclusion, the localization effect of the algorithm based on the anchor LOS/NLOS infor-
mation map in this paper is significantly better than the EKF and REKF algorithms in terms
of both localization accuracy and error distribution, and REKF is slightly better than EKF.
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3.3.2. Experiment 2 Results and Analysis

Experiment 2 adds random pedestrian interference on the basis of Experiment 1.
Figure 17 shows the solution results of the tag movement trajectory in Experiment 1, and
the legend is consistent with that in Figure 11. It can be seen that the localization solution
effect of both the EKF and REKF algorithms is improved compared with Experiment 1,
which is shown in the d4–d5 and d6–d7 segments, while the solution effect of the Map-EKF
and Map-AREKF algorithms based on filtering the LOS/NLOS situation of the anchor is
reduced compared with Experiment 1, especially in the d4–d5, d6–d7 and d8–d9 segments,



Remote Sens. 2022, 14, 6338 18 of 27

which show significant fluctuations, but the overall effect is better than that of both EKF
and REKF algorithms.
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Figure 17. Comparison of the solution results of the four localization algorithms for Experiment 2.

While Figures 12–14 depict aspects of Experiment 1, Figures 18–20 show the error
plots of each anchor, the LOS selection of each anchor and the comparison analysis of
error and the LOS selection of the anchor, respectively, of Experiment 2. When comparing
Figures 14 and 20, it can be seen that the ranging errors of the anchors have changed. Firstly,
in the NLOS stage, the ranging error of each anchor in Experiment 2 is smaller than that in
Experiment 1, as shown in Figures 14f and 20f; the error of individual epoch elements of the
A6 anchor in the d4–d5 segment of Experiment 1 exceeds 10 m, while the error in Experiment
2 is less than 10 m, and the error in the d4-d5 segment of Experiment 1 also exceeds 10 m,
while the error in Experiment 2 is about 5 m. This phenomenon illustrates that there is some
randomness in the magnitude of the NLOS error values generated by the spatial structure
occlusion, while the smaller error shows the improvement of the localization solving effect
of both EKF and REKF algorithms seen in Figure 17 compared to that in Experiment 1. In
the selected LOS stage, Experiment 2 shows a small abrupt change compared to Experiment
1, which is due to the effect of random human occlusion on the range values in Experiment
2. It can be seen that the NLOS error generated by human occlusion is essentially different
from the NLOS error caused by spatial structure, and the NLOS error generated by human
occlusion has a short duration and small value characteristics.

Figure 18. Range error of each anchor in Experiment 2.
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Figure 19. LOS selection of each anchor under the path of Experiment 2.
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Figure 20. Comparison of LOS selection and ranging error of each anchor under the path of Experi-
ment 2. (a) A0 situation; (b) A1 situation; (c) A2 situation; (d) A3 situation; (e) A4 situation; (f) A5
situation; (g) A6 situation and (h) A7 situation.

In terms of anchor selection, by comparing Figures 10, 13 and 19, it can be seen that
the selection of the LOS anchors remains basically the same for different scenarios on the
same route. For a more intuitive comparative analysis, this work normalized the epochs
of the two experiments and compared them to Figure 10. As shown in Figure 21, the
horizontal axis indicates the path segment passing from the motion start point d1 to the
motion termination point d6, the vertical axis is the LOS situation of the eight anchors
A0–A7 at the corresponding path locations and the red star is the actual situation of LOS
anchors on the path, which remain consistent with that in Figure 10. The blue triangle is
the selection of LOS anchors using the Experiment 1 algorithm, and the black circle is the
selection of LOS anchors through the Experiment 2 algorithm. It can be seen that the two
different scenarios are almost identical to the actual LOS anchor selection, with differences
in individual points, and that the LOS selection is less than the actual situation, which is
because the algorithm enacts the LOS/NLOS of the anchors within a certain range around
the estimated point, so the actual number of LOS anchors obtained should be less than or
equal to the real situation, as is the case of the results analyzed in Section 3 based on the
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anchor LOS/NLOS information map positioning algorithm. Statistically, the correlation
coefficients of Experiment 1 and Experiment 2 with the actual LOS anchor selection are
92.96 and 92.87, respectively, and the usability of the designed algorithm for the selection
of anchor is well verified by comparison.
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Figure 21. Comparison analysis of LOS selection of each anchor under different experiments.

The error probability statistics of the 4 localization algorithms in Experiment 2 are
shown in Figure 22, from which it can be seen that 82% of the localization errors of the
EKF algorithm are within 1 m and 90% of the localization errors are within 1.3 m; 84.3% of
the localization errors of the REKF algorithm are within 1 m and 90% of the localization
errors are within 1.23 m; 78% of the localization errors of the Map-EKF algorithm designed
in this paper are within 0.4 m and 90% of the localization errors are within 0.57 m; and
in the Map-AREKF algorithm based on the adaptive improvement, 82% of localization
errors within 0.4 m and 90% are within 0.5 m, which is slightly better than the Map-EKF.
As seen from the above data, under the joint interference of spatially structured NLOS
and human random NLOS, the localization effect of the algorithm based on the anchor
LOS/NLOS information map in this paper is significantly better than that of the EKF
and REKF algorithms, both in terms of localization accuracy and error distribution. It
is also obvious that the Map-AREKF algorithm outperforms the Map-EKF algorithm in
this scenario. This is because the effect of the adaptive step in the Map-AREKF algorithm
eliminates the effect of the abrupt change in the range value caused by random human
occlusion in the solution. The effect also demonstrates the effectiveness of the adaptive
algorithm in eliminating the NLOS errors generated by random human occlusions.
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Figure 22. Probability statistics of algorithm localization error for Experiment 2.
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3.3.3. Experiment 3 Results and Analysis

The site selected in Experiment 3 is more complex than Experiment 1 and Experiment 2.
In the process of building the LOS/NLOS information map of the anchor, we considered
the height of the average human body and set the objects in the site that were taller than
1.35 m as obstacles. As in Experiments 1 and 2, a 0.5 m interval was used to build the anchor
LOS/NLOS information map. Figure 23 shows the results of tag movement trajectory in
Experiment 3. It can be seen that the localization solutions of both the EKF and REKF
algorithms are severely affected by NLOS, while the Map-EKF and Map-AREKF algorithms,
which are filtered by the LOS/NLOS case of the anchor, are able to effectively avoid the
effect of NLOS errors. This also visually illustrates the effectiveness of the algorithms
designed in this paper in complex environments.
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Figure 23. Experiment 3 results of 4 localization algorithms solved when using 0.5 m interval
information maps.

Figure 24 shows the effect of solution of the 4 algorithms in Experiment 3 using
the LOS/NLOS information maps of the anchors built with 0.2 m intervals. Figure 25
shows the Map-AREKF algorithm errors with the two different information map sampling
intervals. Figure 26 shows the error probability statistics for the algorithms with two
different information map sampling intervals. The data for both cases remain basically the
same, and it can be seen that the change of the information map sampling interval has little
effect on the Map-EKF and Map-AREKF algorithms. In comparison, the smaller the interval
is set, the finer the distinction between LOS/NLOS. The selection of the sampling intervals
of the information map should be less than the minimum distance between adjacent signal-
obscured objects. Considering the real passable indoor environment, we suggest that the
sampling interval of the information map be less than or equal to 0.5 m.
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Taking Figure 26a as an example, 75% of the localization errors of the EKF algorithm
in Experiment 3 are within 1 m and 80% of the localization errors are within 1.2 m; 92% of
the localization errors of the REKF algorithm are within 1 m and 80% of the localization
errors are within 0.55 m; 80% of the localization errors of the Map-EKF algorithm designed
in this paper are within 0.185 m and 90% of the localization errors are within 0.225 m. The
results of the Map-AREKF algorithm based on the adaptive improvement are essentially
the same as those of the Map-EKF algorithm.

3.3.4. Experiment 4 Results and Analysis

The localization results solved by the four algorithms in Experiment 4 are shown
in Figure 27. It is obvious from the figure that Map-AREKF significantly outperforms
Map-EKF when random human interference is added. Figure 28 shows the absolute errors
of the four algorithms. Figure 29 shows the error probability statistics for the 4 algorithms,
from which it can be seen that 57% of the localization errors of the EKF algorithm are within
0.5 m; 80% of the localization errors of the REKF algorithm are within 0.5 m and 90% of the
localization errors are within 0.8 m; 90% of the localization errors of the Map-EKF algorithm
designed in this paper are within 0.21 m; and in the Map-AREKF algorithm based on the
adaptive improvement, 90% of localization errors are within 0.2 m, which is slightly better
than the Map-EKF.
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Figure 29. Probability statistics of algorithm localization error for Experiment 4.

Compared with Experiment 3, the error of the Map-EKF algorithm in Experiment 4 is
higher than that of Map-AREKF. This also shows that although the Map-EKF algorithm
can handle the effect of spatial NLOS well using the anchor LOS/NLOS information map,
it cannot handle the NLOS caused by random human occlusion.

3.3.5. Conclusion and Analysis of the Experiment

This paper successfully proves the performance of the conventional EKF, REKF and
the Map-EKF and Map-AREKF algorithms based on the LOS/NLOS information map of
anchors in a complex NLOS environment using different experimental sites and different
experimental scenarios.

Conventional EKF is relatively good in an LOS environment for the localization
solution. However, in an NLOS environment, it is not possible to optimize the range value
errors; consequently, localization is basically impossible.

REKF introduces the robust estimation model, so when short-term errors occur in
measurement, the optimization effect is good. Similarly, Experiments 2 and 4 can effectively
deal with NLOS interference caused by human occlusion. However, NLOS caused by the
spatial structure is not applicable.

The Map-EKF utilizes the function of the anchor LOS/NLOS information map on the
basis of EKF, which makes full use of the a priori information of the environment and is
able to exclude the interference of NLOS anchor ranging errors very accurately. Therefore,
it is able to handle the influence of fixed spatial structure NLOS relatively well.

The Map-AREKF adds the anti-error adaptive function to Map-EKF. In addition to
the influence of Map-EKF on handling fixed spatial structure NLOS, it is also able to
handle random NLOS interference well. The algorithm performs best in a complex indoor
environment.

Table 4 shows the root mean square error (RMSE) of the four algorithms, Table 5
shows the statistics of time consumption using four algorithms, and Figure 30 shows the
histograms of positioning error using the different algorithms. Combining the graphs, it can
be seen that Map-EKF and Map-AREKF based on the anchor LOS/NLOS information map
are significantly better than EKF and REKF in a complex NLOS environment. However,
regarding the real-time nature of the algorithm, Map-EKF and Map-AREKF are not as
good as EKF and REKF. This is because Map-EKF and Map-AREKF add information map
matching to the operation, which increases the time delay. The 0.01 s single solution time
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of Map-AREKF, although its real-time performance is not as good as EKF, does not affect
the real-time localization of non-high-speed movements, such as those of pedestrians.

Table 4. RMSE for the four algorithms (unit: m).

Experiment EKF ARKF Map-EKF Map-ARKF

1 1.0515 1.0069 0.2598 0.2579
2 0.8073 0.7640 0.3829 0.3219

3 (0.5 m map) 0.9634 0.5091 0.1465 0.1465
3 (0.2 m map) 0.9634 0.5091 0.1392 0.1392

4 0.9109 0.5074 0.1781 0.1674

Table 5. Single ephemeris solving time for the four algorithms (unit: s).

Experiment EKF ARKF Map × EKF Map × ARKF

1 9.05 × 10−5 5.81 × 10−5 1.76 × 10−4 1.67 × 10−4

2 8.88 × 10−5 5.59 × 10−5 1.74 × 10−4 1.65 × 10−4

3 (0.5 m map) 8.34 × 10−5 5.48 × 10−5 1.72 × 10−4 1.68 × 10−4

3 (0.2 m map) 8.34 × 10−5 5.48 × 10−5 1.74 × 10−4 1.71 × 10−4

4 8.66 × 10−5 5.45 × 10−5 1.71 × 10−4 1.63 × 10−4
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In conclusion, by analyzing the results of the four experiments, we reached the follow-
ing conclusions:

• The indoor spatial structure has a significant impact on the ranging, and if the NLOS
error is not eliminated, serious positional deviations will occur when the ranging
values with serious errors are brought into the algorithm for solving.

• The ranging information from multiple anchors does not improve positioning unless
the effect of the NLOS anchor ranging errors is removed.

• REKF can make a certain degree of correction to the short-time abrupt changes in the
ranging errors and performs well under the influence of human random NLOS but
is not very good in the face of large NLOS error scenarios caused by indoor space
structures.

• The algorithm based on the anchor LOS/NLOS information map can quickly and
accurately obtain the LOS/NLOS situation of each anchor according to the indoor
spatial structure, and the judgment is stable and reliable. Through experimental
verification, this method is shown to be an effective means of solving the serious
NLOS error interference caused by complex indoor spaces.

• The Map-AREKF algorithm proposed in this paper is able to effectively filter out LOS
anchors for the localization solution in response to the NLOS effects of fixed indoor
spatial structures, which essentially avoids NLOS errors caused by spatial structures.
In the face of variable NLOS errors caused by human occlusion, the designed adaptive
factor is able to effectively weaken the ranging errors and the positioning algorithm can
achieve effective, reliable and continuous high-precision indoor positioning through
experimental verification.



Remote Sens. 2022, 14, 6338 26 of 27

4. Conclusions

The development of high-precision indoor positioning has been limited by the ranging
errors caused by complex indoor environments, so reasonably avoiding and eliminating the
influence of environmental NLOS is an effective method for improving positioning accuracy.
This research designed the Map-AREKF algorithm based on the LOS/NLOS information
map of anchors in order to obtain continuous and reliable high accuracy positioning in
complex indoor environments. The algorithm can effectively optimize two different types of
NLOS errors, namely, static errors, caused by spatial structure, and dynamic errors, caused
by random pedestrian occlusion. In solving the spatial structure-induced NLOS, we made
full use of the environmental a priori information and designed an anchor LOS/NLOS
information map to exclude the influence of NLOS measurement information. To address
the NLOS error caused by random pedestrian occlusion, we designed a new adaptive factor
based on the interference characteristics of the human body on the signal. This enables
online metrics to measure the degree of anomalies in the obtained values and to correct for
the effects of random human interference. Finally, the algorithm was tested and analyzed
on different experimental sites and different experimental scenarios, and the experimental
results verify that the algorithm designed in this paper is able to achieve a better result in
complex indoor environments than the 0.32 m positioning accuracy.

Throughout the research and experiments in this paper, NLOS ranging errors were
continuously found due to the instability of indoor spatial structures. Therefore, in future
work, focus will be placed on the error models of spatial structure NLOS and human
occlusion NLOS in order to achieve a more stable indoor positioning system in a pedestrian-
based environment with few anchors.
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