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Abstract: Predicting leaf nitrogen content (LNC) using unmanned aerial vehicle (UAV) images is of
great significance. Traditional LNC prediction methods based on empirical and mechanistic models
have limitations. This study aimed to propose a new LNC prediction method based on combining
deep learning methods and mechanistic models. Wheat field experiments were conducted to make
plants with different LNC values. The LNC and UAV hyperspectral images were collected during
the critical growth stages of wheat. Based on these data, a method combining the deep multitask
learning method and the N-based PROSAIL model was proposed and compared with traditional
LNC prediction methods, including spectral index (SI), partial least squares regression (PLSR) and
artificial neural network (ANN) methods. The results show that the new proposed method obtained
the best LNC prediction results, with R2, RMSE and RMSE% values of 0.79, 20.86 µg/cm2 and
18.63%, respectively, during calibration and 0.82, 18.40 µg/cm2 and 16.92%, respectively, during
validation. The other methods obtained R2, RMSE and RMSE% values between 0.29 and 0.68, 25.71
and 38.52 µg/cm2 and 22.95 and 34.39%, respectively, during calibration and between 0.43 and 0.74,
22.79 and 33.55 µg/cm2 and 20.96 and 30.86%, respectively, during validation. Thus, this study
provides an accurate LNC prediction tool for precise nitrogen (N) management in the field.

Keywords: leaf nitrogen content; hybrid method; UAV; hyperspectral image

1. Introduction

Nitrogen (N) is an important nutrient element that is necessary for wheat growth
and development. N plays an important role in improving crop photosynthetic capacity
and assimilation products. Due to the large spatial variations in soil N content in fields,
farmers tend to use excess N fertilizer to ensure wheat yield. However, excessive N in
fields not only reduces wheat yield and quality [1], but also negatively affects the global
ecosystem [2]. Therefore, obtaining the N nutrition status of wheat over time and applying
N fertilizer reasonably according to plant needs is of great significance.

Leaf nitrogen content (LNC) is an important indicator for determining wheat N
nutrition status. The traditional LNC detection methods depend on destructive sampling
and labor-intensive analyses in the laboratory, which are time-consuming and expensive [3].
Previous studies have shown that crop biophysical and biochemical parameters can be
detected by remote sensing technology [4,5]. In recent years, the rapid development of
unmanned aerial vehicle (UAV) remote sensing technology has provided an opportunity to
obtain high spatial and time-resolution images in a flexible manner [6], which is extremely
suitable for precisely managing fields.
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At present, the prediction methods for crop biophysical and biochemical parameter
inversion include empirical methods, mechanistic methods and hybrid methods. Consider-
ing LNC prediction, empirical methods apply quantitative regression models between the
canopy spectral reflectance and LNC using calibration datasets to predict the LNC in the
target area. Zhang et al. used UAV hyperspectral images to compare the performance of
partial least square regression (PLSR), generic algorithm integrated with the PLSR (GA–
PLSR), random forest (RF) and extreme gradient boosting (XGBoost) methods for LNC
prediction in alpine meadow ecosystems [7]. Based on field measured hyperspectral data,
Jay et al. used the spectral index (SI) method to predict the LNC of sugar beet [8]. Empirical
methods are easy to apply but lack mechanistic explanations and require large quantities
of data for model training. The designed models may have errors when applied in places
with no training data [9]. Using vegetation biophysical and biochemical parameters as
input variables, mechanistic models describe the radiative transmission process of elec-
tromagnetic waves in the canopy. The reverse process of the mechanistic models can be
used to predict the desired input parameters [10]. According to the relationship between
chlorophyll and nitrogen, Yang et al. used the equivalent N absorption coefficient to replace
the chlorophyll-specific absorption coefficient in the PROSPECT model and designed a
nitrogen-based PROSPECT (N-PROSPECT) model, which can be used to combine the
canopy scale model named SAIL (scattering by arbitrarily inclined leaves) to invert LNC
values using canopy spectra data [11]. According to previous studies, the model that com-
bined the N-PROSPECT model and the SAIL model can be called N-PROSAIL model for
short. Using the N-PROSAIL model, Li et al. successively predicted wheat LNC by using
the look-up table method [12]. Mechanistic methods have clear mechanistic explanations.
However, they require many input parameters that are not easy to obtain in practice [13].
When the input parameters are uncertain, problems may be encountered during the model
inversion process [14]. Additionally, due to the complexity of the electromagnetic transmis-
sion process, existing mechanism models cannot fully describe the transmission process,
which causes the simulated data generated by the mechanism models to not be exactly
consistent with the actual measured data, resulting in prediction errors. Hybrid methods
first generate a large quantity of simulated data based on the mechanistic models, then use
the simulated data to help train the empirical model, and finally apply the trained model
to predict the biophysical and biochemical parameters in the target area [15]. The purpose
of hybrid methods is to try to combine the advantages of empirical and mechanistic meth-
ods. Until recently, few studies have been conducted using hybrid wheat LNC prediction
methods and UAV images. However, related work has been performed on the inversion of
chlorophyll, which can provide a reference for LNC inversion based on the hybrid methods.
Xu et al. simulated a rice dataset based on the PROSAIL model, and then used the dataset
to train a Bayesian network model, and finally applied the trained model to predict rice
canopy chlorophyll content using multispectral UAV images obtained in the target area [16].
Zhang et al. used the dataset generated by PROSAIL to pretrain a deep neural network
(DNN), and then fine-tuned the parameters of the pretrained model using field-measured
data, and finally used the model to predict wheat leaf chlorophyll content [17]. The above
studies represent existing strategies used in hybrid methods. However, as stated before,
the simulated spectra may differ from the actual measured spectra; thus, these approaches
are not always efficient. Consistent with existing research [18,19], our initial study showed
that both models trained using only simulated data and models pretrained using simulated
data and fine-tuned with measured data do not achieve good inversion results in LNC
prediction, and these models face overfitting problems.

Deep multitask learning is an inductive transfer learning method. The model trains the
network based on multiple tasks. By sharing information between interrelated tasks, the
robustness of the model is effectively improved by taking advantage of the similarities and
differences between different tasks [20–22]. Due to the complexity of the vegetation canopy
structure, the simulated spectra data may differ from the actual measured spectra data,
but they have the common features that follow the absorption properties of biochemical
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parameters. In other words, when the measured data are limited, the simulated data can
help to train the model for LNC prediction, but the simulated data cannot be used as the
measured data directly during model training. Thus, based on the idea of multitask deep
learning, we can set two tasks: one is to train the model based on the simulated data and
use it to predict simulated LNC, and another is to train the model based on actual measured
data and use it to predict measured LNC. The two tasks can share part of the network
structure to learn their common features, while using their separate network structures
to learn their unique features. The model learns information from the simulated and
measured data simultaneously and transfers the information learned from the simulated
data to improve the training process of the measured data, ensuring that the model focuses
on important features. In addition, the noise in the simulated data with different patterns
helps to improve the model robustness, reducing the overfitting problem [23]. Therefore,
we can combine deep multitask learning methods and mechanistic models to develop a
hybrid method for LNC prediction; however, no such approach has been established.

In this study, a field experiment was conducted to obtain LNC and hyperspectral image
data of winter wheat under different growth conditions. To provide technical support for
high-precision LNC prediction, based on these data, the following objectives were set: (i) to
propose a new robust hybrid method for LNC prediction by combining a deep multitask
learning method and a mechanistic model and (ii) to compare the proposed method with
traditional methods (SI, PLSR, artificial neural network (ANN)) to recommend the best
model for LNC prediction.

2. Materials and Methods
2.1. Field Experiment

This study was conducted at the Yucheng Integrated Experiment Station (116◦34′13′′E,
36◦50′00′′N) of the Chinese Academy of Sciences during 2020–2021. The winter wheat
cultivar “Jimai 22” was sown with 20 cm row spacing. The experiment included two
irrigation treatments and five N treatments in 32 plots. Each plot was 10 m × 5 m in size.
The two irrigation levels were 60% and 80% of field water capacity and arranged with a
split-plot design. The five N levels were 0 kg N/ha (N1), 70 kg N/ha (N2), 140 kg N/ha
(N3), 210 kg N/ha (N4) and 280 kg N/ha (N5) and were arranged in a randomized block
design, with N1-N4 having three replicates and N5 having four replicates. Except for the N
fertilizer, the other management measures were the same in each plot, and the experimental
design is shown in Figure 1.
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2.2. Field Data Acquisition

Field campaigns were conducted to obtain UAV hyperspectral images and ground-
measured LNC data at critical wheat growth stages. These wheat growth stages are Feekes
4–5 (14 April 2021), Feekes 10.2 (7 May 2021) and Feekes 11.1 (17 May 2021).

2.2.1. UAV Image Data

The hyperspectral images were acquired by an M600 pro six-rotor UAV (SZ DJI Tech-
nology Co., Guangzhou, China) equipped with an S185 imager (Cubert, Ulm, Germany).
S185 is a new type of snapshot hyperspectral sensor characterized by short exposure and
integration times. The sensor can capture wavelengths from the visible to near-infrared
spectra (450–950 nm) at a 4 nm spectral resolution. In one shot, it can obtain a panchro-
matic image with a pixel resolution of 1000 × 1000 and a hyperspectral image with a pixel
resolution of 50 × 50. Based on the software provided by the sensor manufacturer, these
two image types can be fused to make hyperspectral images having same resolution of
panchromatic image. To minimize the influence of changes in the incident angle of the sun
on the images, the flight time was selected between 10:00 and 12:00. The flight height was
set to 30 m, and the forward and side overlaps were both set to 80%. A white panel image
was obtained prior to UAV take-off and used to convert the image data from digital number
(DN) values to reflection values in the subsequent processing step. In addition, to geo-
metrically correct the obtained UAV images, high-accuracy ground control points (GCPs)
were measured with a global navigation satellite system (GNSS) receiver GEO7X handheld
global positioning system (GPS) device (Trimble, CA, USA) in network real-time kinematic
(NRTK) mode. The NRTK service provided by Qianxun Company (Shanghai, China) and
the GCPs measured under these conditions had errors below 1 cm. In the UAV image
preprocessing step, first, Curbert Utils Touch (Cubert, Ulm, Germany) software was used
to fuse hyperspectral and panchromatic images and export the fused images in .tiff format
with approximately 0.84 cm of spatial resolution. Second, the Agisoft Photoscan (Agisoft
LLC, St. Petersburg, Russia) software program was used to mosaic the fused images and
convert the image DN values to reflectance values. Third, the sampled high-accuracy GCPs
were used to geometrically correct the mosaicked images taken at the Feekes 4–5 growth
stage, and the mosaicked images from other growth stages were then geo-rectified based
on the above geo-corrected image. Finally, the images were resized and masked to retain
only the experimental zones.

2.2.2. Field Sampled Data

Field sampling was carried out immediately after obtaining the UAV images. For
each plot, representative areas with relatively uniform wheat growth status were selected
as sampling sites. First, LAI-2200 (LI-COR Inc., Lincoln, NE, USA) was used to measure
the leaf area index (LAI). Then, two rows of wheat plants with lengths of 30 cm were
sampled at each selected site and taken to the laboratory, where the plants were divided
into leaves and stems (including spikes) and dried in an oven until a constant weight was
obtained. The N concentration values in each plant part were measured using the Dumas
combustion method with a vario-MACRO cube analyzer (Elementar, Hanau, Germany).
Finally, according to the LAI, leaf dry weight and leaf nitrogen concentration, LNC (µg/cm2)
values were calculated for each sampling site using Formula (1). Notably, the distances
between the sampling points and the boundaries were recorded to allow for each sampling
point to be accurately located in the geo-corrected images.

LNC =
W×N%

LAI
(1)

where LNC represents the leaf nitrogen content (µg/cm2) based on leaf area, W represents
the leaf dry weight per unit ground area (g/m2), LAI represents the leaf area index value
and N% represents the leaf nitrogen concentration (%).
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2.3. A New LNC Prediction Method

According to the logic framework stated in the Introduction Section, this study pro-
poses a new LNC prediction method that combines the deep multitask learning method
and the N-PROSAIL mechanism model. It is called the multitask learning-based hybrid
model (ML-HM) in this study. As simulated spectrum and actual measured spectrum have
both similarities and differences, the model adopts hard parameter sharing to construct
a deep multitask learning network [24]. It includes two subtasks: training the network
model based on the simulated data of the N-PROSAIL model to predict simulated LNC
and training the network model based on the measured data to predict measured LNC.
By sharing part of the network parameters among different tasks, information can be
shared among multiple tasks. Therefore, the task of inverting the simulated LNC based
on the model trained by the simulated data is used as an auxiliary task to improve the
inversion accuracy of inverting the actual LNC based on the measured data. The training
flowchart of the model is shown in Figure 2. The model proposed in this study has three
key modules: a shared layer network, a subtask layer network and multitask optimization.
The fundamental goal and implementation details of each module are described below.
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Figure 2. Main structure of the proposed model.

2.3.1. Shared Layer

This part of the network is shared by the major and auxiliary tasks. This component
extracts the common features among the simulated and measured data. The input variables
of the major and auxiliary tasks are the measured spectra data and simulated spectra data.
The output variables are the common features used in the subsequent analyses for each
task. Using this network structure reduces the risk of overfitting the network when training
the major tasks based on limited measured data. The shared layer consists of six layers,
with 20, 20, 20, 10, 10 and 10 neurons in sequence. A rectified linear unit (ReLU) is used as
the activation function in each layer.

2.3.2. Subtask Layer

The subtask layers of the major and auxiliary tasks learn the unique characteristics
of the simulated and measured data, respectively. They use the output variables of the
shared layer as input variables, and the LNCs from the simulated and measured data
are the output variables. Both subtask layers have three layers, with 10 neurons in each
layer. The first layer uses ReLU as the activation function, and the latter two layers use
traditional hyperbolic tangent (tanh) as the activation function. The subtask layers allow
for the network to focus not only on the common features of the two tasks but also on the
unique features of each task.
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2.3.3. Multitask Optimization

This module integrates the LNC prediction error of the two tasks to determine the
model parameters [25]. As each task impacts the network and different tasks have various
convergence rates during network training, if each task has the same weight, the model is
dominated by certain tasks. Thus, according to Liu et al. [26], we calculate the dynamic
weighting error (DWA) according to the two tasks. The cost function is calculated using
Formulas (2)–(5). To measure the prediction error, the mean square error (MSE) is calculated
according to the predicted LNC and actual LNC for each task. For the entire process of
this module, the deep multitask learning model runs according to the input data, and the
corresponding cost function value is calculated; then, with the goal of minimizing the cost
function, the backpropagation algorithm is run to optimize the model parameters. This
process loops until the terminal condition is reached.

MSEall(t) = αk(t)×MSEk(t) (2)

αk(t) =
W(t)

∑N
i=1 Wi(t)

(3)

Wk(t) =
N exp(rk(t− 1)/T)

∑N
i=1 exp(ri(t− 1)/T)

(4)

rk(t− 1) =
MSEk(t− 1)
MSEk(t− 2)

(5)

In the above formulas, MSEall(t) represents the total LNC prediction error at training
time t, MSEk(t) represents the mean square error of task k at training time t, αk(t) represents
the normalized weight of task k at training time t, Wk(t) represents the unnormalized weight
of task k at training time t, N represents the total number of tasks and is set to 2 in this
study, rk(t − 1) represents the training speed of task k at training time t − 1, T is a constant
and is set to 0.5 in this study and MSEk(t − 1) and MSEk (t − 2) represent the mean square
error of task k at training times t − 1 and t − 2, respectively.

2.4. Data Analysis Method

To verify the performance of the ML-HM method, we compared the proposed ap-
proach with traditional methods (SI, PLSR and ANN) for LNC prediction. During this
process, using collected UAV images, the averaged spectrum of all the pixels in the circle
with the measured position of sampling points as center and two-times row spacing (40 cm)
as the radius was used to correspond LNC values in the sampling point. It should be noted
that as the image of S185 imager is the fused data from a high-resolution pan image and
coarse resolution hyperspectral image, the pixels of the image are still the mixed pixels
corresponding to the resolution of original coarse image and removing soil pixels cannot
obtain a high crop N prediction accuracy [27]. Thus, we did not remove soil pixels. A
total of 96 pairs of sampling data points were collected in this study. Three of these data
points were found to have errors and were discarded. Thus, a total of 93 sampling points
were retained. Based on the method of systematic random sampling, 75% of the samples
were selected as the calibration dataset, and the remaining 25% were used as the validation
dataset. The calibration dataset was used for model training, and the validation dataset was
used for model validation. The R2, RMSE and RMSE% (RMSE/mean × 100%) values were
used to evaluate the performance of each model. It should be noted that a large amount
of data was also simulated using the N-PROSAIL model, and these data were used as the
simulated data in the training of the ML-HM method. The main flow chart is shown in
Figure 3 and the detailed description of each method is as follows.
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Figure 3. Main flow chart of the LNC prediction models designed based on SI, PLSR, ANN and
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2.4.1. SI Method

The spectral index uses the band combination method to eliminate background noise
and improves the sensitivity to target parameters. It is the most commonly used method
for LNC prediction. In this study, based on previous studies, the commonly used spectral
indices for estimating LNC were selected and are shown in Table 1. For each index, four
types of models (linear, exponential, power and logarithmic models) were used to design
LNC prediction models based on calibration dataset, and the best model with the highest R2

and lowest RMSE and RMSE% values was selected and validated using validation dataset.

Table 1. Spectral indices used in this study.

Index Name Formula Developed
by

NDVI Normalized difference vegetation index (R800 − R670)/(R800 + R670) [28]
GNDVI Green normalized difference vegetation index (R800 − R550)/(R800 + R550) [29]
MSAVI Modified soil adjusted vegetation index (2R800 + 1 − sqrt((2R800 + 1) − 8(R800 − R670)))/2 [30]
OSAVI Optimized adjusted vegetation index 1.16(R800 − R670)/(R800 + R670 + 0.16) [31]

EVI Enhanced vegetation index 2.5(R800 − R670)/(R800 + 6R670 − 7.5R490 + 1) [32]
TVI Triangular vegetation index 0.5(120(R750 − R550) − 200(R670 − R550)) [33]

MTVI2 Modified triangular vegetation index 2 1.5(1.2(R800 − R550) − 2.5(R670 − R550))/sqrt((2R800 + 1)2 −
(6R800 − 5sqrt(R670)) − 0.5)

[34]

RVI Ratio vegetation index R810/R560 [35]
NDRE Normalized difference red-edge index (R790 − R720)/(R790 + R720) [36]
VIopt Optimal vegetation index (1 + 0.45)((R800)2 + 1)/(R670 + 0.45) [37]
DNCI Double peak canopy nitrogen index (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) [38]

MCARI/MTVI2 Combined index I †
MCARI/MTVI2

[39]MCARI: (R700 − R670 − 0.2(R700 − R550))(R700/R670)
MTVI2: 1.5(1.2(R800 − R550) − 2.5(R670 − R550))/

sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5)
MTCI MERIS terrestrial chlorophyll index (R750 − R710)/(R710 − R680) [40]

TCARI/OSAVI Combined index II † TCARI: 3((R700 − R670) − 0.2(R700 − R550)(R700/R670))
OSAVI: 1.16(R800 − R670)/(R800 + R670 + 0.16) [41]

REP Red-edge position 700 + 40(Rre − R700)/(R740 − R700)
Rre: (R670 + R780)/2 [42]

R-M Red model R750/R720 − 1 [43]
RTVI Red-edge triangular vegetation index (100(R750 − R730) − 10(R750 − R550))sqrt(R700/R670) [44]

† indicates named in this study.
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2.4.2. PLSR Method

PLSR is a commonly used method for addressing variable collinearity [45]. When
establishing the PLSR-based LNC prediction models, this study selected the first five
principal components (PCs) as model input data, as using more PCs did not improve model
performance. Notably, as the spectral bands above 850 nm in the images obtained by the
hyperspectral sensor S185 have poor quality according to Chen et al. [46], only the spectral
bands between 450 nm and 850 nm were used as input variables. In this study, the PLSR
models were calibrated using a calibration dataset and validated using a validation dataset.
MATLAB 2020a code was written and used to perform the above process.

2.4.3. ANN Method

The ANN is a mathematical model inspired by the biological brain that simulates the
complex information processing of the brain–nervous system [47] and has been widely used
in many fields [48]. Compared with other ANN models, backpropagation (BP) ANN is one
of the most widely used neural network models due to its good performance and ability to
handle any linear or nonlinear relationship between the input and output variables [49].
In addition, Homik [50] et al. documented that a three-layer BP network could perform
all N-dimensional to M-dimensional transformations. Therefore, a three-layer BP neural
network with an input layer, a hidden layer and an output layer was used in this study. The
hidden layer had three neurons, the activation function from the input layer to the hidden
layer was the log-sigmoid function, and the activation function from the hidden layer to the
output layer was the tan-sigmoid function. The maximum number of model iterations was
set to 10,000, and the learning rate was set to 0.01. To reduce the number of input variables,
principal component analysis (PCA) was performed on the band reflectance values, and the
five first PCs were selected as the model input data, similar to the PLSR methods. The ANN
model was trained based on all calibration samples and validated based on all validation
samples. The above process was also performed using MATLAB 2020a code.

2.4.4. ML-HM Method

As stated previously, when the measured data are limited due to time and cost con-
straints, the training of deep learning models can be assisted by simulated data. The
ML-HM method needs simulated data to help train the model. In this study, the N-
PROSPECT model proposed by Li et al. was used to generate simulated data [51]. Based
on the distribution characteristics of the field-measured data and related references, the
ranges and sampling methods for the input parameters were determined and are shown in
Table 2. These parameters were used to generate representative datasets under different
conditions. Finally, a total of 20,000 data were generated.

Similar to the ANN method, when designing the LNC prediction model based on
the ML-HM method, the bands between 450 and 850 nm were selected, PCA was used to
reduce the number of input variables and the five first principal components were taken as
input variables. As mentioned in Section 2.3, the two tasks of the ML-HM model included
an auxiliary task, namely, training a network based on the simulated data, and a major
task, namely, training a network based on the measured data. The two tasks shared part
of the network. During the model calibration process, all 20,000 simulated data and all
70 calibration samples of the measured data were used to train the network. For major task
model validation, all 23 validation samples of the measured data were used to validate the
model performance. Considering the training process, the adaptive moment estimation
(Adam) algorithm was used as the optimizer, as it requires less memory and converges
more rapidly than other optimizers. In addition, the learning rate was set to 0.001, the
weight decay coefficient was set to 0.0016, the learning rate decay strategy was set to
reduce the learning rate to 0.2 times the current value every 20 cycles and the number of
training cycles was set to 100. Due to the fact that the quantity of training data for the
two tasks significantly differed, to avoid the shared network being mainly influenced by
simulated data, the method used in Narayannan’s study was used [52] and described as
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follows. Each training cycle contained 1000 iterations to continuously train the network. In
each iteration, 20 samples from the simulated dataset and 8 samples from the measured
data were randomly selected to train the model. The above process was called as mini-
batch gradient descent training process [53]. All the above was performed using Python
3.8 code. To note that, as our objective is to obtain a model for predicting actual LNC, we
did not using simulated data to validate the performance of auxiliary task for simulated
LNC prediction.

Table 2. Ranges and sampling methods of the input parameters for the N-PROSAIL model.

Variable Min Max AVG SD Sampling
Method Reference

LNC (Leaf nitrogen content,
µg/cm2) 20 220 110 45 Gauss Measured dataset

Cbrown (Brown pigment
content, µg/cm2) 0 0 - - Fixed [54]

Cw (Equivalent water
thickness, cm) 0.004 0.04 - - Uniform [12]

Cdm (Dry matter content,
g/m2) 0.001 0.02 - - Uniform [55]

Nstructer (Leaf structure) 1.2 1.8 1.5 0.3 Gauss [55]
LID (Leaf inclination

distribution, deg) 30 80 60 30 Gauss [56]

LAI (Leaf area index, m2/m2) 0.1 9 3.9 1.6 Gauss Measured dataset
SL (Hot spot parameter) 0.1 0.5 0.2 0.5 Gauss [57]

θs (Solar zenith angle, deg) 20 45 - - Uniform Measured dataset
Rsoil (Soil brightness

parameter) 0.2 0.9 0.4 0.4 Gauss [58]

3. Results
3.1. LNCs in the Field

Analysis of variance (ANOVA) and Duncan’s new multiple range test (MRT) analyses
were performed on the LNC values of wheat under different irrigation and N treatment
levels during various growth stages and are shown in Table 3. There were significant
differences (p < 0.05) in LNC among the different N levels in all wheat growth stages. The
LNC values in the experimental year varied between 20.45 and 216.38 µg/cm2, covering a
wide LNC range. Thus, our dataset is a good dataset for LNC model design.

Table 3. Mean LNC (µg/cm2) in wheat under different water and N treatments during different
growth stages.

Growth
Stage

Irrigation
Treatment

N Fertilizer Treatment *

N1 N2 N3 N4 N5

Feekes 4–5
W1 28.65 a 81.09 a,b 116.40 b 138.01 b 137.66 b

W2 45.26 a 98.47 b 131.78 b,c 122.22 b,c 144.31 c

Feekes 10.2
W1 78.86 a 114.45 a,b 164.65 b,c 142.07 b,c 173.68 c

W2 51.54 a 70.66 a 124.96 b 140.28 b 154.72 b

Feekes 11.1
W1 59.05 a 64.85 a,b 115.29 a,b 153.08 b 119.18 a,b

W2 28.21 a 63.49 b 114.81 c 141.14 c 118.35 c

*: Numbers indicate the average LNC in the corresponding N and irrigation treatments. Within each row, the
different letters indicate significant differences at the 0.05 level (p < 0.05); W1: 80% field capacity; W2: 60% field
capacity; N1: 0 kg N/ha−1; N2: 70 kg N/ha−1; N3: 140 kg N/ha−1; N4: 210 kg N/ha−1; N5: 280 kg N/ha−1.

3.2. Simulated and Measured Spectral Reflectance

All the measured and some simulated spectra data are shown in Figure 4a. It can be
seen that the change range of the measured spectrum is within the change range of the
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simulated spectrum and that they have a similar spectral structure, with absorption valleys
at the red and blue bands and peaks at the near infrared band. However, when considering
the correlation coefficients between each band and LNC, they not only have similarities
between bands 450 nm and 734 nm, both having significant (p < 0.05) correlation with LNC,
but also have differences between bands 738 nm and 766 nm, with simulated spectra having
a significant correlation with LNC and measured data having no significant correlation
with LNC. In summary, the data demonstrated our theory according to which the simulated
data has similarities with the measured data, but it also has differences with the measured
data and cannot be used to train the model directly for actual LNC prediction.
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3.3. LNC Prediction Results by the SI Method

The LNC prediction results for the models designed using different spectral indices are
shown in Table 4 and ranked from best to worst performance according to the calibration
and validation results. Among them, MCART/MTVI2 and TCARI/OSAVI achieved the
best results, with R2 values of 0.68 and 0.65, RMSE values of 29.86 and 31.26 µg/cm2, and
RMSE% values of 26.66% and 27.91%, respectively, during calibration and R2 values of 0.68
and 0.68, RMSE values of 25.25 and 25.69 µg/cm2 and RMSE% values of 23.23% and 23.63%,
respectively, during validation. Compared with the other vegetation indices, MSAVI and
TVI had the worst accuracy, with R2 values of 0.33 and 0.29, RMSE values of 37.41 and
38.52 µg/cm2 and RMSE% values of 33.40% and 34.39%, respectively, during calibration
and R2 values of 0.48 and 0.43, RMSE values of 32.20 and 33.55 µg/cm2 and RMSE% values
of 29.62% and 30.86%, respectively, during validation. The remaining spectral indices
achieved moderate LNC prediction results. During the calibration stage, the R2 values
varied between 0.35 and 0.57, the RMSE values varied between 29.98 and 36.85 µg/cm2

and the RMSE% values varied between 26.77% and 32.90%. During the validation stage,
the R2 values varied between 0.49 and 0.70, the RMSE values varied between 23.86 and
31.60 µg/cm2 and the RMSE% values varied between 21.95% and 29.07%.



Remote Sens. 2022, 14, 6334 11 of 16

Table 4. LNC prediction results for the models designed using different spectral indices. Linear,
logarithmic, exponential and power models were used for fitting each index. The model type with
the best results is expressed in the table.

SI Model Type
Calibration Validation

R2 RMSE
(µg/cm2) RMSE% R2 RMSE

(µg/cm2) RMSE%

MCARI/MTVI2 Exponential 0.68 29.86 26.66% 0.68 25.25 23.23%
TCARI/OSAVI Exponential 0.65 31.26 27.91% 0.68 25.69 23.63%

MTCI Logarithmic 0.56 30.20 26.96% 0.70 23.86 21.95%
REP Linear 0.57 29.98 26.77% 0.68 25.06 23.05%
RM Logarithmic 0.52 31.53 28.15% 0.66 25.37 23.34%

NDRE Logarithmic 0.53 31.44 28.07% 0.65 25.75 23.68%
GNDVI Logarithmic 0.51 31.91 28.49% 0.65 26.02 23.93%
DCNI Logarithmic 0.51 31.94 28.52% 0.64 26.49 24.37%
NDVI Logarithmic 0.48 33.09 29.54% 0.61 27.50 25.29%
VIopt Logarithmic 0.46 33.64 30.03% 0.60 28.09 25.84%
RTVI Power 0.54 35.26 31.48% 0.49 28.33 26.06%

OSAVI Logarithmic 0.43 34.35 30.67% 0.56 29.15 26.81%
RVI Logarithmic 0.40 35.45 31.65% 0.57 29.10 26.77%

MTVI2 Logarithmic 0.37 36.22 32.34% 0.51 30.90 28.42%
EVI Logarithmic 0.35 36.85 32.90% 0.50 31.60 29.07%

MSAVI Logarithmic 0.33 37.41 33.40% 0.48 32.20 29.62%
TVI Logarithmic 0.29 38.52 34.39% 0.43 33.55 30.86%

3.4. LNC Prediction Results by the PLSR Method

The LNC prediction results of the PLSR method are shown in Figure 5. During
calibration, the PLSR method achieved an R2 value of 0.68, an RMSE value of 25.71 µg/cm2

and an RMSE% value of 22.95%. Moreover, during the validation stage, the model had
an R2 value of 0.74, an RMSE value of 22.79 µg/cm2 and an RMSE% value of 20.96%. In
addition, although most of the points are clustered near the 1:1 line, some points deviate
from the 1:1 line. The PLSR method may underestimate samples with higher LNC values
and overestimate samples with lower LNC values.
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3.5. LNC Prediction Results by the ANN Method

The LNC prediction results of the ANN method are shown in Figure 6. The ANN
model shows a moderate LNC prediction performance. During calibration, the ANN
method obtained an R2 value of 0.56, an RMSE value of 33.62 µg/cm2 and an RMSE%
value of 30.01%. During validation, the model had an R2 value of 0.62, an RMSE value
of 30.42 µg/cm2 and an RMSE% value of 27.98%. In addition, many points deviate from
the 1:1 line. The ANN method underestimates samples with higher LNC values and
overestimates samples with lower LNC values.
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3.6. LNC Prediction Results by the ML-HM Method

For the ML-HM method, based on measured data, it obtained an R2 value of 0.79, an
RMSE value of 20.86 µg/cm2 and an RMSE% value of 18.63% during calibration as well as
an R2 value of 0.82, an RMSE value of 18.40 µg/cm2 and an RMSE% value of 16.92% during
validation (Figure 7). In addition, all points were near the 1:1 line. Thus, the ML-HM
method showed very good LNC prediction performance.
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4. Discussion
4.1. Comparison with Previous Studies

In this study, the newly proposed ML-HM method achieved the best LNC prediction
results, with an R2 value of 0.82 during validation. The corresponding R2 values of the SI,
PLSR and ANN methods were between 0.43 and 0.74. Using field-measured hyperspectral
data, Jia et al. designed various spectral indices for wheat LNC prediction and obtained
the maximum R2 value of 0.66 [59]. Moreover, based on UAV hyperspectral images, Zhang
et al. used different methods (PLSR, GA-PLSR, RF and XGBoost) for LNC prediction,
and the maximum R2 value of the four methods is 0.55 [7]. Compared with previous
studies, the results of the traditional methods (SI, PLSR and ANN methods) in our study
are within reasonable ranges, and the novel ML-HM method performed better than the
traditional methods.

4.2. Best Structure for the Hybrid Method

Previous studies on hybrid methods that combined deep learning methods and mech-
anistic models used single-task schemes to design the model. To verify the effectiveness
of the multitask learning scheme proposed in this study, several single-task schemes were
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designed according to previous studies and compared with the multitask scheme proposed
in this study. These single-task schemes include the following: (a) the simulated data
generated in Section 2.4.4 and the calibration dataset of the measured data were used to
train the same network for LNC prediction, and the validation dataset of the measured
data was used to validate the model. For comparison, the network used the same structure
as the major task network in the ML-HM method and is denoted as the single-task method
I. (b) Only the simulated data were used to train the network for LNC prediction, and the
validation dataset of the measured data was used to validate the model. The network used
the same structure as the major task network in the ML-HM method and is denoted as the
single-task method II. (c) Only the calibration dataset of the measured data was used to
train the network, and the validation dataset of the measured data was used to validate
the model. The network used the same structure as the major task network in the ML-HM
method and is denoted as the single-task method III.

The results of the different LNC prediction schemes are shown in Table 5. As the ML-
HM method, the single-task method I used the simulated data and part of the measured
data to train the network. However, this scheme considered the simulated data to be
the same as the measured data. In fact, due to the complexity of the electromagnetic
transmission process, existing mechanistic models cannot fully describe the transmission
process; thus, the simulated data differ from the measured data. Thus, although single-task
method I performs better during model calibration, its performance decreases significantly
during model validation. Single-task method II used only the simulated data to train the
model. Similar to the prior discussion, this scheme also has an overfitting problem, with
good performance during calibration and poor performance during validation. Single-task
method III used part of the measured data to train the network and the remaining data to
validate the network. Compared with the above two single-task schemes, this scheme has a
stable performance during model calibration and validation. However, its LNC prediction
results are worse than those of the multitask method proposed in this study. This result
may have occurred due to the following reasons: i) the measured data have a relatively
small number of calibration samples and thus cannot represent data in different situations,
and ii) although the simulated data differ from the measured data, they represent data in
different situations. In our ML-HM model, we effectively extracted the common features
shared by the simulated and measured data for LNC prediction through the network in
the shared layer and used these shared features to assist in training the network on the
measured data, which effectively improved the LNC prediction accuracy.

Table 5. LNC prediction results using different structures to design the hybrid model.

Model Type
Calibration Validation

R2 RMSE
(µg/cm2) RMSE% R2 RMSE

(µg/cm2) RMSE%

Single-task method I 0.89 13.26 11.90% 0.68 24.56 22.59%
Single-task method II 0.88 14.34 12.88% 0.22 38.58 35.49%
Single-task method III 0.70 24.93 18.65% 0.71 23.77 21.86%

ML-HM method
(this study) 0.79 20.86 18.63% 0.82 18.40 16.92%

4.3. Optimal LNC Prediction Method

Many commonly used methods were selected and compared with the ML-HM method
proposed in this study. The ML-HM method performed the best among the comparison
methods. This good performance may be due to the following reasons: (i) multiple factors
(e.g., LAI, chlorophyll, leaf mesophyll structure, leaf water content, leaf angle distribution
function, background) influence canopy reflectance, and the combined influence of these
factors on the reflectance spectrum is not purely linear. The PLSR method is a linear
regression method that cannot effectively determine the nonlinear relationship between the
spectral reflectance and LNC. (ii) The SI model is based on multispectral information and
utilizes only limited spectral features. (iii) Due to the limited quantity of measured data, the
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ANN model training was not sufficient. Thus, it could not express the relationship between
spectral reflectance and LNC. In the ML-HM method, we used useful information in the
simulated data to help train the network on the measured data, resulting in an improved
LNC prediction accuracy.

4.4. Application Potential and Limitations of This Study

In this study, an ML-HM LNC prediction method was designed. In this method, the
simulated data from the mechanistic model were used as an auxiliary task to help train the
LNC prediction model, thereby improving the robustness of the model and reducing the
number of measured samples required by the model. For field applications, UAV images
can be obtained; then, the ML-HM method can be used to predict LNC in the field. Next,
an N application map can be produced by considering the LNC in the field and the law of
wheat N demand during its life cycle. Finally, precise N management can be conducted
according to the N application map.

Although the method proposed in this paper achieved good results, some limitations
remain. In this study, during mini-batch gradient descent training process, the quantity of
simulated and measured data was determined by experience with no theoretical support.
An excessive amount of simulated data can significantly increase the calculation time.
However, a small amount of simulated data are insufficient for helping the network learn
enough information to assist the training of the main task network. Therefore, determining
a reasonable ratio of simulated to measured data can improve model training efficiency
and model accuracy, which will be investigated in future work.

5. Conclusions

In this study, wheat field experiments under different irrigation and N treatments
were conducted, and LNC and UAV hyperspectral images were collected during critical
growth stages. Based on these data, a new hybrid method combining the deep multitask
learning method and the N-PROSAIL model was proposed and compared with traditional
LNC prediction methods (SI, PLSR and ANN methods). Additionally, we compared the
proposed approach with traditional hybrid methods using single-task schemes. The results
show that the proposed ML-HM method has better LNC prediction performance than
the SI, PLSR and ANN methods. Moreover, compared with the hybrid method using a
single-task scheme, the ML-HM method more effectively extracts useful information from
the simulated data to help train the network on the measured data and discard confusing
information, increasing the robustness of the model. Thus, this study provides an accurate
LNC prediction tool for precise N management in the field.
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