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Abstract: Sparse imaging is widely used in synthetic aperture radar (SAR) imaging. Compared
with the traditional matched filtering (MF) methods, sparse SAR imaging can directly image the
scattered points of a target and effectively reduce the sidelobes and clutter in irregular samples.
However, in view of the large-scale computational complexity of sparse reconstruction with raw
echo data, traditional sparse reconstruction algorithms often require huge computational expense.
To solve the above problems, in this paper, we propose a 3D near-field sparse SAR direct imaging
algorithm for irregular trajectories, adopting a piece of preliminary information in the SAR image to
update the dictionary matrix dimension, using the Gaussian iterative method, and optimizing the
signal-processing techniques, which can achieve 3D sparse reconstruction in a more direct and rapid
manner. The proposed algorithm was validated through simulations and empirical study of irregular
scanning scenarios and compared with traditional MF and sparse reconstruction methods, and was
shown to significantly reduce the computation time and effectively preserve the complex information
of the scenes to achieve high-resolution image reconstruction.

Keywords: SAR; near-field; MF method; high-resolution; sparse reconstruction

1. Introduction

Traditional near-field synthetic aperture radar (SAR) imaging systems and security
scanners use high-precision motion control devices to build ideal regular synthetic arrays
to achieve imaging [1,2], which is limited by the Nyquist sampling theorem. The amount of
echo data acquired by applying this regime is large and the acquisition time is high. In con-
trast, a near-field imaging system with an irregular sampling method has the advantages
of high flexibility, low cost, and various application scenarios. In addition, with the emer-
gence of the new generation of millimeter-wave (mmWave) devices, near-field synthetic
aperture radar (SAR) imaging has moved from indoor scenarios such as medical diag-
nostics [3,4], gesture recognition [5,6], nondestructive testing (NDT) [7,8], and concealed
threat detection [9,10] to many new application scenarios and has attracted wide attention.
However, several scenarios, such as unmanned aerial vehicle (UAV) SAR [11–14], automo-
tive SAR [15–17], and freehand imaging [18–20] remain hampered by irregular scanning
geometries that do not conform to the classic array geometries needed for high-resolution
image reconstruction algorithms.

Previous work has proposed the use of traditional imaging methods for irregular SAR
geometric arrays, such as the back-projection algorithm (BPA) [21–23] and the nonuniform
fast Fourier-transform range-migration algorithm (NUFFT-RMA) [24–28]. These two algo-
rithms belong to the time-domain and frequency-domain imaging algorithms, respectively,
which are essentially imaging-optimization algorithms within the framework of matched
filtering (MF). The traditional MF method, as a simple linear filtering process, is limited by
the system bandwidth and Nyquist sampling theorem, which make it hard to break the
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Rayleigh boundary without exploiting any prior information. Moreover, the primary lobes’
expansion, higher sidelobes, and grating lobes inevitably occur in the case of sparse data
cubes and a large amount of coherent speckle noise appears in the image, resulting in the
degradation of SAR image quality.

In the past few decades, many methods have been developed to suppress the side-
lobes/grating lobes and enhance the radar image, such as coherence factor (CF)-like meth-
ods [29,30] and sparsity recovery [22,31–33]. The CF algorithm can effectively suppress
sidelobes/grating lobes and clutter by masking the target image with the coherence fac-
tor. However, it also weakens the weak targets around strong targets. Based on the CF
algorithm, some scholars have also proposed related improvement methods, such as the
exponential phase coherence factor (EPCF) method based on the phase difference of each
channel echo at the primary lobes and the grating lobes, which makes full use of the phase
information and offers a certain improvement on the gate-side lobe suppression effect [34].
However, it does not completely solve the problem of mutual influence between the targets
of the CF algorithm, and the computational complexity is significantly increased.

Sparse reconstruction algorithms such as the orthogonal matching pursuit (OMP)
algorithm [31,35,36] have an advantage in many fields due to their sparse characteristic of
requiring an extremely high signal-to-noise ratio and extremely accurate physical models
to break through the limitation of the Nyquist sampling criterion and use a sub-Nyquist
sampling rate to achieve high-fidelity imaging results [31,37,38]. They can also effectively
suppress clutter and sidelobes/grating lobes. However, they require conversion of the
entire echo data matrix into vectors and optimization of iterations as well, which generates
huge time-consuming iteration calculations. In addition, nonguaranteed stabilization and
robustness through a mismatch of the sensing matrix with noise and interference prevents
rapid implementation of 3D reconstruction.

In this article, taking into consideration the advantages and disadvantages of the
approaches mentioned above, we propose a 3D sparse SAR direct imaging framework with
irregular samples. In our framework, mmWave radar is used to detect the target and then
perform 3D imaging. In contrast to existing imaging algorithms, we first perform initial
imaging of the scene using the MF algorithm to determine the target location information,
and then apply it as a priori information to reduce the matrix dimensionality and decrease
the matrix storage via signal-processing techniques to speed up the computation. Our
research will satisfy the demand for 3D direct imaging with irregular sampling, such as
in UAV SAR, automotive SAR, concealed detection, nondestructive testing, etc. The main
contributions of our paper are summarized as follows:

1. A 3D sparse direct image reconstruction framework is established to solve the SAR
imaging problem of irregular samples.

2. We designed a NUFFT-RMA method to obtain the initial image position information.
Subsequently, a threshold filtering method is put forward to reduce the dimensionality
of the observation matrix. Finally, signal-processing techniques, such as storing the
matrix in advance, are applied to achieve fine 3D sparse imaging.

3. In contrast to previous compressed sensing methods, we propose replacing the inter-
polated data organized into vectors with raw data to avoid interpolation errors.

4. This is the first attempt to develop a hybrid imaging algorithm of matched filtering
combined with sparse reconstruction for 3D imaging in an irregular sampled scene.
It can provide better performance in the suppression of sidelobes/grating lobes, the
reduction of computation time and storage, and a significant improvement in the
imaging quality of multiple targets.

The proposed algorithm was validated using simulation and empirical investigation.
Our algorithm can perform 3D high-resolution SAR imaging under arbitrary array config-
urations. Within the paper, Section 2 introduces the relevant research theories, including
the signal model, the BPA, the NUFFT-RMA, the OMP, and the novel sparse enhancement
technique. Section 3 discusses the imaging results and parameter metrics of image quality



Remote Sens. 2022, 14, 6321 3 of 16

presented to demonstrate the superiority of the proposed algorithm. Section 4 summarizes
the whole article.

2. Relevant Research Theories
2.1. MF Model

The near-field 3D mmWave SAR imaging framework using irregular samples is shown
in Figure 1. The computer controls the scanning of the radar antenna to form a randomly
sampled synthetic aperture plane at z = 0, where the radar antenna transmits and receives
the electromagnetic wave signal during the movement. Assuming that the transmitting
signal of the system is a linear frequency-modulated continuous wave (FMCW) signal [21],
the transmitted signal can be expressed as

m(t) = ej2π( fct+0.5Kt2) 0 ≤ t ≤ Tc (1)

where fc is the instantaneous carrier frequency at time t = 0, K = B/Tc is the chirp of the
frequency slope, B is the sweep band of the signal, and Tc is the duration of the fast time.
After dechirping, the complex echo signal is obtained as follows:

s(t) = σ
R2 m(t)m∗(t− τ) = σ

R2 ej2π(Kτt+ fcτ−0.5Kτ2)

R =
√
(x− x′)2 + (y− y′)2 + (z− z′)2 (2)

where τ is the pulse round-trip time delay with σ representing the target scattering coef-
ficient, f (t) = fc + Kt denotes the signal carrier frequency at each sampling point, and
k(t) = 2π f (t)/c is the wave number. The last phase term is known as the residual video
phase (RVP), which is ignored. Finally, the signal model can be represented as

s(k) = σ
ej2kR

R2
2π fc

c
≤ k ≤ 2π f

c
(3)

Figure 1. The mmWave SAR imaging framework.
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We model the target as a continuous set of point targets located in a volume V in the
(x, y, z) space. Expanding the signal model in (3), we can obtain

s(x′, y′, k) =
∫ f (x, y, z)

|p− p′|2
ej2k|p−p′ |dxdydz (4)

where f (x, y, z) represents the radar cross-section (RCS) coefficient of the target. The
amplitude decay is considered here. Assuming the scattering points of the distributed
target scene are closely located, |p− p′|2 = R2 can be approximated as |p− p′| [21]. In this
case, the raw data cube contains three-dimensional information in the range dimension,
azimuthal direction, and altitude direction [39]. The data cube in Equation (4) is obtained
via range compression on a range direction with the Fourier transform.

s(x′, y′, z′) = FFT1D(s(x′, y′, k)) (5)

Using the classic BPA, Equation (5) can be reformulated to recover the 3D complex image.

f (x, y, z) =
∫ ∣∣p− p′

∣∣s(x′, y′, z′)e−j2k|p−p′ |dx′dy′dz′ (6)

The Fourier-based algorithm in the subsequent analysis is known as the range-
migration algorithm (RMA); Equation (5) can be rewritten as

s(x′, y′, k) =
y

f (x, y, z)
ej2kR

R
dxdydz (7)

Using the spherical wave as an approximate superposition of plane waves [40,41],

ej2kR

R
≈

x ej[kx(x′−x)+ky(y′−y)+kz(z−z′)]

kz
dkxdky (8)

Taking Equation (8) into (7), the signal can be written as

s(x′, y′, k) =
y

f (x, y, z)
x ej[kx(x′−x)+ky(y′−y)+kz(z−z′)]

kz
dkxdkydxdydz (9)

where kz =
√

4k2 − kx2 − ky2, kx
2 + ky

2 ≤ 4k2.
Leveraging the conjugate symmetry of the spherical wavefront, (10) can be rewritten

in the following form to exploit the spatial Fourier transform on z:

s∗(x′, y′, k) =
y

f (x, y, z)
x ej[kx(x′−x)+ky(y′−y)−kz(z−z′)]

kz
dkxdkydxdydz (10)

where (·)∗ is the complex conjugate operation. Using the 3D spatial Fourier transform and
rearranging the terms in (10), Equation (10) becomes

s∗(x′, y′, k) =
x

F(kx, ky, kz)
ejkzz′

kz
ej(kx x′+kyy′)dkxdky (11)

The outer double integral above represents a 2D inverse Fourier transform. Hence,
Equation (11) becomes

s∗(kx, ky, k) = F(kx, ky, kz)
ejkzz′

kz
(12)
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The backscattered data spectrum s∗(kx, ky, k) is assumed to be uniformly sampled in
the k domain. Hence, the backscattered data are resampled to uniformly spaced positions in
the kz domain. Therefore, the 3D RMA image reconstruction can be carried out as follows:

f (x, y, z) = IFFT3D
(kx,ky ,kz)

[
Stolt(k→kz)

(
s∗(kx, ky, k)

)
kze−jkzz′

]
(13)

where Stolt(k→kz) means the interpolation to resample the data cube to uniformly spaced
positions in kz domain. The 3D RMA image reconstruction for a 2D rectilinear synthetic
array requires the signal to be uniformly sampled in the frequency and spatial domains.
However, signals are randomly sampled in the spatial domain, which also prevents the
RMA algorithm being used for 3D image reconstruction of general irregular sampled arrays.
To overcome the above problem, the NUFFT-RMA is introduced to tackle the nonuniform
spatial sampling in this paper [27]. NUFFT is a fast algorithm for converting time-domain
nonuniform to frequency-domain uniform sampling, changing the data directly via NUFFT
without interpolating the data before imaging, which can reduce the errors and unnecessary
operations caused by interpolation. Equation (13) can be reformulated as

f (x, y, z) = IFFT
(kx,ky ,kz)
3D

[
Stolt(k→kz)

[
NUFFT(x′ ,y′)

2D
(
S∗(x′, y′, k)

)]
kze−jkzz′

]
(14)

2.2. The Proposed Algorithm

Compared with MF algorithms, sparse imaging algorithms can effectively suppress
sidelobes and clutter, significantly improving the image quality. However, an observation-
matrix-based sparse imaging algorithm demands conversion of the echo data matrix into
vectors and reconstruction of the imaging scene, for which the computational complexity is
high. Therefore, a direct 3D sparse reconstruction algorithm is proposed. Using the original
data, instead of interpolating data, can effectively save time and reduce the error rates.
Firstly, the SAR-based imaging model can be expressed as

Y = AX + θ (15)

Equation (15) describes the decomposition of the measurement signal; it presents the
signal formation process, where Y is the measurement vector (raw data), A represents the
dictionary matrix, and X is the scattering coefficient matrix. The OMP algorithm mainly
solves the minimization problem of the complex domain l0 norm.

_
X = min‖X‖0 s.t. ‖Y− AX‖2 ≤ ε (16)

For our purposes, we use the lP norm to solve the above problem. By bringing the
compressive sensing theory into Equation (15) and adding the regularization constraint [31],
the sparse reconstruction of the observation scene can be expressed as

_
X = min(‖Y− AX‖2

2 + µ‖X‖p
p) (17)

where ‖·‖p is the lp norm of a matrix, p(0 < p < 1) represents the shrinkage parameter,
and µ is the regularization parameter [31]. In actual imaging scenes, most areas of the
scene are not essential, and the target areas of interest often account for a small percentage
of the scene which is sufficient for 3D reconstruction. Therefore, we chose to perform
dimension reduction on the observation matrix dictionary to improve the imaging speed
and reconstruction accuracy. Imaging algorithms based on the matched filtering framework
can all perform preliminary imaging of the target to initially select the target region.
Here, we use the NUFFT-RMA method to obtain the initial imaging results X′ and those
characteristic of the target area with stronger scattering intensity to select the threshold τ.
The threshold τ is the value of the boundary between the initial screening target area and
the clutter. Supposing the target area is C, Qloc is the local mean, Qall is the global mean, k
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is the constant of the scale factor, and β is the standard deviation of the image. Slide the
3 × 3 window of the image through the whole image in order, and we can obtain

C =
{
(xi, yi, zi)

∣∣∣X̃(xi, yi, zi) > τ
}∣∣∣N

i=1
= {X′(xi

′, yi
′, zi
′)}N′

i=1

Q(i, j) =
{

NaN, Qloc < kβQall
Q(i, j), Qloc ≥ kβQall

→τ = min(Q(i, j))
(18)

where X′(xi
′, yi
′, zi
′) is the N′ scattering objects which correspond to the target area C. A

detailed explanation is given in Figure 2. While reducing the number of measurements
due to the sparsity of the scene, a sensing matrix is introduced to multiply the dictionary
matrix, where Θ is the sensing matrix [42,43]. Assume that the original dimension of the
observation matrix A is M× N, and the observation matrix A′ is now updated to M× N′.
We can rewrite Equation (17) as

Y = ΘAX′ + θ = A′X′ + θ →
_
X
′
= min(

∥∥Y− A′X′
∥∥2

2 + µ
∥∥X′

∥∥p
p) (19)

Figure 2. The target scattering area selection map.

Taking the idea of Cetin’s process [44], the cost function can be defined as

f = (
∥∥Y− A′X′

∥∥2
2 + µ

∥∥X′
∥∥p

p) (20)

Calculating the partial derivative of f with respect to X′ gives the following:

∇X′ f = (2A′H A′ + µpΛ)X′ − 2A′HY (21)

where 2A′H A′ + µpΛ can be assumed to be an approximate Hessian matrix and

Λ = diag

(
(
_
X
′
n)

p/2−1
)

, where diag(·) indicates the diagonal matrix. We can use the

Gaussian iterative method to obtain the 3D sparse reconstruction:

_
X
′
n+1 =

_
X
′
n − ∆n+1(

2A′H A′+µpΛ)−1∇X′n f
_
X
′
=

_
X
′
n+1

∥∥∥∥_X′n+1 −
_
X
′
n

∥∥∥∥2

2

/∥∥∥∥_X′∥∥∥∥2

2
≤ ξ

(22)

The geometric explanation of the iterative operation is given in Figure 3, where ξ

represents the iteration termination threshold and ∆n+1 = (∆n)
0.8 is applied to accelerate

the convergence of the iteration In fact, the 3D sparse direct imaging model without
threshold selection presents large storage and computational challenges; assuming the size
of the raw data in the 3D imaging dimension is 5× 200× 200, then M is approximately
2× 105 units of storage. If the size of the reconstructed 3D scene is also 5× 200× 200, then
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N is approximately 2× 105 units of storage. One storage cell is 8 bytes, meaning that the
observation matrix A requires a storage space of about 298 GB. Generally, A cannot be
stored, and it requires a huge amount of computation to compute AH A and AHY in the
iteration process. Because of the mentioned huge storage and computational challenges, it is
impractical to apply 3D sparse reconstruction directly. Therefore, using threshold selection
to reduce the observation matrix dimensions, we can obtain A′H A′ = M× diag(ones(N′))
and the dimension of A′H A′ is N′ × N′. The dimension of A′HY is N′ × 1, and A′HY
can be obtained after filtering Y with a threshold τ. By estimating A′H A′ and A′HY in
advance, the speed of the iterative operations can be enhanced and the amount of storage
will be reduced, thus allowing implementation of 3D image reconstruction. Based on the
above idea, the challenges of massive calculations related to the 3D sparse SAR direct
reconstruction are resolved. The specific steps of the proposed sparse imaging algorithm
are summarized in Table 1.

Figure 3. The geometric explanation of the iterative operation.

Table 1. The steps of the proposed sparse imaging algorithm.

3D Sparse SAR Direct Imaging with Irregular Samples

1. Initial imaging by NUFFT-RMA to get the imaging result X′.
2. According to Equation (18), determine the target area C.
3. For the sparse SAR imaging

a. According to the target area C and imaging result X′,take the idea of Cetin’s process,
and obtain the cost function f .

b. Using the Gaussian iterative method to Simplify the derivative equation.

c. Obtain and store A′H A′ and A′HY in advance and Calculate
_
X
′
n+1 iteratively according

to Equation (21), and get the final calculation results
_
X
′
=

_
X
′
n+1

∥∥∥∥_X ′n+1 −
_
X
′
n

∥∥∥∥2

2

/∥∥∥∥_X ′∥∥∥∥2

2
≤ ξ

3. Imaging Results and Evaluation

In this section, simulated and real measured data are shown to demonstrate the
effectiveness and reliability of the proposed algorithm. The simulated and measured
scanning sizes were 200 × 200 mm2 and300 × 300 mm2. In the setup, all the computations
were implemented using MATLAB in Windows 10 on an Intel Core i7-8250K CPU@1.8 GHz
and 16 GB memory. No parallel computing or GPU was adopted and the data acquisition
time was not considered. The radar system parameters are shown in Table 2.



Remote Sens. 2022, 14, 6321 8 of 16

Table 2. The parameters of the SAR platform.

Parameter Type Numerical Value Unit

Centre carrier frequency 79 GHz
Platform speed 20 mm/s

Bandwidth 4 GHz
Simulation synthetic aperture size 200 × 200 mm2

Measured wrench synthetic aperture size 300 × 300 mm2

Vertical distance between scissor and radar 230 mm
Vertical distance between wrench and radar 300 mm

3.1. Imaging Results

Figure 4 indicates the geometric model of the nine ideal point targets distributed in
space. Figure 5a–d shows the simulation imaging results of BPA, NUFFT-RMA, OMP, and
the proposed algorithm, respectively. The target center was 0.23 m away from the array
aperture of the reference plane. The number of spatial sampling positions was selected
along x− and y− orientations from −100 mm to 100 mm for an irregular array, and the
operational frequency was 77–81 GHz with 201 points.

Figure 4. The geometric model of the point target.

Figure 5. Spatial target model of multiple points in an ideal space. (a) The 2D multiple-point imaging
result of BPA. (b) The 2D multiple-point imaging result of NUFFT-RMA. (c) The 2D multiple-point
imaging result of OMP. (d) The 2D multiple-point imaging result of the proposed method.
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After obtaining the original data cube, these four algorithms were used to reconstruct
the point target images. The image reconstruction by these algorithms used 35% random
samples and added 60 dBW Gaussian white noise. By comparing these methods, it can
be clearly seen that with the irregular sampling, the signal was severely attenuated with
the MF algorithm and the images from the BPA and the NUFFT-RMA had greater ghosts
and streaks on the contours of the object. However, the OMP and proposed algorithm
effectively suppressed sidelobes and clutters. Although the OMP algorithm was able to
almost completely reconstruct the image, its huge imaging computational complexity is
not sufficient to satisfy the requirements of real-time imaging. Furthermore, compared
with the image results based on these algorithms, the proposed algorithm improved the
measurement accuracy of the target RCS and had better image-focusing performance
than OMP.

In this paper, to verify the superiority of the proposed algorithm in real scenarios, the
optical imaging of an experimental wrench model was targeted, as shown in Figure 6.

Figure 6. The wrench optical image.

The PC as the control center was connected to an IWR1843 mmWave radar, a high-
performance DCA1000 raw data acquisition card, and a three-axis controllable stepper to
capture the echo. The distance between the reference planar and the target center was 0.3 m.
The platform operated by scanning a Z-shaped trajectory to collect data and carried out
irregular sampling in the later signal processing. The mmWave radar imaged the wrench in
the forward- and side-facing modes. The number of spatial sampling locations was chosen
in an irregular array along x and y directions from −150 mm to 150 mm. The imaging
dynamic range was set to 14 dB, and the operational frequency was set to 77–81 GHz with
256 points.

Using 30% random samples to reconstruct images, the 3D SAR imaging results of
the various methods are presented in Figure 7. It can be clearly seen that the target was
drowned out by clutter and sidelobes, and the image quality severely deteriorated when
using the BPA and NUFFT-RMA. A comparison between Column 3 and Column 4 of
Figure 7 indicates that a loss of detail and edge diffraction can be observed and the image
quality of detail at the edges slightly deteriorated when using the OMP algorithm. In
contrast, the measurement accuracy and image quality were improved and the image edge
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detail was recovered most effectively by the proposed algorithm. These results verify the
practical applicability of the method.

Figure 7. Imaging results. Row 1 (a–d) is the 2D wrench imaging results of the four imaging
algorithms. Row 2 (e–h) is the 3D wrench imaging results of the four imaging algorithms. Column
1 is the BPA imaging results; Column 2 is the NUFFT-RMA imaging results; Column 3 is the OMP
imaging results; Column 4 is the proposed method’s imaging results.

3.2. Evaluation of Imaging Results’ Characteristics

To further evaluate the performance gap between the proposed algorithm and the
other algorithms, we discuss the characteristics of these methods below.

(1) Amplitude: In order to directly compare the effect of sidelobe suppression and
detail retaining capability, we sliced the imaging amplitude results of the nine ideal point
targets and the wrench along the azimuth and elevation directions, as shown in Figure 8.
The results showed that the proposed method sharpened the principal lobes more than the
traditional algorithms, which showed a narrower impulse response.

The mean differences of principal lobes in the results of the BPA, NUFFT-RMA, OMP,
and proposed method were−6.24 dB,−2.23 dB,−18.96 dB, and−3.68 dB in the simulation,
respectively. The mean differences in the results of the BPA, NUFFT-RMA, OMP, and
proposed method were −3.18 dB, −7.62 dB, −9.26 dB, and −2.49 dB in the real data,
respectively, which shows that the measurement intensity and stability of the proposed
method were improved compared to the other methods. In addition, the principal lobes
based on the proposed algorithm were narrower than those of the other three algorithms,
and the principal lobes were more focused. This also indicates the enhancement of the
sidelobe clutter suppression effect and image details by the sparse method, as shown in
Figure 8. The mean differences of principal lobes are shown in Table 3.
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Figure 8. Azimuthal and elevation profiles. (a) The azimuthal profiles of the multiple targets. (b) The
elevation profiles of the multiple targets. (c) The azimuthal profile of the wrench. (d) The elevation
profile of the wrench.

Table 3. The mean difference of principal lobes.

Method Mean Difference of Principal
Lobes in Simulation

Mean Difference of Principal
Lobes in Real Data

BPA −6.24 dB −3.18 dB
NUFFT-RMA −2.23 dB −7.62 dB

OMP −18.96 dB −9.26 dB
Proposed method −3.68 dB −2.49 dB

(2) Phase: Figure 9a–d shows the phases of BPA, NUFFT, OMP, and the proposed
method, respectively. It can be clearly seen that the images underwent severe detail loss
when using OMP, while there was a lot of clutter on the images when using MF-based
approaches, which affected the image quality. Furthermore, these results indicate that the
reconstruction of the image via the proposed algorithm maintained the phase information
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of the image, i.e., the complete complex scattered field was estimated instead of the field
with only amplitude.

Figure 9. Imaging results of phase. (a) The imaging result of phase when using BPA. (b) The imaging
result of phase when using NUFFT-RMA. (c) The imaging result of phase when using OMP. (d) The
imaging result of phase when using the proposed method.

(3) Image quality and time complexity: To quantitatively verify the image quality
metrics and the computational load of these methods, the image entropy (IE), image contrast
(IC), and computational time for each algorithm are shown in Table 4 [45]. The image
entropy shows the image-focus quality. The lower the entropy, the better the effectiveness
of focusing. Image contrast is the difference in color within the image and indicates the
texture characteristics of the image. The greater the contrast, the more visible the image
details. Compared with the other three algorithms, the contrast of the images was improved
and the image entropy was reduced by an order of magnitude when using the proposed
method. These results show that the image quality of the proposed method was superior
to that of the other algorithms and achieved a good focus on the target. Furthermore, it is
obvious that the time complexity of the proposed method was only 1.5% that of the BPA,
0.3% that of the OMP, and close to that of the NUFFT-RMA. Its imaging efficiency can offer
good performance in such scenarios as near-field real-time SAR imaging.

IContrast =

√√√√√ MN(∥∥αij
∥∥

2

)2
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Table 4. Quality and time complexity.

Method Contrast Entropy Time (s)

BPA 210.0024 4.7544 213.6
NUFFT-RMA 216.1602 5.0380 3.1

OMP 232.1175 3.9752 998.4
Proposed method 240.2525 3.8008 3.2

3.3. Imaging Evaluation with Multiple Targets

The imaging effect of multiple targets is determined by many factors, such as target
scattering characteristics, data sparsity, etc. In this section, to further validate the strong
robustness of the proposed algorithm for multiple targets, we randomly selected 50% of the
3DRIED [22] raw data and reconstructed the images from these imaging algorithms. Since
the radar antenna spacing in 3DRIED is greater than half a wavelength, the SAR images
based on conventional algorithms appeared as ghost images. Figure 10 shows the optical
images of multiple targets. These include a pistol, knife, and stiletto. The 2D multi-target
imaging results and the 3D imaging envelope are shown in Figure 11, and a brief analysis
is provided.

Figure 10. The optical images of multiple targets.

Observing the images for the multiple targets with different scattering coefficients in
the space, their outlines on the reconstructed image were varied. The sidelobe/grating lobes
clutter of the images obtained using different algorithms was diverse, which was reflected
in the purity of the background. The sidelobe/grating lobes generated by the traditional
MF method were relatively severe, and the operation using beam compensation efficiently
decreased the sidelobe clutter [21]; this is outside the scope of this paper. The imaging
results obtained using the OMP showed that a weak scattering target, such as a pistol, could
not be imaged properly. Therefore, these results show that OMP is weak in robustness,
requiring high SNR, and the computational efficiency of the algorithm is poor, which
demands a large computational load. Compared with these methods, the proposed method
effectively reduced the sidelobes/grating lobes and reconstructed the image of multiple
targets with high efficiency by combining MF and sparse reconstruction algorithms. The
image entropy and contrast of the imaging results obtained by the proposed method also
reached an excellent level, as described in the previous paragraph, and the image quality
was significantly improved.
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Figure 11. Imaging results of multiple targets using different algorithms. Rows 1 (a–d) and 3 (i–l) are
the 2D imaging results; Rows 2 (e–h) and 4 (m–p) are the 3D imaging results; Rows 1 and 2 are the
results for the pistol and knife; Rows 3 and 4 are the results for the pistol and stiletto; Column 1 is the
BPA imaging results; Column 2 is the RMA imaging results; Column 3 is the OMP imaging results;
Column 4 is the proposed method imaging results.

4. Conclusions

In this paper, we describe the design of a 3D near-field millimeter-wave SAR imag-
ing platform and propose a 3D near-field sparse direct imaging algorithm for irregular
trajectories. Our proposed algorithm provided better performance in suppressing side
lobes/grating lobes compared with traditional methods such as BPA in the time domain,
NUFFT-RMA in the frequency domain, and OMP using compressed sensing theory; it
required less computation time and storage space and provided significant improvement
in the imaging quality of multiple targets. The algorithm has good robustness and obtained
higher focusing performance. Use of the algorithm is feasible in typical applications such as
freehand imaging, UAV SAR, and automotive imaging. We demonstrated through simula-
tion and experimental studies that our algorithm achieved much higher SAR image quality
compared with the traditional algorithms. Our goal is to contribute to the promotion of a
complete and effective imaging process for industrial research.
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